ABOUT THE SPEAKER
Markus Fischer - Designer
Markus Fischer led the team at Festo that developed the first ultralight artificial bird capable of flying like a real bird.

Why you should listen

One of the oldest dreams of mankind is to fly like a bird. Many, from Leonardo da Vinci to contemporary research teams, tried to crack the "code" for the flight of birds, unsuccessfully. Until in 2011 the engineers of the Bionic Learning Network established by Festo, a German technology company, developed a flight model of an artificial bird that's capable of taking off and rising in the air by means of its flapping wings alone. It's called SmartBird. Markus Fischer is Festo's head of corporate design, where he's responsible for a wide array of initiatives. He established the Bionic Learning Network in 2006.

SmartBird is inspired by the herring gull. The wings not only beat up and down but twist like those of a real bird -- and seeing it fly leaves no doubt: it's a perfect technical imitation of the natural model, just bigger. (Even birds think so.) Its wingspan is almost two meters, while its carbon-fiber structure weighs only 450 grams.

Fischer says: "We learned from the birds how to move the wings, but also the need to be very energy efficient."

More profile about the speaker
Markus Fischer | Speaker | TED.com
TEDGlobal 2011

Markus Fischer: A robot that flies like a bird

Markus Fischer: En robot som flyr som en fugl

Filmed:
8,646,669 views

Mange roboter kan fly -- men ingen som en ekte fugl. Det var før Markus Fischer og teamet hans fra Festo bygget SmartBird, en stor, lett robot, bygget som en måke, og som flyr kun ved å flakse med vingene. Dette ble vist på TEDGlobal 2011.
- Designer
Markus Fischer led the team at Festo that developed the first ultralight artificial bird capable of flying like a real bird. Full bio

Double-click the English transcript below to play the video.

00:15
It is a dreamdrøm of mankindmenneskeheten
0
0
3000
Det er et av menneskets store drømmer
00:18
to flyfly like a birdfugl.
1
3000
2000
å kunne fly som en fugl.
00:20
BirdsFugler are very agilesmidig.
2
5000
2000
Fugler er kvikke dyr
00:22
They flyfly, not with rotatingroterende componentskomponenter,
3
7000
3000
og flyr uten noen roterende deler,
00:25
so they flyfly only by flappingflagrende theirderes wingsvinger.
4
10000
3000
kun ved å flakse med vingene.
00:28
So we looked at the birdsfugler,
5
13000
3000
Derfor så vi på fuglene
00:31
and we triedprøvd to make a modelmodell
6
16000
3000
og prøvde å lage en modell
00:34
that is powerfulkraftig, ultralightultralette,
7
19000
3000
som både er sterk, lett,
00:37
and it must have excellentutmerket aerodynamicaerodynamisk qualitieskvaliteter
8
22000
4000
og har gode areodynamiske egenskaper,
00:41
that would flyfly by its ownegen
9
26000
2000
som å fly av seg selv,
00:43
and only by flappingflagrende its wingsvinger.
10
28000
3000
altså utelukkende drevet av vingeslag.
00:46
So what would be better [than] to use
11
31000
3000
Så er vel bedre enn å bruke
00:49
the HerringSild GullGull, in its freedomfrihet,
12
34000
2000
måken
00:51
circlingsirkle and swoopingstuper over the seahav,
13
36000
2000
der den sirkler og svever over havet,
00:53
and [to] use this as a rolerolle modelmodell?
14
38000
3000
som et utgangspunkt?
00:56
So we bringbringe a teamteam togethersammen.
15
41000
2000
Vi samler derfor en gruppe
00:58
There are generalistsgeneralister and alsoogså specialistsspesialister
16
43000
3000
med forskjellig bakgrunn, også spesialister
01:01
in the fieldfelt of aerodynamicsaerodynamikk
17
46000
3000
innenfor aerodynamikk
01:04
in the fieldfelt of buildingbygning glidersseilfly.
18
49000
2000
og glideflyging.
01:06
And the taskoppgave was to buildbygge
19
51000
2000
Oppgaven ble å bygge
01:08
an ultralightultralette indoor-flyinginnendørs-flying modelmodell
20
53000
3000
en lett modell til innendørs bruk,
01:11
that is ablei stand to flyfly over your headshoder.
21
56000
3000
i stand til å fly over hodene deres.
01:14
So be carefulforsiktig laterseinere on.
22
59000
3000
Så pass på senere!
01:19
And this was one issueutgave:
23
64000
2000
Og slik dukket det første utfordring opp:
01:21
to buildbygge it that lightweightlettvekt
24
66000
2000
å bygge den så lett
01:23
that no one would be hurtskade
25
68000
2000
at ingen vil skades
01:25
if it fellfalt down.
26
70000
3000
hvis den faller ned.
01:28
So why do we do all this?
27
73000
2000
Og hvorfor gjør vi så dette?
01:30
We are a companyselskap in the fieldfelt of automationautomatisering,
28
75000
3000
Firmaet vårt jobber med automatisering
01:33
and we'dvi vil like to do very lightweightlettvekt structuresstrukturer
29
78000
3000
og ønsker å lage lette strukturer
01:36
because that's energyenergi efficienteffektiv,
30
81000
2000
da dette er energieffektivt.
01:38
and we'dvi vil like to learnlære more about
31
83000
3000
Og vi ønsker å lære mer om
01:41
pneumaticsPneumatics and airluft flowstrømme phenomenafenomener.
32
86000
3000
pneumatikk og luftstrømninger.
01:44
So I now would like you
33
89000
3000
Så nå vil jeg be dere om
01:47
to [put] your seatsete beltsbelter on
34
92000
2000
å spenne fast sikkerhetsbeltet
01:49
and put your hatshatter [on].
35
94000
2000
og ta hjelmene på
01:51
So maybe we'llvi vil try it onceen gang --
36
96000
3000
Så skal vi gjennomføre
01:54
to flyfly a SmartBirdSmartBird.
37
99000
2000
en flygning med denne SmartBird
01:56
Thank you.
38
101000
2000
Takk skal dere ha.
01:58
(ApplauseApplaus)
39
103000
6000
(Applaus)
02:14
(ApplauseApplaus)
40
119000
17000
(Applaus)
02:52
(ApplauseApplaus)
41
157000
15000
(Applaus)
03:07
So we can now
42
172000
2000
Nå kan vi se
03:09
look at the SmartBirdSmartBird.
43
174000
3000
nærmere på vår SmartBird.
03:12
So here is one withoututen a skinhud.
44
177000
3000
Her har vi en uten overflate.
03:15
We have a wingspanVingespenn of about two metersmeter.
45
180000
3000
Vingespennet er omtrent to meter.
03:18
The lengthlengde is one metermåler and sixseks,
46
183000
3000
Lengden 1,6 meter
03:21
and the weightvekt,
47
186000
2000
og vekten
03:23
it is only 450 gramsgram.
48
188000
3000
kun 450 gram.
03:26
And it is all out of carbonkarbon fiberfiber.
49
191000
3000
Alt dette er laget av karbonfiber.
03:29
In the middlemidten we have a motormotor,
50
194000
2000
I midten har vi en motor
03:31
and we alsoogså have a gearutstyr in it,
51
196000
4000
og en girboks.
03:35
and we use the gearutstyr
52
200000
2000
Vi bruker giret
03:37
to transferoverføre the circulationsirkulasjon of the motormotor.
53
202000
3000
til å overføre motorens omdreining.
03:40
So withininnenfor the motormotor, we have threetre HallHall sensorssensorer,
54
205000
3000
Inne i motoren har vi tre sensorer
03:43
so we know exactlynøyaktig where
55
208000
3000
som vi vet nøyaktig hvor
03:46
the wingvinge is.
56
211000
3000
vingen befinner seg.
03:49
And if we now beatslå up and down ...
57
214000
3000
Og hvis vi flakser opp og ned...
03:56
we have the possibilitymulighet
58
221000
2000
har vi muligheten til
03:58
to flyfly like a birdfugl.
59
223000
2000
å fly som en fugl.
04:00
So if you go down, you have the largestor areaområde of propulsionfremdrift,
60
225000
3000
Vingen trykker et stort areal nedover,
04:03
and if you go up,
61
228000
3000
og når vingen beveger seg opp,
04:06
the wingsvinger are not that largestor,
62
231000
4000
dekker den et mindre areal,
04:10
and it is easierlettere to get up.
63
235000
3000
så det er enklere å flytte den gjennom luften
04:14
So, the nextneste thing we did,
64
239000
3000
Det neste vi gjorde,
04:17
or the challengesutfordringer we did,
65
242000
2000
eller utfordringene vi møtte,
04:19
was to coordinatekoordinere this movementbevegelse.
66
244000
3000
var å koordinere disse bevegelsene.
04:22
We have to turnsving it, go up and go down.
67
247000
3000
Vi må vri vingen, bevege den opp, og så ned.
04:25
We have a splitdele wingvinge.
68
250000
2000
Vingen er delt.
04:27
With a splitdele wingvinge
69
252000
2000
Med en delt vinge er det
04:29
we get the liftløfte at the upperøverste wingvinge,
70
254000
3000
løft innerst på vingen,
04:32
and we get the propulsionfremdrift at the lowerNedre wingvinge.
71
257000
3000
og fremdrift på den ytterste delen.
04:35
AlsoOgså, we see
72
260000
2000
I tillegg ser vi hvordan
04:37
how we measuremåle the aerodynamicaerodynamisk efficiencyeffektivitet.
73
262000
3000
vi måler areodynamisk virkningsgrad.
04:40
We had knowledgekunnskap about
74
265000
2000
Vi kjente til
04:42
the electromechanicalElektromekanisk efficiencyeffektivitet
75
267000
2000
den elektromekaniske virkningsgraden
04:44
and then we can calculateregne ut
76
269000
2000
og da kunne vi beregne
04:46
the aerodynamicaerodynamisk efficiencyeffektivitet.
77
271000
2000
den areodynamiske fra dette.
04:48
So thereforederfor,
78
273000
2000
Slik stiger den fra
04:50
it risesstiger up from passivepassiv torsiontorsjon to activeaktiv torsiontorsjon,
79
275000
3000
passiv til aktiv torsjon,
04:53
from 30 percentprosent
80
278000
2000
fra 30 prosent
04:55
up to 80 percentprosent.
81
280000
2000
opp til 80 prosent.
04:57
NextNeste thing we have to do,
82
282000
2000
Det neste vi måtte gjøre
04:59
we have to controlkontroll and regulateregulere
83
284000
2000
var å kontrollere og regulere
05:01
the wholehel structurestruktur.
84
286000
2000
hele maskineriet.
05:03
Only if you controlkontroll and regulateregulere it,
85
288000
3000
Først når du klarer dette
05:06
you will get that aerodynamicaerodynamisk efficiencyeffektivitet.
86
291000
3000
vil du oppnå god aerodynamisk virkningsgrad.
05:09
So the overallalt i alt consumptionforbruk of energyenergi
87
294000
3000
Så den totale energibruken
05:12
is about 25 wattswatt at takeoffavgang
88
297000
3000
ved avgang er 25 Watt
05:15
and 16 to 18 wattswatt in flightflygning.
89
300000
3000
og 16 til 18 Watt når den flyr.
05:18
Thank you.
90
303000
2000
Mange takk.
05:20
(ApplauseApplaus)
91
305000
6000
(Applaus)
05:26
BrunoBruno GiussaniGiussani: MarkusMarkus, I think that we should flyfly it onceen gang more.
92
311000
3000
Bruno Giussani: Markus, jeg tror vi skal la den fly én gang til.
05:29
MarkusMarkus FischerFischer: Yeah, sure.
93
314000
2000
Markus Fischer: Ja, selvfølgelig.
05:31
(LaughterLatter)
94
316000
2000
(Latter)
05:53
(GaspsGisp)
95
338000
3000
(Gisper)
06:02
(CheersHa det)
96
347000
2000
(Heiarop)
06:04
(ApplauseApplaus)
97
349000
9000
(Applaus)
Translated by Kjetil Birkeland Moe
Reviewed by Victoria Heby

▲Back to top

ABOUT THE SPEAKER
Markus Fischer - Designer
Markus Fischer led the team at Festo that developed the first ultralight artificial bird capable of flying like a real bird.

Why you should listen

One of the oldest dreams of mankind is to fly like a bird. Many, from Leonardo da Vinci to contemporary research teams, tried to crack the "code" for the flight of birds, unsuccessfully. Until in 2011 the engineers of the Bionic Learning Network established by Festo, a German technology company, developed a flight model of an artificial bird that's capable of taking off and rising in the air by means of its flapping wings alone. It's called SmartBird. Markus Fischer is Festo's head of corporate design, where he's responsible for a wide array of initiatives. He established the Bionic Learning Network in 2006.

SmartBird is inspired by the herring gull. The wings not only beat up and down but twist like those of a real bird -- and seeing it fly leaves no doubt: it's a perfect technical imitation of the natural model, just bigger. (Even birds think so.) Its wingspan is almost two meters, while its carbon-fiber structure weighs only 450 grams.

Fischer says: "We learned from the birds how to move the wings, but also the need to be very energy efficient."

More profile about the speaker
Markus Fischer | Speaker | TED.com