ABOUT THE SPEAKER
Jennifer Healey - Research scientist
A research scientist at Intel, Jennifer Healey develops the mobile internet devices of the future.

Why you should listen

Jennifer Healey imagines a future where computers and smartphones are capable of being sensitive to human emotions and where cars are able to talk to each other, and thus keep their drivers away from accidents. A scientist at Intel Corporation Research Labs, she researches devices and systems that would allow for these major innovations.

Healey holds PhD from MIT in electrical engineering and computer science. While there, she pioneered “Affective Computing” with Rosalind Picard and developed the first wearable computer with physiological sensors and a video camera that allows the wearer to track their daily activities and how they feel while doing them. From there, she moved to IBM where she worked on the next generation of multi-modal interactive smartphones and helped architect the "Interaction Mark-Up language" that allows users to switch from voice to speech input seamlessly.

Healey has also used her interest in embedded devices in the field of healthcare. While an instructor at Harvard Medical School and at Beth Israel Deaconess Medical Center, she worked on new ways to use heart rate to predict cardiac health. She then joined HP Research in Cambridge to further develop wearable sensors for health monitoring and continued this research when she joined Intel Digital Health.

More profile about the speaker
Jennifer Healey | Speaker | TED.com
TED@Intel

Jennifer Healey: If cars could talk, accidents might be avoidable

Jennifer Healey: Če bi avti lahko govorili, bi se lahko izognili nesrečam

Filmed:
908,454 views

Ko vozimo, smo v steklenem balonu, z zaklenjenimi vrati, pritikamo na plin in zanašamo se na naše oči, četudi lahko vidimo le nekaj avtov pred nami in nekaj za nami. Ampak kaj če bi lahko avtomobili med sabo posredovali informacije o položaju in hitrosti in bi z modeli predvidevanja izračunali najvarnejšo pot za vse na cesti? Jennifer Healey si predstavlja svet brez prometnih nesreč. (Posnetek: TED@Intel)
- Research scientist
A research scientist at Intel, Jennifer Healey develops the mobile internet devices of the future. Full bio

Double-click the English transcript below to play the video.

00:12
Let's faceobraz it:
0
703
1914
Priznajmo si:
00:14
DrivingVožnja is dangerousnevarno.
1
2617
2445
Vožnja je nevarna.
00:17
It's one of the things that we don't like to think about,
2
5062
3098
Je ena od stvari o katerih ne razmišljamo radi,
00:20
but the factdejstvo that religiousreligiozno iconsikone and good luckSreča charmsčare
3
8160
3652
ampak dejstvo, da se religiozne ikone in nalepke za srečo
00:23
showshow up on dashboardsnadzorne plošče around the worldsvet
4
11812
4790
pojavljajo na armaturnih ploščah po svetu,
00:28
betraysizdal the factdejstvo that we know this to be trueresnično.
5
16602
4137
priča o dejstvu, da se tega zavedamo.
00:32
CarAvto accidentsnesreče are the leadingvodil causevzrok of deathsmrt
6
20739
3594
Prometne nesreče so glavni povzročitelj smrti
00:36
in people agesstarosti 16 to 19 in the UnitedVelika StatesDržave --
7
24333
4170
pri ljudeh od 16 do 19 let, v Združenih Državah --
00:40
leadingvodil causevzrok of deathsmrt --
8
28503
2843
glavni vzrok smrti --
00:43
and 75 percentodstotkov of these accidentsnesreče have nothing to do
9
31346
3863
in 75 procentov teh nesreč ni v povezavi
00:47
with drugsdroge or alcoholalkohol.
10
35209
2285
z drogami ali alkoholom.
00:49
So what happensse zgodi?
11
37494
2261
Torej, kaj se dogaja?
00:51
No one can say for sure, but I rememberZapomni si my first accidentnesreča.
12
39755
4219
Nihče ne more zagotovo vedeti,
ampak spomnim se svoje prve nesreče.
00:55
I was a youngmladi drivervoznik out on the highwayavtocesta,
13
43974
3803
Bila sem mladi voznik na avtocesti
00:59
and the caravto in frontspredaj of me, I saw the brakezavore lightsluči go on.
14
47777
2258
in pri avtu pred mano sem videla, da so se prižgale zavorne luči.
01:02
I'm like, "Okay, all right, this guy is slowingupočasnjuje down,
15
50035
1800
Pomislila sem "V redu, ta upočasnjuje,
01:03
I'll slowpočasi down too."
16
51835
1282
tudi samo bom upočasnila."
01:05
I stepkorak on the brakezavore.
17
53117
1926
Pritisnila sem na zavoro.
01:07
But no, this guy isn't slowingupočasnjuje down.
18
55043
2254
Ampak ne, ta pred mano ne upočasnjuje.
01:09
This guy is stoppingustavi, deadmrtev stop, deadmrtev stop on the highwayavtocesta.
19
57297
3178
Ta se ustavlja, popolnoma, ustavlja se sredi avtoceste.
01:12
It was just going 65 -- to zeronič?
20
60475
2540
Šel je iz 65 (100 km/h) -- do nič?
01:15
I slammedSlammed on the brakeszavore.
21
63015
1520
Pritisnila sem na zavoro.
01:16
I feltčutil the ABSABS kickkick in, and the caravto is still going,
22
64535
3059
Čutila sem, da se je uklopil ABS in avto je še kar peljal,
01:19
and it's not going to stop, and I know it's not going to stop,
23
67594
2696
in ne bo se ustavil, in vem, da se ne bo ustavil,
01:22
and the airzrak bagvreča deploysrazvije, the caravto is totaledskupaj,
24
70290
2939
in zračna blazina se je sprožila, avto je bil totalka.
01:25
and fortunatelyna srečo, no one was hurtboli.
25
73229
3557
Na srečo nihče ni bil poškodovan.
01:28
But I had no ideaideja that caravto was stoppingustavi,
26
76786
4211
Ampak nisem vedela, da se bo tisti avto ustavil,
01:32
and I think we can do a lot better than that.
27
80997
3645
in mislim, da smo sposobni česa boljšega.
01:36
I think we can transformpreoblikovati the drivingvožnja experienceizkušnje
28
84642
4145
Mislim, da lahko preoblikujemo vožnjo,
01:40
by lettingdajanje v najem our carsavtomobili talk to eachvsak other.
29
88787
3879
s tem, da dovolimo, da se naši avti pogovarjajo med sabo.
01:44
I just want you to think a little bitbit
30
92666
1424
Želim, da malo pomislite
01:46
about what the experienceizkušnje of drivingvožnja is like now.
31
94090
2888
kako je dandanes voziti.
01:48
Get into your caravto. CloseBlizu the doorvrata. You're in a glasssteklo bubblemehurček.
32
96978
4028
Sedeš v avto. Zapreš vrata. Si v steklenem mehurčku.
01:53
You can't really directlyneposredno sensesmisel the worldsvet around you.
33
101006
2916
Ne moreš imeti neposrednega občutka sveta okoli tebe.
01:55
You're in this extendedpodaljšan bodytelo.
34
103922
2181
Si v tem povečanem telesu.
01:58
You're taskednalogo with navigatingnavigacijo it down
35
106103
2163
Tvoja naloga je, da ga usmerjaš
02:00
partially-seendelno videl roadwaysceste,
36
108266
2056
po delno vidnih cestah,
02:02
in and amongstmed other metalkovinski giantsvelikani, at super-humansuper človekovih speedshitrosti.
37
110322
4424
med drugimi jeklenimi velikani, pri super-človeški hitrosti.
02:06
Okay? And all you have to guidevodnik you are your two eyesoči.
38
114746
4480
Ja? In vse kar imaš kot vodilo, sta tvoji dve očesi.
02:11
Okay, so that's all you have,
39
119226
1762
Torej, to je vse kar imaš,
02:12
eyesoči that weren'tni bilo really designedzasnovan for this tasknaloga,
40
120988
1735
oči, ki niso bile ustvarjene za to nalogo.
02:14
but then people askvprašajte you to do things like,
41
122723
3751
Potem ljudje rečejo, stvari, kot so:
02:18
you want to make a lanepasu changesprememba,
42
126474
1549
Hočeš zamenjati pas,
02:20
what's the first thing they askvprašajte you do?
43
128023
2321
kaj je prva stvar, ki ti jo naročijo?
02:22
Take your eyesoči off the roadcesta. That's right.
44
130344
3095
Nehaj gledati na cesto. Tako je prav.
02:25
Stop looking where you're going, turnobrat,
45
133439
2096
Ne glej kam greš, obrni se,
02:27
checkpreveri your blindslepi spotspot,
46
135535
2018
preveri mrtve kote,
02:29
and drivepogon down the roadcesta withoutbrez looking where you're going.
47
137553
3471
in vozi po cesti, ne da bi gledal kam pelješ.
02:33
You and everyonevsi elsedrugače. This is the safevarno way to drivepogon.
48
141024
3135
Ti in vsi ostali. To je varen način vožnje.
02:36
Why do we do this? Because we have to,
49
144159
2241
Zakaj to počnemo? Ker moramo.
02:38
we have to make a choiceizbira, do I look here or do I look here?
50
146400
2579
Moram sprejeti odločitev, naj gledam sem ali naj gledam sem.
02:40
What's more importantpomembno?
51
148979
1521
Kaj je bolj pomembno?
02:42
And usuallyobičajno we do a fantasticfantastično jobdelo
52
150500
2711
In po navadi nam gre odlično
02:45
pickingnabiranje and choosingizbira what we attendse udeležijo to on the roadcesta.
53
153211
3769
z izbiranjem in razmišljanjem čemu na cesti se posvetimo.
02:48
But occasionallyobčasno we misszgrešiti something.
54
156980
3650
Ampak včasih kaj spregledamo.
02:52
OccasionallyObčasno we sensesmisel something wrongnarobe or too latepozen.
55
160630
4461
Včasih kaj zaznamo narobe ali pa prepozno.
02:57
In countlessnešteto accidentsnesreče, the drivervoznik sayspravi,
56
165091
1988
V nešteto nesrečah, voznik pravi:
02:59
"I didn't see it comingprihajajo."
57
167079
2308
"Nisem ga videl."
03:01
And I believe that. I believe that.
58
169387
3281
In temu verjamem. Temu verjamem.
03:04
We can only watch so much.
59
172668
2925
Vsega ne moremo videti.
03:07
But the technologytehnologijo existsobstaja now that can help us improveizboljšati that.
60
175593
5144
Ampak danes imamo tehnologijo, ki nam lahko pomaga, da to izboljšamo.
03:12
In the futureprihodnost, with carsavtomobili exchangingizmenjavo datapodatkov with eachvsak other,
61
180737
4296
V prihodnosti, ko si bodo avti izmenjevali podatke,
03:17
we will be ablesposoben to see not just threetri carsavtomobili aheadnaprej
62
185033
3928
ne bomo videli le za tri avte naprej,
03:20
and threetri carsavtomobili behindzadaj, to the right and left,
63
188961
1594
ampak za tri avte nazaj, v desno in levo,
03:22
all at the sameenako time, bird'sptičje eyeoči viewpogled,
64
190555
3166
vse to hkrati, iz ptičje perspektive,
03:25
we will actuallydejansko be ablesposoben to see into those carsavtomobili.
65
193721
3128
pravzaprav bomo videli v tiste avte.
03:28
We will be ablesposoben to see the velocityhitrost of the caravto in frontspredaj of us,
66
196849
2371
Videli bomo lahko hitrost avta, ki je pred nami,
03:31
to see how fasthitro that guy'sfant je going or stoppingustavi.
67
199220
3240
da vidimo kako hitro pospešuje ali se ustavlja.
03:34
If that guy'sfant je going down to zeronič, I'll know.
68
202460
4510
Če se popolnoma ustavlja, bom vedela.
03:38
And with computationračunanje and algorithmsalgoritmi and predictivepredvidevanje modelsmodeli,
69
206970
3859
In z izračuni in algoritmi in modeli predvidevanja,
03:42
we will be ablesposoben to see the futureprihodnost.
70
210829
3273
bomo lahko videli v prihodnost.
03:46
You maylahko think that's impossiblenemogoče.
71
214102
1556
Lahko se vam zdi nemogoče.
03:47
How can you predictnapovedati the futureprihodnost? That's really hardtežko.
72
215658
2731
Kako lahko predvidiš prihodnost? To je težko.
03:50
ActuallyDejansko, no. With carsavtomobili, it's not impossiblenemogoče.
73
218389
3619
V bistvu ne. Z avti ni nemogoče.
03:54
CarsAvtomobili are three-dimensionaltridimenzionalno objectspredmetov
74
222008
2732
Avti so tridimenzionalni predmeti
03:56
that have a fixeddoločen positionpoložaj and velocityhitrost.
75
224740
2332
s stalnim položajem in hitrostjo.
03:59
They travelpotovanje down roadsceste.
76
227072
1631
Potujejo po cesti.
04:00
OftenPogosto they travelpotovanje on pre-publishedvnaprej objavljena routespoti.
77
228703
2412
Pogosto potujejo po vnaprej zastavljeni poti.
04:03
It's really not that hardtežko to make reasonablerazumno predictionsnapovedi
78
231115
3938
Res ni tako težko ustvariti razumnih predvidevanj
04:07
about where a car'savto going to be in the nearblizu futureprihodnost.
79
235053
2864
glede tega, kje bo avto v prihodnosti.
04:09
Even if, when you're in your caravto
80
237917
2002
Tudi, če si v avtu
04:11
and some motorcyclistmotorist comesprihaja -- bshoombshoom! --
81
239919
1994
in pride mimo motorist --bshoom!--
04:13
85 milesmilje an houruro down, lane-splittingpas deljenja --
82
241913
2296
85 milj na uro (140 km/h).
04:16
I know you've had this experienceizkušnje --
83
244209
2547
Vem, da ste to že doživeli --
04:18
that guy didn't "just come out of nowherenikjer."
84
246756
2603
ta motorist ni "kar prišel od nikoder".
04:21
That guy'sfant je been on the roadcesta probablyverjetno for the last halfpol houruro.
85
249359
3643
Ta motorist je bil na cesti verjetno zadnje pol ure.
04:25
(LaughterSmeh)
86
253002
1190
(Smeh)
04:26
Right? I mean, somebody'snekdo je seenvidel him.
87
254192
3589
Res? Mislim, gotovo ga je nekdo videl.
04:29
TenDeset, 20, 30 milesmilje back, someone'snekdo je seenvidel that guy,
88
257781
2768
10, 20, 30 milj nazaj, nekdo ga je videl
04:32
and as soonkmalu as one caravto seesvidi that guy
89
260549
2384
in takoj, ko ga en avto vidi
04:34
and putsstavi him on the mapzemljevid, he's on the mapzemljevid --
90
262933
2231
in ga postavi na zemljevid, je na zemljevidu --
04:37
positionpoložaj, velocityhitrost,
91
265164
2176
položaj, hitrost,
04:39
good estimateoceniti he'llon bo continuenadaljuj going 85 milesmilje an houruro.
92
267340
2321
lahko rečemo, da bo pot nadaljeval pri 85 mph (140 km/h).
04:41
You'llBoste know, because your caravto will know, because
93
269661
2184
Ti boš vedel, ker bo vedel tvoj avto, ker
04:43
that other caravto will have whisperedšepetal something in his earuho,
94
271845
2275
mu bo tisti drugi avto zašepetal na uho,
04:46
like, "By the way, fivepet minutesminut,
95
274120
1923
npr.: "Mimogrede, pet minut,
04:48
motorcyclistmotorist, watch out."
96
276043
2775
motorist, pazi."
04:50
You can make reasonablerazumno predictionsnapovedi about how carsavtomobili behaveObnašajte se.
97
278818
2703
Lahko narediš razumna predvidevanja o vedenju avtov.
04:53
I mean, they're NewtonianNewtonovo objectspredmetov.
98
281521
1365
Mislim, saj so 'Newtonski' predmeti.
04:54
That's very nicelepo about them.
99
282886
2909
To je pri njih zelo prikladno.
04:57
So how do we get there?
100
285795
3034
Torej, kako do tega?
05:00
We can startZačni with something as simplepreprosto
101
288829
2266
Začnemo lahko z nečim preprostim,
05:03
as sharingdelitev our positionpoložaj datapodatkov betweenmed carsavtomobili,
102
291095
2870
kot je izmenjava podatkov o polažaju med avti,
05:05
just sharingdelitev GPSGPS.
103
293965
1892
samo z delitvijo GPS-ja.
05:07
If I have a GPSGPS and a camerakamera in my caravto,
104
295857
2444
Če imam GPS in kamero v avtu,
05:10
I have a prettylepa precisenatančno ideaideja of where I am
105
298301
2231
se mi kar zdi kje sem
05:12
and how fasthitro I'm going.
106
300532
1732
in kako hitro peljem.
05:14
With computerračunalnik visionvizijo, I can estimateoceniti where
107
302264
1657
Z računalniškim pogledom lahko predvidim kje
05:15
the carsavtomobili around me are, sortRazvrsti of, and where they're going.
108
303921
3537
so avti okoli mene, nekako, in kam grejo.
05:19
And sameenako with the other carsavtomobili.
109
307458
970
In enako je z ostalimi avti.
05:20
They can have a precisenatančno ideaideja of where they are,
110
308428
1814
Lahko natančno vedo kje so,
05:22
and sortRazvrsti of a vaguenejasen ideaideja of where the other carsavtomobili are.
111
310242
2146
in se jim zdi kje so ostali avti.
05:24
What happensse zgodi if two carsavtomobili sharedeliti that datapodatkov,
112
312388
3231
Kaj se zgodi, če si dva avta delita podatke,
05:27
if they talk to eachvsak other?
113
315619
1955
če se pogovarjata?
05:29
I can tell you exactlytočno what happensse zgodi.
114
317574
2778
Lahko vam povem natanko kaj se zgodi.
05:32
BothOba modelsmodeli improveizboljšati.
115
320352
2339
Oba modela se izboljšata.
05:34
EverybodyVsi winszmaga.
116
322691
2055
Vsi imajo korist.
05:36
ProfessorProfesor BobBob WangWang and his teamekipa
117
324746
2577
Profeso Bob Wang in njegova ekipa
05:39
have doneKončano computerračunalnik simulationssimulacije of what happensse zgodi
118
327323
2738
so naredili računalniško simulacijo kaj se zgodi,
05:42
when fuzzymehka estimatesocene combinezdružiti, even in lightsvetloba trafficprometa,
119
330061
3431
ko se približna predvidenja združi, celo pri malo prometa,
05:45
when carsavtomobili just sharedeliti GPSGPS datapodatkov,
120
333492
2624
kjer si avti le delijo GPS podatke.
05:48
and we'vesmo movedpreselil this researchraziskave out of the computerračunalnik simulationsimulacija
121
336116
2513
In to raziskavo smo premaknili iz računalniške simulacije
05:50
and into robotrobot testtest bedspostelje that have the actualdejansko sensorssenzorji
122
338629
3027
v robotske testne neprave s senzorji,
05:53
that are in carsavtomobili now on these robotsroboti:
123
341656
3133
ki so v avtih, zdaj na te robote:
05:56
stereostereo cameraskamere, GPSGPS,
124
344789
1838
stereo kamere, GPS
05:58
and the two-dimensionaldvodimenzionalno laserlaser rangerazpon findersiskala
125
346627
1874
in dvodimenzionalne laserske pregledovalce območja,
06:00
that are commonpogosti in backuprezerva systemssistemov.
126
348501
2240
ki so navadno v vzvratnih sistemih.
06:02
We alsotudi attachpriložite a discretediskreten short-rangekratkega dosega communicationkomunikacija radioradio,
127
350741
4484
Dodali smo tudi diskreten radio za komunikacijo na kratke razdalje,
06:07
and the robotsroboti talk to eachvsak other.
128
355225
1909
in roboti se med sabo pogovarjajo.
06:09
When these robotsroboti come at eachvsak other,
129
357134
1539
Ko se ti roboti približajo eden drugemu,
06:10
they tracksledi eachvsak other'sdrugi positionpoložaj preciselynatančno,
130
358673
2971
si izmenjajo natančne podatke o položaju
06:13
and they can avoidizogibajte se eachvsak other.
131
361644
2737
in lahko se eden drugemu izogibajo.
06:16
We're now addingdodajanje more and more robotsroboti into the mixmešamo,
132
364381
3226
Zdaj dodajamo več in več robotov
06:19
and we encounterednaletel some problemstežave.
133
367607
1471
in odkrili smo nekaj problemov.
06:21
One of the problemstežave, when you get too much chatterCvrkutanje,
134
369078
2359
Eden od problemov se pojavi, ko je preveč tega pogovarjanja,
06:23
it's hardtežko to processproces all the packetspaketov, so you have to prioritizeprednost,
135
371437
3728
potem je težko obdelati toliko podatkov, zato je treba nekatere prioritizirati
06:27
and that's where the predictivepredvidevanje modelmodel helpspomaga you.
136
375165
2357
in s tem nam pomagajo modeli predvidevanja.
06:29
If your robotrobot carsavtomobili are all trackingsledenje the predictednapovedano trajectoriestrajektorije,
137
377522
4372
Če vaši robotski avti sledijo predvidenim potem,
06:33
you don't payplačati as much attentionpozornost to those packetspaketov.
138
381894
1767
se ni potrebno posvečati vsem njim.
06:35
You prioritizeprednost the one guy
139
383661
1703
Prednost daš tistemu,
06:37
who seemsZdi se to be going a little off courseseveda.
140
385364
1333
za katerega se vidi,
da mogoče ne bo sledil načrtu.
06:38
That guy could be a problemproblem.
141
386697
2526
Ta zna biti problem.
06:41
And you can predictnapovedati the newnovo trajectorytrajektorija.
142
389223
3002
In lahko predvidiš novo pot.
06:44
So you don't only know that he's going off courseseveda, you know how.
143
392225
2763
Tako da ne veš samo da pelje izven načrta, ampak veš kako.
06:46
And you know whichki driversvozniki you need to alertopozorilo to get out of the way.
144
394988
3725
In veš katere voznike je potrebno opozoriti, da se umaknejo s poti.
06:50
And we wanted to do -- how can we bestnajboljši alertopozorilo everyonevsi?
145
398713
2633
In hoteli smo narediti -- kako lahko najbolje opozorimo vse?
06:53
How can these carsavtomobili whisperšepet, "You need to get out of the way?"
146
401346
3183
Kako lahko ti avti šepetajo "Moraš se umakniti s poti."?
06:56
Well, it dependsodvisno on two things:
147
404529
1517
No, odvisno je od dveh stvari:
06:58
one, the abilitysposobnost of the caravto,
148
406046
2169
prva je zmožnost avta
07:00
and seconddrugič the abilitysposobnost of the drivervoznik.
149
408215
3217
in druga je sposobnost voznika.
07:03
If one guy has a really great caravto,
150
411432
1505
Če ima nekdo res dober avto,
07:04
but they're on theirnjihovi phonetelefon or, you know, doing something,
151
412937
2925
ampak telefonira ali počne kaj drugega,
07:07
they're not probablyverjetno in the bestnajboljši positionpoložaj
152
415862
1930
potem ni v najboljšem položaju,
07:09
to reactreagirati in an emergencynujno.
153
417792
2970
da bi reagiral v sili.
07:12
So we startedzačel a separateločeni lineline of researchraziskave
154
420762
1665
Zato smo začeli ločeno raziskavo
07:14
doing drivervoznik statedržava modelingmodeliranje.
155
422427
2551
o modeliranju voznikovega stanja.
07:16
And now, usinguporabo a seriesserije of threetri cameraskamere,
156
424978
2329
In zdaj, z uporabo treh kamer
07:19
we can detectodkriti if a drivervoznik is looking forwardnaprej,
157
427307
2270
zaznamo, če voznik gleda naprej,
07:21
looking away, looking down, on the phonetelefon,
158
429577
2860
stran, dol, na telefon
07:24
or havingimeti a cupskodelico of coffeekava.
159
432437
3061
ali sreba kavo.
07:27
We can predictnapovedati the accidentnesreča
160
435498
2070
Lahko predvidimo nesreče
07:29
and we can predictnapovedati who, whichki carsavtomobili,
161
437568
3651
in lahko predvidimo kdo in kateri avto,
07:33
are in the bestnajboljši positionpoložaj to movePremakni se out of the way
162
441219
3486
sta na najboljšem položaju, da se umakneta
07:36
to calculateizračunati the safestnajvarnejši routepot for everyonevsi.
163
444705
3009
za najvarnejšo pot vseh.
07:39
FundamentallyBistveno, these technologiestehnologije existobstajajo todaydanes.
164
447714
4635
Temeljno, te tehnologije danes obstajajo.
07:44
I think the biggestnajvečji problemproblem that we faceobraz
165
452349
2824
Mislim, da je največja težava s katero se soočamo
07:47
is our ownlastno willingnesspripravljenost to sharedeliti our datapodatkov.
166
455173
3013
naša lastna volja za izmenjavo podatkov.
07:50
I think it's a very disconcertingnenavaden notionpojma,
167
458186
2631
Misli, da gre za zaskrbljujoče mišljenje,
07:52
this ideaideja that our carsavtomobili will be watchinggledal us,
168
460817
2386
ta misel, da nas bodo avti opazovali,
07:55
talkinggovoriti about us to other carsavtomobili,
169
463203
3371
da bodo govorili o nas z drugimi avti,
07:58
that we'llbomo be going down the roadcesta in a seamorje of gossipopravljanje.
170
466574
3427
da se bomo vozili po cesti v morju govoric.
08:02
But I believe it can be doneKončano in a way that protectsščiti our privacyzasebnost,
171
470001
3897
Ampak verjamem, da je lahko storjeno tako, da je naša privatnost zaščitena,
08:05
just like right now, when I look at your caravto from the outsidezunaj,
172
473898
3741
tako kot zdaj, ko pogledam vaš avto od zunaj,
08:09
I don't really know about you.
173
477639
2363
v resnici ne vem nič o vas.
08:12
If I look at your licenselicenco plateplošča numberštevilka,
174
480002
1137
Če pogledam vašo registracijo,
08:13
I don't really know who you are.
175
481139
1886
ne vem kdo ste.
08:15
I believe our carsavtomobili can talk about us behindzadaj our backshrbet.
176
483025
4249
Verjamem, da lahko naši avti govorijo o nas za našimi hrbti.
08:19
(LaughterSmeh)
177
487274
2975
(Smeh)
08:22
And I think it's going to be a great thing.
178
490249
3185
In mislim, da bo to dobro.
08:25
I want you to considerrazmislite for a momenttrenutek
179
493434
1650
Hočem, da razmislite za trenutek,
08:27
if you really don't want the distractedmoti teenagernajstnik behindzadaj you
180
495084
4118
če res nočete, da bi raztresena najstnica za vami
08:31
to know that you're brakingzaviranje,
181
499202
2120
vedela, da zavirate,
08:33
that you're comingprihajajo to a deadmrtev stop.
182
501322
2924
da se popolnoma ustavljate.
08:36
By sharingdelitev our datapodatkov willinglyhote,
183
504246
2741
S tem, da delimo podatke,
08:38
we can do what's bestnajboljši for everyonevsi.
184
506987
2812
storimo kar je najboljše za vse.
08:41
So let your caravto gossipopravljanje about you.
185
509799
3076
Torej, dovolite, da vas vaš avto opravlja.
08:44
It's going to make the roadsceste a lot safervarnejše.
186
512875
3038
S tem bodo ceste veliko varnejše.
08:47
Thank you.
187
515913
1791
Hvala.
08:49
(ApplauseAplavz)
188
517704
4985
(Aplavz)
Translated by Jure Mavrič
Reviewed by Kaja Kren

▲Back to top

ABOUT THE SPEAKER
Jennifer Healey - Research scientist
A research scientist at Intel, Jennifer Healey develops the mobile internet devices of the future.

Why you should listen

Jennifer Healey imagines a future where computers and smartphones are capable of being sensitive to human emotions and where cars are able to talk to each other, and thus keep their drivers away from accidents. A scientist at Intel Corporation Research Labs, she researches devices and systems that would allow for these major innovations.

Healey holds PhD from MIT in electrical engineering and computer science. While there, she pioneered “Affective Computing” with Rosalind Picard and developed the first wearable computer with physiological sensors and a video camera that allows the wearer to track their daily activities and how they feel while doing them. From there, she moved to IBM where she worked on the next generation of multi-modal interactive smartphones and helped architect the "Interaction Mark-Up language" that allows users to switch from voice to speech input seamlessly.

Healey has also used her interest in embedded devices in the field of healthcare. While an instructor at Harvard Medical School and at Beth Israel Deaconess Medical Center, she worked on new ways to use heart rate to predict cardiac health. She then joined HP Research in Cambridge to further develop wearable sensors for health monitoring and continued this research when she joined Intel Digital Health.

More profile about the speaker
Jennifer Healey | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee