ABOUT THE SPEAKER
Marvin Minsky - AI pioneer
Marvin Minsky is one of the great pioneers of artificial intelligence -- and using computing metaphors to understand the human mind. His contributions to mathematics, robotics and computational linguistics are legendary and far-reaching.

Why you should listen

Marvin Minsky is the superstar-elder of artificial intelligence, one of the most productive and important cognitive scientists of the century, and the leading proponent of the Society of Mind theory. Articulated in his 1985 book of the same name, Minsky's theory says intelligence is not born of any single mechanism, but from the interaction of many independent agents. The book's sequel,The Emotion Machine (2006), says similar activity also accounts for feelings, goals, emotions and conscious thoughts.

Minsky also pioneered advances in mathematics, computational linguistics, optics, robotics and telepresence. He built SNARC, the first neural network simulator, some of the first visual scanners, and the first LOGO "turtle." From his headquarters at MIT's Media Lab and the AI Lab (which he helped found), he continues to work on, as he says, "imparting to machines the human capacity for commonsense reasoning."

More profile about the speaker
Marvin Minsky | Speaker | TED.com
TED2003

Marvin Minsky: Health and the human mind

Marvin Minsky 讲述健康和人类心理变化

Filmed:
606,909 views

让我们来认真聆听Marvin Minsky诙谐迷人的即兴演讲,他谈论健康,人口膨胀,敏感的人类心智:机智,风趣,智慧和些微的狡猾....他是在开玩笑还是在给我们启迪?
- AI pioneer
Marvin Minsky is one of the great pioneers of artificial intelligence -- and using computing metaphors to understand the human mind. His contributions to mathematics, robotics and computational linguistics are legendary and far-reaching. Full bio

Double-click the English transcript below to play the video.

00:18
If you ask people about what part部分 of psychology心理学 do they think is hard,
0
0
6000
如果你问别人,心理学哪个方面比较难?
00:24
and you say, "Well, what about thinking思维 and emotions情绪?"
1
6000
3000
然后你问,思考还是感情。
00:27
Most people will say, "Emotions情绪 are terribly可怕 hard.
2
9000
3000
大部分人会回答,“感情变化很难把握”
00:30
They're incredibly令人难以置信 complex复杂. They can't -- I have no idea理念 of how they work.
3
12000
6000
你根本无法想象感情变化有多么的复杂,他们很难——我是无法想像人类感情的变化
00:36
But thinking思维 is really very straightforward直截了当:
4
18000
2000
但是"思考"确实很简单,直接,明了的
00:38
it's just sort分类 of some kind of logical合乎逻辑 reasoning推理, or something.
5
20000
4000
“思考” 仅仅是一种逻辑的推理
00:42
But that's not the hard part部分."
6
24000
3000
这不难理解
00:45
So here's这里的 a list名单 of problems问题 that come up.
7
27000
2000
这里有一些关于我们人类面临的问题,值得我们思考
00:47
One nice不错 problem问题 is, what do we do about health健康?
8
29000
3000
一个问题是: 人类对康健的理解是什么?
00:50
The other day, I was reading something, and the person said
9
32000
4000
那天我在读一样东西,其中有人说
00:54
probably大概 the largest最大 single cause原因 of disease疾病 is handshaking握手 in the West西.
10
36000
6000
可能疾病在西方产生的最大原因就是“握手”
01:00
And there was a little study研究 about people who don't handshake握手,
11
42000
4000
因为在西方人们时常握手,几乎没有一刻停止过
01:04
and comparing比较 them with ones那些 who do handshake握手.
12
46000
3000
和那些不握手的人比较起来
01:07
And I haven't没有 the foggiestfoggiest idea理念 of where you find the ones那些 that don't handshake握手,
13
49000
5000
此外我很难想象,要在哪里才能找到那些不"握手“的地方
01:12
because they must必须 be hiding.
14
54000
3000
因为他们一定将自己掩藏起来了
01:15
And the people who avoid避免 that
15
57000
4000
此外那些不握手的人们
01:19
have 30 percent百分 less infectious传染病 disease疾病 or something.
16
61000
4000
可能有30% 不易感染疾病。
01:23
Or maybe it was 31 and a quarter25美分硬币 percent百分.
17
65000
3000
或者31%也说不准
01:26
So if you really want to solve解决 the problem问题 of epidemics流行病 and so forth向前,
18
68000
4000
所以说如果你真的想解决流行疾病等等问题
01:30
let's start开始 with that. And since以来 I got that idea理念,
19
72000
4000
可以先从握手的问题开始。自从我知道这个观念后,
01:34
I've had to shake hundreds数以百计 of hands.
20
76000
4000
我已经握了好几百人的手了。
01:38
And I think the only way to avoid避免 it
21
80000
5000
我想唯一能避免跟人握手的的方法是
01:43
is to have some horrible可怕 visible可见 disease疾病,
22
85000
2000
是得让人家可以看得见得什么病
01:45
and then you don't have to explain说明.
23
87000
3000
这你就不需要去废口舌去解释了
01:48
Education教育: how do we improve提高 education教育?
24
90000
4000
教育:我们如何让教育变得更好?
01:52
Well, the single best最好 way is to get them to understand理解
25
94000
4000
最棒的一个办法是让他们了解到
01:56
that what they're being存在 told is a whole整个 lot of nonsense废话.
26
98000
3000
他们正在被教导的是一堆没有用的东西。
01:59
And then, of course课程, you have to do something
27
101000
2000
所以,当然,你得要做些甚么
02:01
about how to moderate中等 that, so that anybody任何人 can -- so they'll他们会 listen to you.
28
103000
5000
如何主持领导这个观念,让大部分的人都听你的。
02:06
Pollution污染, energy能源 shortage短缺, environmental环境的 diversity多样, poverty贫穷.
29
108000
4000
污染,能源短缺、环境多样性、贫穷--
02:10
How do we make stable稳定 societies社会? Longevity长寿.
30
112000
4000
我们怎样去创造稳定的社会呢?我的意思是:长久的稳定
02:14
Okay, there're有很 lots of problems问题 to worry担心 about.
31
116000
3000
好的,现在有一堆的问题值得我们忧虑。
02:17
Anyway无论如何, the question I think people should talk about --
32
119000
2000
现在我认为人们应该讨论的问题
02:19
and it's absolutely绝对 taboo忌讳 -- is, how many许多 people should there be?
33
121000
5000
绝对是一个禁忌话题---就是,该有多少人同时生存在这世界上?
02:24
And I think it should be about 100 million百万 or maybe 500 million百万.
34
126000
7000
我认为应该要有1亿或是5亿的人口。
02:31
And then notice注意 that a great many许多 of these problems问题 disappear消失.
35
133000
5000
然后你可以注意到这些大部分的问题都消失了。
02:36
If you had 100 million百万 people
36
138000
2000
假设你让一亿的人
02:38
properly正确 spread传播 out, then if there's some garbage垃圾,
37
140000
6000
适当地分布,然后你有一些垃圾
02:44
you throw it away, preferably优选 where you can't see it, and it will rot腐烂.
38
146000
7000
你将它丢掉,你宁可希望不要看到它,然后它会自行腐烂掉。
02:51
Or you throw it into the ocean海洋 and some fish will benefit效益 from it.
39
153000
5000
或是你将它丢到海洋给鱼吃
02:56
The problem问题 is, how many许多 people should there be?
40
158000
2000
该有多少人同时生存在这世界上?
02:58
And it's a sort分类 of choice选择 we have to make.
41
160000
3000
这是一个我们需要做的一个选择
03:01
Most people are about 60 inches英寸 high or more,
42
163000
3000
大部分的人的身高是60英寸,或更高,
03:04
and there's these cube立方体 laws法律. So if you make them this big,
43
166000
4000
假设我们减少了体积,变成了这样大的立方体--
03:08
by using运用 nanotechnology纳米技术, I suppose假设 --
44
170000
3000
用奈米科技的方法,我这样认为--
03:11
(Laughter笑声)
45
173000
1000
(笑声)
03:12
-- then you could have a thousand times as many许多.
46
174000
2000
那么你可能有1000倍之多的人口。
03:14
That would solve解决 the problem问题, but I don't see anybody任何人
47
176000
2000
那将会解决问题,但是我还没有看过有人
03:16
doing any research研究 on making制造 people smaller.
48
178000
3000
做可以让人变小的相关研究。
03:19
Now, it's nice不错 to reduce减少 the population人口, but a lot of people want to have children孩子.
49
181000
5000
减少人口的想法是不错,但是很多人会想要生小孩。
03:24
And there's one solution that's probably大概 only a few少数 years年份 off.
50
186000
3000
大概在隔几年后会有解决的办法。
03:27
You know you have 46 chromosomes染色体. If you're lucky幸运, you've got 23
51
189000
5000
大家都知道我们有46条染色体。如果你幸运的话,你分别得到23条
03:32
from each parent. Sometimes有时 you get an extra额外 one or drop下降 one out,
52
194000
6000
从父母中;有时候你会得到额外的一条,或是少了一条,
03:38
but -- so you can skip跳跃 the grandparent祖父母 and great-grandparent曾祖 stage阶段
53
200000
4000
你可以跳过曾祖父母和曾曾祖父母的阶段
03:42
and go right to the great-great-grandparent伟大伟大祖父母. And you have 46 people
54
204000
5000
直接到曾曾曾祖父母。那么现在总共有46个人
03:47
and you give them a scanner扫描器, or whatever随你 you need,
55
209000
3000
然后你给他们扫描器,或者你想要的选择
03:50
and they look at their chromosomes染色体 and each of them says
56
212000
4000
于是他们看著他们自己的染色体,每个人都说
03:54
which哪一个 one he likes喜欢 best最好, or she -- no reason原因 to have just two sexes两性
57
216000
5000
哪一条染色体是他最喜欢的-
03:59
any more, even. So each child儿童 has 46 parents父母,
58
221000
5000
甚至也没有理由再拘泥于一对男女,每个小孩有46个父母亲,
04:04
and I suppose假设 you could let each group of 46 parents父母 have 15 children孩子.
59
226000
6000
我认为你应该让每一组的46个父母亲可以生15个小孩--
04:10
Wouldn't岂不 that be enough足够? And then the children孩子
60
232000
2000
那不就够了?然后小孩可以
04:12
would get plenty丰富 of support支持, and nurturing培育, and mentoring师徒,
61
234000
4000
得到大量的支持、养育、指导
04:16
and the world世界 population人口 would decline下降 very rapidly急速
62
238000
2000
那么世界人口将会减少非常的快速,
04:18
and everybody每个人 would be totally完全 happy快乐.
63
240000
3000
每个人也都会很快乐。
04:21
Timesharing分时 is a little further进一步 off in the future未来.
64
243000
3000
对於未来,时间分享的观念有着更深一层的影响。
04:24
And there's this great novel小说 that Arthur亚瑟 Clarke克拉克 wrote twice两次,
65
246000
3000
有一本 Arthur Clarke 写了两次的伟大小说,
04:27
called "Against反对 the Fall秋季 of Night" and "The City and the Stars明星."
66
249000
4000
叫做: 反对消失的夜晚、城市和星晨
04:31
They're both wonderful精彩 and largely大部分 the same相同,
67
253000
3000
它们都很棒而且内容也差不多
04:34
except that computers电脑 happened发生 in between之间.
68
256000
2000
不同的是:电脑在两部小说之间发明出来
04:36
And Arthur亚瑟 was looking at this old book, and he said, "Well, that was wrong错误.
69
258000
5000
Arthur 回顾以前写的书,他说,噢,那是错误的。
04:41
The future未来 must必须 have some computers电脑."
70
263000
2000
未来一定要有电脑的存在。
04:43
So in the second第二 version of it, there are 100 billion十亿
71
265000
5000
所以在第二个版本,书里说会以后有1000亿,
04:48
or 1,000 billion十亿 people on Earth地球, but they're all stored存储 on hard disks磁盘 or floppies软盘,
72
270000
8000
或是10000亿的人存在在地球上,但是他们都被存在硬盘或软碟里,
04:56
or whatever随你 they have in the future未来.
73
278000
2000
或是其他未来会出现的形式。
04:58
And you let a few少数 million百万 of them out at a time.
74
280000
4000
然后每次只让其中几百万的人同时从硬碟里出来,
05:02
A person comes out, they live生活 for a thousand years年份
75
284000
4000
一个人出来活个一千年
05:06
doing whatever随你 they do, and then, when it's time to go back
76
288000
6000
做他们自己的事情,然后时候到了,就回到里面
05:12
for a billion十亿 years年份 -- or a million百万, I forget忘记, the numbers数字 don't matter --
77
294000
4000
放个几10亿年--或是几百万年,我忘记确切数字,反正那不重要--
05:16
but there really aren't very many许多 people on Earth地球 at a time.
78
298000
4000
但是注意,同时存在在地球上的人数并不多
05:20
And you get to think about yourself你自己 and your memories回忆,
79
302000
2000
而且你可以思考你本身和你的记忆,
05:22
and before you go back into suspension悬挂, you edit编辑 your memories回忆
80
304000
5000
在你回去被悬置之前,你可以编辑你的记忆,
05:27
and you change更改 your personality个性 and so forth向前.
81
309000
3000
并选择改变自己的个性之类。
05:30
The plot情节 of the book is that there's not enough足够 diversity多样,
82
312000
6000
根据这本书的情节,世界上没有足够的多样性
05:36
so that the people who designed设计 the city
83
318000
3000
所以设计城市的人类
05:39
make sure that every一切 now and then an entirely完全 new person is created创建.
84
321000
4000
得确定过一段时间就创造出一个全新的人。
05:43
And in the novel小说, a particular特定 one named命名 Alvin阿尔文 is created创建. And he says,
85
325000
6000
在这本小说,这个特殊的被创造的人物就是Alvin 。他说,
05:49
maybe this isn't the best最好 way, and wrecks沉船 the whole整个 system系统.
86
331000
4000
或许这不是最佳的方法,而且有可能会破坏整个系统。
05:53
I don't think the solutions解决方案 that I proposed建议
87
335000
2000
我不认为我举出来的方法
05:55
are good enough足够 or smart聪明 enough足够.
88
337000
3000
有多好,多聪明。
05:58
I think the big problem问题 is that we're not smart聪明 enough足够
89
340000
4000
我认为最大问题是我们不够聪明和智慧
06:02
to understand理解 which哪一个 of the problems问题 we're facing面对 are good enough足够.
90
344000
4000
去充分了解我们现在所面对的问题。
06:06
Therefore因此, we have to build建立 super intelligent智能 machines like HALHAL.
91
348000
4000
因此,我们必须建造超级人工智慧的机器,像HAL。
06:10
As you remember记得, at some point in the book for "2001,"
92
352000
5000
你记得,2001年书上的论点说
06:15
HALHAL realizes实现 that the universe宇宙 is too big, and grand盛大, and profound深刻
93
357000
5000
HAL认识对到那些愚蠢的宇航员来说
06:20
for those really stupid astronauts宇航员. If you contrast对比 HAL'sHAL的 behavior行为
94
362000
4000
宇宙太深远太无边无际。如果你对比HAL的行为
06:24
with the triviality鸡毛蒜皮 of the people on the spaceship飞船,
95
366000
4000
和太空船上那些人做的鸡毛蒜皮的事比较
06:28
you can see what's written书面 between之间 the lines线.
96
370000
3000
你可以在字里行间体会到这个意思
06:31
Well, what are we going to do about that? We could get smarter聪明.
97
373000
3000
那么我们现在应该要做甚么事情?我们可以变得更有智慧。
06:34
I think that we're pretty漂亮 smart聪明, as compared相比 to chimpanzees黑猩猩,
98
376000
5000
我认为跟黑猩猩比起来,我们的确具备很多智慧,
06:39
but we're not smart聪明 enough足够 to deal合同 with the colossal庞大 problems问题 that we face面对,
99
381000
6000
但是我们还是不够有智慧去处理现在所面对的巨大问题,
06:45
either in abstract抽象 mathematics数学
100
387000
2000
在抽象数学领域中
06:47
or in figuring盘算 out economies经济, or balancing平衡 the world世界 around.
101
389000
5000
或是能了解经济的本质,或是可以平衡世界种种的想法。
06:52
So one thing we can do is live生活 longer.
102
394000
3000
所以唯一我们能做得是活的更久。
06:55
And nobody没有人 knows知道 how hard that is,
103
397000
2000
但没有人知道那有多困难,
06:57
but we'll probably大概 find out in a few少数 years年份.
104
399000
3000
但是过几年后我们有可能会发现。
07:00
You see, there's two forks叉子 in the road. We know that people live生活
105
402000
3000
你看,那里有两条叉路。我们知道大部分人类活的
07:03
twice两次 as long as chimpanzees黑猩猩 almost几乎,
106
405000
4000
寿命是黑猩猩的两倍,
07:07
and nobody没有人 lives生活 more than 120 years年份,
107
409000
4000
而且没有人活超过120年的寿命,
07:11
for reasons原因 that aren't very well understood了解.
108
413000
3000
具体的原因我们并不是很了解
07:14
But lots of people now live生活 to 90 or 100,
109
416000
3000
但是现在有很多人活到90或100岁,
07:17
unless除非 they shake hands too much or something like that.
110
419000
4000
除非他们做握手太多之类的事情
07:21
And so maybe if we lived生活 200 years年份, we could accumulate积累 enough足够 skills技能
111
423000
5000
假设我们可以活到200岁,我们可以藉此累积足够的技术
07:26
and knowledge知识 to solve解决 some problems问题.
112
428000
5000
和知识去解决问题。
07:31
So that's one way of going about it.
113
433000
2000
所以那是一种实现的方式
07:33
And as I said, we don't know how hard that is. It might威力 be --
114
435000
3000
我们实际上不知道那有多困难。但是
07:36
after all, most other mammals哺乳动物 live生活 half as long as the chimpanzee黑猩猩,
115
438000
6000
毕竟,像其它的哺乳类动物只活了黑猩猩的一半,
07:42
so we're sort分类 of three and a half or four times, have four times
116
444000
3000
而我们大部分的寿命是其他大多数哺乳动物
07:45
the longevity长寿 of most mammals哺乳动物. And in the case案件 of the primates灵长类动物,
117
447000
6000
的3.5或是4倍。在灵长类动物中
07:51
we have almost几乎 the same相同 genes基因. We only differ不同 from chimpanzees黑猩猩,
118
453000
4000
我们几乎有着类似相同的基因。当代科学认为
07:55
in the present当下 state of knowledge知识, which哪一个 is absolute绝对 hogwash泔水,
119
457000
6000
人类和黑猩猩之间只有几百个基因的差别─不过在我看来,
08:01
maybe by just a few少数 hundred genes基因.
120
463000
2000
这是一派胡言。
08:03
What I think is that the gene基因 counters计数器 don't know what they're doing yet然而.
121
465000
3000
而我认为,数基因的那些人不知道自己在干什么
08:06
And whatever随你 you do, don't read anything about genetics遗传学
122
468000
3000
不管如何,千万不要阅读关於
08:09
that's published发表 within your lifetime一生, or something.
123
471000
3000
在你活着时出版的基因学书籍。
08:12
(Laughter笑声)
124
474000
3000
(笑声)
08:15
The stuff东东 has a very short half-life半衰期, same相同 with brain science科学.
125
477000
4000
关於基因学的研究是相当的短暂,跟脑科学一样,
08:19
And so it might威力 be that if we just fix固定 four or five genes基因,
126
481000
6000
所以有可能我们仅仅改善其中四条、五条的基因,
08:25
we can live生活 200 years年份.
127
487000
2000
我们就可以活200年的寿命。
08:27
Or it might威力 be that it's just 30 or 40,
128
489000
3000
或是有可能变成只活30或40年,
08:30
and I doubt怀疑 that it's several一些 hundred.
129
492000
2000
但我不觉得可以活好几百年。
08:32
So this is something that people will be discussing讨论
130
494000
4000
所以这是人们会讨论的话题
08:36
and lots of ethicists伦理学家 -- you know, an ethicist伦理学家 is somebody
131
498000
3000
而且会有很多道德伦理家会讲话--你知道道德伦理学家是那种
08:39
who sees看到 something wrong错误 with whatever随你 you have in mind心神.
132
501000
3000
会看到你脑袋里错误思想的那种人
08:42
(Laughter笑声)
133
504000
3000
(笑声)
08:45
And it's very hard to find an ethicist伦理学家 who considers考虑 any change更改
134
507000
4000
而且很难找到一个认为变革是有价值的伦理学者
08:49
worth价值 making制造, because he says, what about the consequences后果?
135
511000
4000
因为他们会说,那后果会怎样?
08:53
And, of course课程, we're not responsible主管 for the consequences后果
136
515000
3000
当然的,我们不需要对我们现在正在做的事情
08:56
of what we're doing now, are we? Like all this complaint抱怨 about clones克隆.
137
518000
6000
负责,对吧? 就像大家都在抱怨克隆
09:02
And yet然而 two random随机 people will mate伴侣 and have this child儿童,
138
524000
3000
然而两个随机的人结婚,生小孩
09:05
and both of them have some pretty漂亮 rotten genes基因,
139
527000
4000
他们双方的基因都很差
09:09
and the child儿童 is likely容易 to come out to be average平均.
140
531000
4000
这个生出来的小孩可能会很普通。
09:13
Which哪一个, by chimpanzee黑猩猩 standards标准, is very good indeed确实.
141
535000
6000
如果是根据黑猩猩的标准,那小孩已经是很好了。
09:19
If we do have longevity长寿, then we'll have to face面对 the population人口 growth发展
142
541000
3000
如果我们人人都很长寿,我们必须要面对人口的增加
09:22
problem问题 anyway无论如何. Because if people live生活 200 or 1,000 years年份,
143
544000
4000
的问题。因为如果我们活个200年或1000年,
09:26
then we can't let them have a child儿童 more than about once一旦 every一切 200 or 1,000 years年份.
144
548000
6000
我们不能让他们每隔200或是1000年生一次小孩。
09:32
And so there won't惯于 be any workforce劳动力.
145
554000
3000
而且那也不会有劳动人口。
09:35
And one of the things Laurie劳瑞 Garrett加勒特 pointed out, and others其他 have,
146
557000
4000
其中 Laurie Garrett 指出 ,
09:39
is that a society社会 that doesn't have people
147
561000
5000
一个社会如果没有
09:44
of working加工 age年龄 is in real真实 trouble麻烦. And things are going to get worse更差,
148
566000
3000
能够从事劳动的人口,将会很麻烦。而且事情会变得更糟,
09:47
because there's nobody没有人 to educate教育 the children孩子 or to feed饲料 the old.
149
569000
6000
因为没有人会去教育小孩或是抚养老人。
09:53
And when I'm talking about a long lifetime一生, of course课程,
150
575000
2000
所以当我谈论到一个长的人生寿命,当然
09:55
I don't want somebody who's谁是 200 years年份 old to be like our image图片
151
577000
6000
我不想有人活了200岁,却长得非常
10:01
of what a 200-year-old-岁 is -- which哪一个 is dead, actually其实.
152
583000
4000
的老,像现在想像的200岁一样---事实上,已经死掉。
10:05
You know, there's about 400 different不同 parts部分 of the brain
153
587000
2000
你知道,人脑大概有400个不同部位
10:07
which哪一个 seem似乎 to have different不同 functions功能.
154
589000
2000
它们彼此有不同的功能。
10:09
Nobody没有人 knows知道 how most of them work in detail详情,
155
591000
3000
没有人确切知道他们实际上的运作方式,
10:12
but we do know that there're有很 lots of different不同 things in there.
156
594000
4000
但是我们可以清楚知道脑里面是有很多的东西。
10:16
And they don't always work together一起. I like Freud's弗洛伊德 theory理论
157
598000
2000
它们不会总是一起运作。我喜欢Freud 的理论
10:18
that most of them are cancelling取消 each other out.
158
600000
4000
大部分人体功能是彼此起抵消作用的
10:22
And so if you think of yourself你自己 as a sort分类 of city
159
604000
4000
所以你如果你想像你是城市的一部分
10:26
with a hundred resources资源, then, when you're afraid害怕, for example,
160
608000
6000
而城市有着很多的资源,那么当你害怕的时候,比如说
10:32
you may可能 discard丢弃 your long-range长距离 goals目标, but you may可能 think deeply
161
614000
4000
你可能会抛弃你的长远目标,但你可能会做深层地思考
10:36
and focus焦点 on exactly究竟 how to achieve实现 that particular特定 goal目标.
162
618000
4000
专注在如何达到一个具体的目标上。
10:40
You throw everything else其他 away. You become成为 a monomaniac独断论者 --
163
622000
3000
你把所有的东西都丢掉。你变成了一个偏执狂--
10:43
all you care关心 about is not stepping步进 out on that platform平台.
164
625000
4000
你只在乎的是不要走离这个平台
10:47
And when you're hungry饥饿, food餐饮 becomes more attractive有吸引力, and so forth向前.
165
629000
4000
就好比当你很饿的时候,食物变得更加迷人之类
10:51
So I see emotions情绪 as highly高度 evolved进化 subsets of your capability能力.
166
633000
6000
所以我看到情感是一个高度演化下的附属功能状态
10:57
Emotion情感 is not something added添加 to thought. An emotional情绪化 state
167
639000
4000
情感不是一种加在思想的东西。一个情感状态
11:01
is what you get when you remove去掉 100 or 200
168
643000
4000
是当你在通常拥有的资源中减少100或是200
11:05
of your normally一般 available可得到 resources资源.
169
647000
3000
后的得到的一种感觉
11:08
So thinking思维 of emotions情绪 as the opposite对面 of -- as something
170
650000
3000
所以把情感看成反作用
11:11
less than thinking思维 is immensely非常 productive生产的. And I hope希望,
171
653000
4000
它不象思考那样有效高产。同时我希望,
11:15
in the next下一个 few少数 years年份, to show显示 that this will lead to smart聪明 machines.
172
657000
4000
在接下来的几年,这些东西能促进引导智慧机器的诞生。
11:19
And I guess猜测 I better skip跳跃 all the rest休息 of this, which哪一个 are some details细节
173
661000
3000
我想我最好跳过这些关於如何
11:22
on how we might威力 make those smart聪明 machines and --
174
664000
5000
建造这些智慧机器的细节--
11:27
(Laughter笑声)
175
669000
5000
(笑声)
11:32
-- and the main主要 idea理念 is in fact事实 that the core核心 of a really smart聪明 machine
176
674000
5000
最主要的观念就是一个超级智慧机器的核心
11:37
is one that recognizes识别 that a certain某些 kind of problem问题 is facing面对 you.
177
679000
5000
是人们如何去清楚定义正在自己面对的是哪种问题。
11:42
This is a problem问题 of such这样 and such这样 a type类型,
178
684000
3000
这是一个关于某个方面的问题
11:45
and therefore因此 there's a certain某些 way or ways方法 of thinking思维
179
687000
5000
于是就用一种对解决这种问题最有效的方式
11:50
that are good for that problem问题.
180
692000
2000
来思考
11:52
So I think the future未来, main主要 problem问题 of psychology心理学 is to classify分类
181
694000
4000
所以我认为未来主要的心理学问题是如何区分
11:56
types类型 of predicaments困境, types类型 of situations情况, types类型 of obstacles障碍
182
698000
4000
困境的种类,各种所面对的情况,障碍的种类
12:00
and also to classify分类 available可得到 and possible可能 ways方法 to think and pair them up.
183
702000
6000
同时也能区分有价值或可行的方法去思考并将它们配对。
12:06
So you see, it's almost几乎 like a Pavlovian巴甫洛夫 --
184
708000
3000
所以你看,它就像一个巴甫洛夫
12:09
we lost丢失 the first hundred years年份 of psychology心理学
185
711000
2000
我们丧失一开始几百年的心理学
12:11
by really trivial不重要的 theories理论, where you say,
186
713000
3000
因为一些无用的理论存在着,
12:14
how do people learn学习 how to react应对 to a situation情况? What I'm saying is,
187
716000
6000
比如:人们如何在某种场合下做出合适的回应? 我要说的是,
12:20
after we go through通过 a lot of levels水平, including包含 designing设计
188
722000
5000
在我们经历过各式各样的知识层面,包括设计
12:25
a huge巨大, messy system系统 with thousands数千 of ports港口,
189
727000
3000
一个包含几千个组件的庞大复杂系统,
12:28
we'll end结束 up again with the central中央 problem问题 of psychology心理学.
190
730000
4000
我们最后得出一个核心的心理学问题
12:32
Saying, not what are the situations情况,
191
734000
3000
可以说, 问题不在于处境如何
12:35
but what are the kinds of problems问题
192
737000
2000
而是我们到底面对的是哪种问题
12:37
and what are the kinds of strategies策略, how do you learn学习 them,
193
739000
3000
我们如何想出对此解决的策略办法,你如何从中学习,
12:40
how do you connect them up, how does a really creative创作的 person
194
742000
3000
你如何将它们联系起来,一个具有相当创意的人
12:43
invent发明 a new way of thinking思维 out of the available可得到 resources资源 and so forth向前.
195
745000
5000
如何利用现有的资源想出解决问题的新方法
12:48
So, I think in the next下一个 20 years年份,
196
750000
2000
所以我想在接下来的20年中,
12:50
if we can get rid摆脱 of all of the traditional传统 approaches方法 to artificial人造 intelligence情报,
197
752000
5000
如果我们能摆脱传统的方法去发展人工智慧,
12:55
like neural神经 nets and genetic遗传 algorithms算法
198
757000
2000
比如神经网路和遗传基因演算法
12:57
and rule-based有章可循 systems系统, and just turn our sights景点 a little bit higher更高 to say,
199
759000
6000
和依据规则的系统, 把我们的视角提高一点点地说
13:03
can we make a system系统 that can use all those things
200
765000
2000
我们能否用这一切创造一个系统
13:05
for the right kind of problem问题? Some problems问题 are good for neural神经 nets;
201
767000
4000
来解决所有的问题呢?有些问题可以用神经网路去解决;
13:09
we know that others其他, neural神经 nets are hopeless绝望 on them.
202
771000
3000
但我知道,在某些方面神经网路是没有用处的。
13:12
Genetic遗传 algorithms算法 are great for certain某些 things;
203
774000
3000
基因遗传演算法,对某些事情来说是很有用的;
13:15
I suspect疑似 I know what they're bad at, and I won't惯于 tell you.
204
777000
4000
我猜想我知道它们的一些错误、无益处的地方,但我不会告诉你。
13:19
(Laughter笑声)
205
781000
1000
(笑声)
13:20
Thank you.
206
782000
2000
谢谢
13:22
(Applause掌声)
207
784000
6000
(掌声)
Translated by Jenny Yang
Reviewed by Zachary Lin Zhao

▲Back to top

ABOUT THE SPEAKER
Marvin Minsky - AI pioneer
Marvin Minsky is one of the great pioneers of artificial intelligence -- and using computing metaphors to understand the human mind. His contributions to mathematics, robotics and computational linguistics are legendary and far-reaching.

Why you should listen

Marvin Minsky is the superstar-elder of artificial intelligence, one of the most productive and important cognitive scientists of the century, and the leading proponent of the Society of Mind theory. Articulated in his 1985 book of the same name, Minsky's theory says intelligence is not born of any single mechanism, but from the interaction of many independent agents. The book's sequel,The Emotion Machine (2006), says similar activity also accounts for feelings, goals, emotions and conscious thoughts.

Minsky also pioneered advances in mathematics, computational linguistics, optics, robotics and telepresence. He built SNARC, the first neural network simulator, some of the first visual scanners, and the first LOGO "turtle." From his headquarters at MIT's Media Lab and the AI Lab (which he helped found), he continues to work on, as he says, "imparting to machines the human capacity for commonsense reasoning."

More profile about the speaker
Marvin Minsky | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee