ABOUT THE SPEAKER
Markus Fischer - Designer
Markus Fischer led the team at Festo that developed the first ultralight artificial bird capable of flying like a real bird.

Why you should listen

One of the oldest dreams of mankind is to fly like a bird. Many, from Leonardo da Vinci to contemporary research teams, tried to crack the "code" for the flight of birds, unsuccessfully. Until in 2011 the engineers of the Bionic Learning Network established by Festo, a German technology company, developed a flight model of an artificial bird that's capable of taking off and rising in the air by means of its flapping wings alone. It's called SmartBird. Markus Fischer is Festo's head of corporate design, where he's responsible for a wide array of initiatives. He established the Bionic Learning Network in 2006.

SmartBird is inspired by the herring gull. The wings not only beat up and down but twist like those of a real bird -- and seeing it fly leaves no doubt: it's a perfect technical imitation of the natural model, just bigger. (Even birds think so.) Its wingspan is almost two meters, while its carbon-fiber structure weighs only 450 grams.

Fischer says: "We learned from the birds how to move the wings, but also the need to be very energy efficient."

More profile about the speaker
Markus Fischer | Speaker | TED.com
TEDGlobal 2011

Markus Fischer: A robot that flies like a bird

Un robot qui vole comme un oiseau.

Filmed:
8,646,669 views

Beaucoup de robots sont capables de voler, mais aucun ne vole vraiment comme un oiseau. Tout du moins jusqu'à ce que Markus Fisher et son équipe chez Festo ne construisent le SmartBird, un grand robot léger conçu comme une mouette, qui vole en battant des ailes. Une démo planante, toute fraîche de TEDGlobal 2011.
- Designer
Markus Fischer led the team at Festo that developed the first ultralight artificial bird capable of flying like a real bird. Full bio

Double-click the English transcript below to play the video.

00:15
It is a dream of mankind
0
0
3000
C'est le rêve de l'Humanité
00:18
to fly like a bird.
1
3000
2000
que de pouvoir voler comme un oiseau.
00:20
Birds are very agile.
2
5000
2000
Les oiseaux sont très agiles.
00:22
They fly, not with rotating components,
3
7000
3000
Ils volent non pas avec des composants rotatifs
00:25
so they fly only by flapping their wings.
4
10000
3000
mais en battant des ailes.
00:28
So we looked at the birds,
5
13000
3000
Nous avons donc observé les oiseaux
00:31
and we tried to make a model
6
16000
3000
et nous avons essayé de concevoir un modèle
00:34
that is powerful, ultralight,
7
19000
3000
puissant, ultra-léger
00:37
and it must have excellent aerodynamic qualities
8
22000
4000
avec des qualités aérodynamiques excellentes
00:41
that would fly by its own
9
26000
2000
qui puisse voler seul
00:43
and only by flapping its wings.
10
28000
3000
et uniquement en battant des ailes.
00:46
So what would be better [than] to use
11
31000
3000
Quel meilleur exemple
00:49
the Herring Gull, in its freedom,
12
34000
2000
que le goéland, tournoyant et plongeant
00:51
circling and swooping over the sea,
13
36000
2000
au dessus de la mer en toute liberté
00:53
and [to] use this as a role model?
14
38000
3000
sur lequel nous baser?
00:56
So we bring a team together.
15
41000
2000
Nous avons rassemblé une équipe
00:58
There are generalists and also specialists
16
43000
3000
composée de généralistes et de spécialistes
01:01
in the field of aerodynamics
17
46000
3000
en aérodynamique
01:04
in the field of building gliders.
18
49000
2000
et en conception de planeurs
01:06
And the task was to build
19
51000
2000
et la tâche consistait à construire
01:08
an ultralight indoor-flying model
20
53000
3000
un modèle volant ultra-léger d'intérieur
01:11
that is able to fly over your heads.
21
56000
3000
qui puissent voler au dessus de nos têtes.
01:14
So be careful later on.
22
59000
3000
Donc faites attention tantôt.
01:19
And this was one issue:
23
64000
2000
C'était un des défis:
01:21
to build it that lightweight
24
66000
2000
le construire suffisamment léger
01:23
that no one would be hurt
25
68000
2000
pour ne blesser personne
01:25
if it fell down.
26
70000
3000
dans le cas où il tomberait.
01:28
So why do we do all this?
27
73000
2000
Pourquoi ce projet?
01:30
We are a company in the field of automation,
28
75000
3000
Nous sommes spécialistes en robotique
01:33
and we'd like to do very lightweight structures
29
78000
3000
et nous voulons concevoir des structures très légères
01:36
because that's energy efficient,
30
81000
2000
car elles sont économes en énergie
01:38
and we'd like to learn more about
31
83000
3000
et nous voudrions en savoir plus
01:41
pneumatics and air flow phenomena.
32
86000
3000
sur les phénomènes pneumatiques et de circulation d'air.
01:44
So I now would like you
33
89000
3000
J'aimerais que vous mettiez
01:47
to [put] your seat belts on
34
92000
2000
vos ceintures de sécurité
01:49
and put your hats [on].
35
94000
2000
et vos casques.
01:51
So maybe we'll try it once --
36
96000
3000
Nous allons essayer
01:54
to fly a SmartBird.
37
99000
2000
de faire voler un SmartBird.
01:56
Thank you.
38
101000
2000
Merci.
01:58
(Applause)
39
103000
6000
(Applaudissements)
02:14
(Applause)
40
119000
17000
(Applaudissements)
02:52
(Applause)
41
157000
15000
(Applaudissements)
03:07
So we can now
42
172000
2000
Examinons maintenant
03:09
look at the SmartBird.
43
174000
3000
le SmartBird.
03:12
So here is one without a skin.
44
177000
3000
Celui-ci est dépourvu de peau.
03:15
We have a wingspan of about two meters.
45
180000
3000
L'envergure est de 2 m.
03:18
The length is one meter and six,
46
183000
3000
La longueur, 1m 60
03:21
and the weight,
47
186000
2000
et le poids
03:23
it is only 450 grams.
48
188000
3000
est de 450g seulement.
03:26
And it is all out of carbon fiber.
49
191000
3000
Tout est en fibre de carbone.
03:29
In the middle we have a motor,
50
194000
2000
Il y a un moteur au milieu
03:31
and we also have a gear in it,
51
196000
4000
avec un engrenage
03:35
and we use the gear
52
200000
2000
qui sert à transférer
03:37
to transfer the circulation of the motor.
53
202000
3000
la rotation du moteur.
03:40
So within the motor, we have three Hall sensors,
54
205000
3000
Dans le moteur, 3 capteurs à effet Hall
03:43
so we know exactly where
55
208000
3000
pour détecter la position exacte
03:46
the wing is.
56
211000
3000
de l'aile.
03:49
And if we now beat up and down ...
57
214000
3000
Lorsqu'elle bat de haut en bas,
03:56
we have the possibility
58
221000
2000
il devient possible
03:58
to fly like a bird.
59
223000
2000
de voler comme un oiseau.
04:00
So if you go down, you have the large area of propulsion,
60
225000
3000
En descendant, la surface de propulsion est grande.
04:03
and if you go up,
61
228000
3000
En remontant
04:06
the wings are not that large,
62
231000
4000
les ailes sont moins larges
04:10
and it is easier to get up.
63
235000
3000
donc la remontée est facile.
04:14
So, the next thing we did,
64
239000
3000
Ensuite,
04:17
or the challenges we did,
65
242000
2000
un de nos défis
04:19
was to coordinate this movement.
66
244000
3000
était de coordonner ce mouvement.
04:22
We have to turn it, go up and go down.
67
247000
3000
Il fallait modifier l'angle sur la remontée puis la descente.
04:25
We have a split wing.
68
250000
2000
L'aile est divisée en 2 parties.
04:27
With a split wing
69
252000
2000
Grâce à cela
04:29
we get the lift at the upper wing,
70
254000
3000
l'aile supérieure peut se soulever
04:32
and we get the propulsion at the lower wing.
71
257000
3000
et l'aile inférieure fournir la poussée.
04:35
Also, we see
72
260000
2000
Voici comment
04:37
how we measure the aerodynamic efficiency.
73
262000
3000
nous avons calculé le rendement aérodynamique.
04:40
We had knowledge about
74
265000
2000
Nous connaissions
04:42
the electromechanical efficiency
75
267000
2000
le rendement électromécanique
04:44
and then we can calculate
76
269000
2000
ce qui nous a permis de calculer
04:46
the aerodynamic efficiency.
77
271000
2000
le rendement aérodynamique.
04:48
So therefore,
78
273000
2000
Par conséquent
04:50
it rises up from passive torsion to active torsion,
79
275000
3000
en remontant, elle passe d'une torsion passive à active
04:53
from 30 percent
80
278000
2000
de 30%
04:55
up to 80 percent.
81
280000
2000
jusquà 80%.
04:57
Next thing we have to do,
82
282000
2000
Ensuite, il nous fallait
04:59
we have to control and regulate
83
284000
2000
contrôler et réguler
05:01
the whole structure.
84
286000
2000
l'ensemble de la structure.
05:03
Only if you control and regulate it,
85
288000
3000
C'est le seul moyen d'atteindre
05:06
you will get that aerodynamic efficiency.
86
291000
3000
un tel rendement aérodynamique.
05:09
So the overall consumption of energy
87
294000
3000
La consommation totale en énergie
05:12
is about 25 watts at takeoff
88
297000
3000
est d'environ 25 Watts au décollage
05:15
and 16 to 18 watts in flight.
89
300000
3000
et de 16 à 18W en vol.
05:18
Thank you.
90
303000
2000
Merci.
05:20
(Applause)
91
305000
6000
(Applaudissements)
05:26
Bruno Giussani: Markus, I think that we should fly it once more.
92
311000
3000
Bruno Giussani: Markus, nous devrions le faire voler à nouveau.
05:29
Markus Fischer: Yeah, sure.
93
314000
2000
Markus Fischer: Oui, allons-y.
05:31
(Laughter)
94
316000
2000
(Rires)
05:53
(Gasps)
95
338000
3000
(Oh!)
06:02
(Cheers)
96
347000
2000
(Acclamations)
06:04
(Applause)
97
349000
9000
(Applaudissements)
Translated by Rémy Peyroux
Reviewed by Shadia Ramsahye

▲Back to top

ABOUT THE SPEAKER
Markus Fischer - Designer
Markus Fischer led the team at Festo that developed the first ultralight artificial bird capable of flying like a real bird.

Why you should listen

One of the oldest dreams of mankind is to fly like a bird. Many, from Leonardo da Vinci to contemporary research teams, tried to crack the "code" for the flight of birds, unsuccessfully. Until in 2011 the engineers of the Bionic Learning Network established by Festo, a German technology company, developed a flight model of an artificial bird that's capable of taking off and rising in the air by means of its flapping wings alone. It's called SmartBird. Markus Fischer is Festo's head of corporate design, where he's responsible for a wide array of initiatives. He established the Bionic Learning Network in 2006.

SmartBird is inspired by the herring gull. The wings not only beat up and down but twist like those of a real bird -- and seeing it fly leaves no doubt: it's a perfect technical imitation of the natural model, just bigger. (Even birds think so.) Its wingspan is almost two meters, while its carbon-fiber structure weighs only 450 grams.

Fischer says: "We learned from the birds how to move the wings, but also the need to be very energy efficient."

More profile about the speaker
Markus Fischer | Speaker | TED.com