ABOUT THE SPEAKER
Marvin Minsky - AI pioneer
Marvin Minsky is one of the great pioneers of artificial intelligence -- and using computing metaphors to understand the human mind. His contributions to mathematics, robotics and computational linguistics are legendary and far-reaching.

Why you should listen

Marvin Minsky is the superstar-elder of artificial intelligence, one of the most productive and important cognitive scientists of the century, and the leading proponent of the Society of Mind theory. Articulated in his 1985 book of the same name, Minsky's theory says intelligence is not born of any single mechanism, but from the interaction of many independent agents. The book's sequel,The Emotion Machine (2006), says similar activity also accounts for feelings, goals, emotions and conscious thoughts.

Minsky also pioneered advances in mathematics, computational linguistics, optics, robotics and telepresence. He built SNARC, the first neural network simulator, some of the first visual scanners, and the first LOGO "turtle." From his headquarters at MIT's Media Lab and the AI Lab (which he helped found), he continues to work on, as he says, "imparting to machines the human capacity for commonsense reasoning."

More profile about the speaker
Marvin Minsky | Speaker | TED.com
TED2003

Marvin Minsky: Health and the human mind

Marvin Minsky 談人類心智與健康。

Filmed:
606,909 views

仔細聽好了---在Marvin Minsk 充滿調皮、迷人的即興演講中,他談論健康、人口膨脹及人類心智,整個演講充滿機智、風趣、智慧和一點點的狡猾....他在開玩笑嗎?他給的其實是很好的建議。
- AI pioneer
Marvin Minsky is one of the great pioneers of artificial intelligence -- and using computing metaphors to understand the human mind. His contributions to mathematics, robotics and computational linguistics are legendary and far-reaching. Full bio

Double-click the English transcript below to play the video.

00:18
If you ask people about what part部分 of psychology心理學 do they think is hard,
0
0
6000
如果你問別人,關於心理學,哪一部份是他們覺得最難理解的?
00:24
and you say, "Well, what about thinking思維 and emotions情緒?"
1
6000
3000
如果把思想和情感相比較又怎麼樣呢?
00:27
Most people will say, "Emotions情緒 are terribly可怕 hard.
2
9000
3000
大部份的人會說:「情感相當難以理解,
00:30
They're incredibly令人難以置信 complex複雜. They can't -- I have no idea理念 of how they work.
3
12000
6000
它們非常地複雜,我完全不知道它們的運作方式。
00:36
But thinking思維 is really very straightforward直截了當:
4
18000
2000
但是思考卻很簡單、明確,
00:38
it's just sort分類 of some kind of logical合乎邏輯 reasoning推理, or something.
5
20000
4000
它僅僅只是某種邏輯解釋或是其他形式而已,
00:42
But that's not the hard part部分."
6
24000
3000
但那不是最難理解的部份。」
00:45
So here's這裡的 a list名單 of problems問題 that come up.
7
27000
2000
這些是衍生出來的一些問題,
00:47
One nice不錯 problem問題 is, what do we do about health健康?
8
29000
3000
其中一個很棒的問題是:我們為健康做了甚麼?
00:50
The other day, I was reading something, and the person said
9
32000
4000
有一天我在讀書的時候,有人說
00:54
probably大概 the largest最大 single cause原因 of disease疾病 is handshaking握手 in the West西.
10
36000
6000
或許在西方引發疾病的單一最大原因是握手。
01:00
And there was a little study研究 about people who don't handshake握手,
11
42000
4000
有一些研究是將不握手的人
01:04
and comparing比較 them with ones那些 who do handshake握手.
12
46000
3000
和握手的人做比較,
01:07
And I haven't沒有 the foggiestfoggiest idea理念 of where you find the ones那些 that don't handshake握手,
13
49000
5000
我其實並不知道要如何找到不握手的人,
01:12
because they must必須 be hiding.
14
54000
3000
我猜他們一定是躲起來了。
01:15
And the people who avoid避免 that
15
57000
4000
而那些避免握手的人,
01:19
have 30 percent百分 less infectious傳染病 disease疾病 or something.
16
61000
4000
感染疾病的機率會降低百分之30,
01:23
Or maybe it was 31 and a quarter25美分硬幣 percent百分.
17
65000
3000
或是百分之31.25吧。
01:26
So if you really want to solve解決 the problem問題 of epidemics流行病 and so forth向前,
18
68000
4000
如果你真的想解決流行傳染病之類的問題,
01:30
let's start開始 with that. And since以來 I got that idea理念,
19
72000
4000
可以先從不握手開始。自從我知道這個觀念後,
01:34
I've had to shake hundreds數以百計 of hands.
20
76000
4000
我已經握了好幾百人的手了。
01:38
And I think the only way to avoid避免 it
21
80000
5000
我想唯一能避免握手的方法,
01:43
is to have some horrible可怕 visible可見 disease疾病,
22
85000
2000
就是染上一種明顯可見的嚴重疾病,
01:45
and then you don't have to explain說明.
23
87000
3000
那你就用不著解釋了。
01:48
Education教育: how do we improve提高 education教育?
24
90000
4000
教育:我們該如何讓教育變得更好?
01:52
Well, the single best最好 way is to get them to understand理解
25
94000
4000
最好的辦法是讓他們了解,
01:56
that what they're being存在 told is a whole整個 lot of nonsense廢話.
26
98000
3000
他們在學的是一堆沒用的東西。
01:59
And then, of course課程, you have to do something
27
101000
2000
所以,當然,你得要做些甚麼,
02:01
about how to moderate中等 that, so that anybody任何人 can -- so they'll他們會 listen to you.
28
103000
5000
你得走溫和路線,讓大部份的人都聽你的。
02:06
Pollution污染, energy能源 shortage短缺, environmental環境的 diversity多樣, poverty貧窮.
29
108000
4000
污染、能源短缺、環境多樣性、貧窮--
02:10
How do we make stable穩定 societies社會? Longevity長壽.
30
112000
4000
我們如何讓社會穩定?延長壽命。
02:14
Okay, there're有很 lots of problems問題 to worry擔心 about.
31
116000
3000
好的,現在有一堆的問題值得我們憂慮。
02:17
Anyway無論如何, the question I think people should talk about --
32
119000
2000
我認為人們現在應該討論的問題,
02:19
and it's absolutely絕對 taboo忌諱 -- is, how many許多 people should there be?
33
121000
5000
絕對是一個禁忌話題---就是,世界上能容納多少人口?
02:24
And I think it should be about 100 million百萬 or maybe 500 million百萬.
34
126000
7000
我認為世界上的人口如果只有1億或是5億的話,
02:31
And then notice注意 that a great many許多 of these problems問題 disappear消失.
35
133000
5000
這些問題大部份都會消失。
02:36
If you had 100 million百萬 people
36
138000
2000
假設世界上有一億的人口,
02:38
properly正確 spread傳播 out, then if there's some garbage垃圾,
37
140000
6000
而且適當地分布在各個地方,即使產生一些垃圾,
02:44
you throw it away, preferably優選 where you can't see it, and it will rot腐爛.
38
146000
7000
你也可以把它丟掉,最好是丟在看不到的地方,然後它會自行腐爛掉。
02:51
Or you throw it into the ocean海洋 and some fish will benefit效益 from it.
39
153000
5000
即使你把垃圾丟進海洋裡,魚也可以從中獲得一些養份。
02:56
The problem問題 is, how many許多 people should there be?
40
158000
2000
問題是,世界上能容納多少人口?
02:58
And it's a sort分類 of choice選擇 we have to make.
41
160000
3000
這是我們必須做出抉擇的事。
03:01
Most people are about 60 inches英寸 high or more,
42
163000
3000
大部份的人的身高是60英吋,或更高,
03:04
and there's these cube立方體 laws法律. So if you make them this big,
43
166000
4000
我們佔滿了整個星球。所以如果我們能讓人變成這麼小--
03:08
by using運用 nanotechnology納米技術, I suppose假設 --
44
170000
3000
用奈米科技,我認為--
03:11
(Laughter笑聲)
45
173000
1000
(笑聲)
03:12
-- then you could have a thousand times as many許多.
46
174000
2000
這個世界就可以容納1000倍之多的人口。
03:14
That would solve解決 the problem問題, but I don't see anybody任何人
47
176000
2000
這樣就可以解決問題了,但是我還沒有看過
03:16
doing any research研究 on making製造 people smaller.
48
178000
3000
有人從事可以讓人變小的相關研究。
03:19
Now, it's nice不錯 to reduce減少 the population人口, but a lot of people want to have children孩子.
49
181000
5000
減少人口是很棒的概念,但是很多人會想要生小孩,
03:24
And there's one solution that's probably大概 only a few少數 years年份 off.
50
186000
3000
這大概要在幾年後才會有解決的辦法。
03:27
You know you have 46 chromosomes染色體. If you're lucky幸運, you've got 23
51
189000
5000
大家都知道我們有46條染色體。如果你幸運的話,你會從父母親身上
03:32
from each parent. Sometimes有時 you get an extra額外 one or drop下降 one out,
52
194000
6000
分別得到23條染色體;有時候你會得到額外的一條,或是少了一條,
03:38
but -- so you can skip跳躍 the grandparent祖父母 and great-grandparent曾祖 stage階段
53
200000
4000
但是--你可以跳過祖父母和曾祖父母的階段,
03:42
and go right to the great-great-grandparent偉大偉大祖父母. And you have 46 people
54
204000
5000
直接跳到曾曾祖父母。現在總共有46個人,
03:47
and you give them a scanner掃描器, or whatever隨你 you need,
55
209000
3000
然後給他們掃描器,或是其他你需要的東西,
03:50
and they look at their chromosomes染色體 and each of them says
56
212000
4000
讓他們看他們自己的染色體,然後要每個人決定
03:54
which哪一個 one he likes喜歡 best最好, or she -- no reason原因 to have just two sexes兩性
57
216000
5000
哪一條染色體是他或她最喜歡的--現在不能只說二種性別了吧...
03:59
any more, even. So each child兒童 has 46 parents父母,
58
221000
5000
所以,每個小孩有46個父母親,
04:04
and I suppose假設 you could let each group of 46 parents父母 have 15 children孩子.
59
226000
6000
你可以讓每46個父母親生15個小孩--
04:10
Wouldn't豈不 that be enough足夠? And then the children孩子
60
232000
2000
這樣會覺得不夠嗎?然後小孩可以
04:12
would get plenty豐富 of support支持, and nurturing培育, and mentoring師徒,
61
234000
4000
得到大量的支持、養育及指導,
04:16
and the world世界 population人口 would decline下降 very rapidly急速
62
238000
2000
世界人口就會快速地減少,
04:18
and everybody每個人 would be totally完全 happy快樂.
63
240000
3000
每個人也都會很快樂。
04:21
Timesharing分時 is a little further進一步 off in the future未來.
64
243000
3000
未來,我們或許可以更進一步用時間分享來解決人口問題。
04:24
And there's this great novel小說 that Arthur亞瑟 Clarke克拉克 wrote twice兩次,
65
246000
3000
有一本很棒的小說,作者Arthur Clarke總共寫了兩次,
04:27
called "Against反對 the Fall秋季 of Night" and "The City and the Stars明星."
66
249000
4000
叫做「對抗夜幕低垂、城市和星辰」(Against the Fall of Night and The City and the Stars),
04:31
They're both wonderful精彩 and largely大部分 the same相同,
67
253000
3000
二本都很棒,而且內容大致相同,
04:34
except that computers電腦 happened發生 in between之間.
68
256000
2000
除了電腦在兩部小說之間發明出來。
04:36
And Arthur亞瑟 was looking at this old book, and he said, "Well, that was wrong錯誤.
69
258000
5000
然後Arthur看著這本他寫的書,他說,噢,這樣不對,
04:41
The future未來 must必須 have some computers電腦."
70
263000
2000
未來一定會有電腦啊...
04:43
So in the second第二 version of it, there are 100 billion十億
71
265000
5000
所以在第二個版本裡,世界上的人口變成了一千億
04:48
or 1,000 billion十億 people on Earth地球, but they're all stored存儲 on hard disks磁盤 or floppies軟盤,
72
270000
8000
或是一兆,但是他們都被存在硬碟或軟碟裡,
04:56
or whatever隨你 they have in the future未來.
73
278000
2000
或是任何其他未來的儲存形式。
04:58
And you let a few少數 million百萬 of them out at a time.
74
280000
4000
每次你只讓其中的幾百萬人出來,
05:02
A person comes out, they live生活 for a thousand years年份
75
284000
4000
每個人出來活個一百年,
05:06
doing whatever隨你 they do, and then, when it's time to go back
76
288000
6000
做他們自己該做的事,等時候到了,就再回到裡面,
05:12
for a billion十億 years年份 -- or a million百萬, I forget忘記, the numbers數字 don't matter --
77
294000
4000
放個10億年--還是一百萬年,我忘記確切數字,反正那不重要--
05:16
but there really aren't very many許多 people on Earth地球 at a time.
78
298000
4000
但是在某個時間內,地球上並沒有太多人同時存在。
05:20
And you get to think about yourself你自己 and your memories回憶,
79
302000
2000
然後你必須思考你本身和你的記憶,
05:22
and before you go back into suspension懸掛, you edit編輯 your memories回憶
80
304000
5000
在你回去被暫存之前,你可以編輯你的記憶,
05:27
and you change更改 your personality個性 and so forth向前.
81
309000
3000
並且可以選擇改變自己的個性之類的。
05:30
The plot情節 of the book is that there's not enough足夠 diversity多樣,
82
312000
6000
這本書的情節是描述世界上的人缺乏多樣的個性,
05:36
so that the people who designed設計 the city
83
318000
3000
所以設計這個城市的人,
05:39
make sure that every一切 now and then an entirely完全 new person is created創建.
84
321000
4000
就得確保每隔一陣子要有一個全新的人誕生。
05:43
And in the novel小說, a particular特定 one named命名 Alvin阿爾文 is created創建. And he says,
85
325000
6000
在這本小說裡,有一位很特別的人叫做Alvin被創造出來。
05:49
maybe this isn't the best最好 way, and wrecks沉船 the whole整個 system系統.
86
331000
4000
他認為這或許不是最好的方法,所以破壞了整個系統。
05:53
I don't think the solutions解決方案 that I proposed建議
87
335000
2000
我不認為我舉出來的方法
05:55
are good enough足夠 or smart聰明 enough足夠.
88
337000
3000
有多好,多聰明。
05:58
I think the big problem問題 is that we're not smart聰明 enough足夠
89
340000
4000
我認為最大的問題是我們沒有足夠的聰明才智,
06:02
to understand理解 which哪一個 of the problems問題 we're facing面對 are good enough足夠.
90
344000
4000
去了解我們現在所面對的問題,到底哪一個是比較好的。
06:06
Therefore因此, we have to build建立 super intelligent智能 machines like HALHAL.
91
348000
4000
因此,我們必須建造超級人工智慧的機器,像HAL。
06:10
As you remember記得, at some point in the book for "2001,"
92
352000
5000
還記得嗎?書上說在2001年的某個時刻,
06:15
HALHAL realizes實現 that the universe宇宙 is too big, and grand盛大, and profound深刻
93
357000
5000
HAL發現對那些愚蠢的太空人來說,
06:20
for those really stupid astronauts宇航員. If you contrast對比 HAL'sHAL的 behavior行為
94
362000
4000
宇宙是如此深遠且無邊無際。如果你將HAL的行為
06:24
with the triviality雞毛蒜皮 of the people on the spaceship飛船,
95
366000
4000
和那些只在乎枝微末節的太空人相比,
06:28
you can see what's written書面 between之間 the lines.
96
370000
3000
你就可以瞭解作者想要表達的涵意。
06:31
Well, what are we going to do about that? We could get smarter聰明.
97
373000
3000
那麼我們現在應該要怎麼做?我們應該要變得更聰明。
06:34
I think that we're pretty漂亮 smart聰明, as compared相比 to chimpanzees黑猩猩,
98
376000
5000
我認為跟黑猩猩比起來,我們的確聰明很多,
06:39
but we're not smart聰明 enough足夠 to deal合同 with the colossal龐大 problems問題 that we face面對,
99
381000
6000
但是我們還是沒有能力去處理現在所面對的龐大問題,
06:45
either in abstract抽象 mathematics數學
100
387000
2000
不管是去解答數學問題、
06:47
or in figuring盤算 out economies經濟, or balancing平衡 the world世界 around.
101
389000
5000
或是去了解經濟的本質,又或是讓世界處於均衡狀態。
06:52
So one thing we can do is live生活 longer.
102
394000
3000
所以我們唯一能做得是活得更久一點,
06:55
And nobody沒有人 knows知道 how hard that is,
103
397000
2000
但沒有人知道那有多困難,
06:57
but we'll probably大概 find out in a few少數 years年份.
104
399000
3000
但是過幾年後我們可能會找到解答。
07:00
You see, there's two forks叉子 in the road. We know that people live生活
105
402000
3000
有二種可能的解釋方式。我們知道大部份人類的
07:03
twice兩次 as long as chimpanzees黑猩猩 almost幾乎,
106
405000
4000
壽命是黑猩猩的兩倍,
07:07
and nobody沒有人 lives生活 more than 120 years年份,
107
409000
4000
而且沒有人活超過120年,
07:11
for reasons原因 that aren't very well understood了解.
108
413000
3000
我們還不是很瞭解這其中的原因。
07:14
But lots of people now live生活 to 90 or 100,
109
416000
3000
但是現在有很多人活到90或100歲,
07:17
unless除非 they shake hands too much or something like that.
110
419000
4000
除非他們握太多的手之類的。
07:21
And so maybe if we lived生活 200 years年份, we could accumulate積累 enough足夠 skills技能
111
423000
5000
假如我們可以活到200歲,我們就能累積足夠的技術
07:26
and knowledge知識 to solve解決 some problems問題.
112
428000
5000
和知識去解決問題。
07:31
So that's one way of going about it.
113
433000
2000
所以這是其中一種方式。
07:33
And as I said, we don't know how hard that is. It might威力 be --
114
435000
3000
我們不知道要活得更久有多困難,
07:36
after all, most other mammals哺乳動物 live生活 half as long as the chimpanzee黑猩猩,
115
438000
6000
畢竟,其他哺乳類動物的壽命也只有黑猩猩的一半,
07:42
so we're sort分類 of three and a half or four times, have four times
116
444000
3000
所以我們的壽命大概是其他哺乳類動物的
07:45
the longevity長壽 of most mammals哺乳動物. And in the case案件 of the primates靈長類動物,
117
447000
6000
3.5倍或4倍。而就靈長類動物來說,
07:51
we have almost幾乎 the same相同 genes基因. We only differ不同 from chimpanzees黑猩猩,
118
453000
4000
我們幾乎有著相同的基因。我們跟黑猩猩的差別,
07:55
in the present當下 state of knowledge知識, which哪一個 is absolute絕對 hogwash泔水,
119
457000
6000
以我們現有乏善可陳的智慧來說,
08:01
maybe by just a few少數 hundred genes基因.
120
463000
2000
或許只是幾百個基因的差別而已。
08:03
What I think is that the gene基因 counters計數器 don't know what they're doing yet然而.
121
465000
3000
而我認為,基因計數器實際上不知道它自己計算到哪裡了。
08:06
And whatever隨你 you do, don't read anything about genetics遺傳學
122
468000
3000
不管如何,在你有生之年,千萬不要閱讀
08:09
that's published發表 within your lifetime一生, or something.
123
471000
3000
任何有關基因學的書籍。
08:12
(Laughter笑聲)
124
474000
3000
(笑聲)
08:15
The stuff東東 has a very short half-life半衰期, same相同 with brain science科學.
125
477000
4000
目前人類對於基因學的研究才剛起步,就跟我們對大腦的研究一樣,
08:19
And so it might威力 be that if we just fix固定 four or five genes基因,
126
481000
6000
所以有可能我們只要改善其中四條、五條基因,
08:25
we can live生活 200 years年份.
127
487000
2000
我們就可以活到200歲,
08:27
Or it might威力 be that it's just 30 or 40,
128
489000
3000
或是有可能變成只活30或40年,
08:30
and I doubt懷疑 that it's several一些 hundred.
129
492000
2000
我想也有可能人類可以活好幾百年。
08:32
So this is something that people will be discussing討論
130
494000
4000
所以這是人們會討論的話題,
08:36
and lots of ethicists倫理學家 -- you know, an ethicist倫理學家 is somebody
131
498000
3000
而且會有很多道德倫理家會講話--你知道,道德倫理家就是那種
08:39
who sees看到 something wrong錯誤 with whatever隨你 you have in mind心神.
132
501000
3000
會看到你早就已經知道的錯誤的人。
08:42
(Laughter笑聲)
133
504000
3000
(笑聲)
08:45
And it's very hard to find an ethicist倫理學家 who considers考慮 any change更改
134
507000
4000
要找到一個認同改變的道德倫理家是很困難的,
08:49
worth價值 making製造, because he says, what about the consequences後果?
135
511000
4000
因為他們會說,那後果由誰負責?
08:53
And, of course課程, we're not responsible主管 for the consequences後果
136
515000
3000
當然,我們並不需要對我們目前
08:56
of what we're doing now, are we? Like all this complaint抱怨 about clones克隆.
137
518000
6000
所做的事情負責,對吧?就像大家都在抱怨複製動物一樣。
09:02
And yet然而 two random隨機 people will mate伴侶 and have this child兒童,
138
524000
3000
任由兩個隨機選取的人結婚、生小孩,
09:05
and both of them have some pretty漂亮 rotten genes基因,
139
527000
4000
若這二人都有相當差的基因,
09:09
and the child兒童 is likely容易 to come out to be average平均.
140
531000
4000
他們生出來的小孩可能會很普通。
09:13
Which哪一個, by chimpanzee黑猩猩 standards標準, is very good indeed確實.
141
535000
6000
如果是根據黑猩猩的標準,那個小孩已經算是很好了。
09:19
If we do have longevity長壽, then we'll have to face面對 the population人口 growth發展
142
541000
3000
如果人人都很長壽,我們就必須要面對人口
09:22
problem問題 anyway無論如何. Because if people live生活 200 or 1,000 years年份,
143
544000
4000
增加的問題。因為如果我們活個200年或1000年,
09:26
then we can't let them have a child兒童 more than about once一旦 every一切 200 or 1,000 years年份.
144
548000
6000
每一代小孩出生的間隔就不能短於200年或是1000年。
09:32
And so there won't慣於 be any workforce勞動力.
145
554000
3000
在那種情況下,也不會有勞動人口。
09:35
And one of the things Laurie勞瑞 Garrett加勒特 pointed out, and others其他 have,
146
557000
4000
Laurie Garrett點名的其中一件事,其他人也曾指出相同問題,
09:39
is that a society社會 that doesn't have people
147
561000
5000
那就是如果一個社會沒有人
09:44
of working加工 age年齡 is in real真實 trouble麻煩. And things are going to get worse更差,
148
566000
3000
屬於勞動人口的話,那就麻煩大了。而且事情還會變得更糟,
09:47
because there's nobody沒有人 to educate教育 the children孩子 or to feed飼料 the old.
149
569000
6000
因為沒有人會去教育小孩或是撫養老人。
09:53
And when I'm talking about a long lifetime一生, of course課程,
150
575000
2000
所以當我談論到延長壽命時,
09:55
I don't want somebody who's誰是 200 years年份 old to be like our image圖片
151
577000
6000
我當然不希望一個活到200歲的人,
10:01
of what a 200-year-old-歲 is -- which哪一個 is dead, actually其實.
152
583000
4000
會像我們現在所想的200歲一樣---那其實已經算是死掉了。
10:05
You know, there's about 400 different不同 parts部分 of the brain
153
587000
2000
你知道,人腦大概有400個不同的部位,
10:07
which哪一個 seem似乎 to have different不同 functions功能.
154
589000
2000
它們彼此有不同的功能。
10:09
Nobody沒有人 knows知道 how most of them work in detail詳情,
155
591000
3000
沒有人確切知道他們實際上的運作方式,
10:12
but we do know that there're有很 lots of different不同 things in there.
156
594000
4000
我們只知道大腦裡面有很多的東西,
10:16
And they don't always work together一起. I like Freud's弗洛伊德 theory理論
157
598000
2000
而他們不會同時一起運作。我喜歡Freud的理論,
10:18
that most of them are cancelling取消 each other out.
158
600000
4000
他認為大腦裡大部分的工作是去抵消彼此的作用。
10:22
And so if you think of yourself你自己 as a sort分類 of city
159
604000
4000
如果你把自己想像成是一座城市,
10:26
with a hundred resources資源, then, when you're afraid害怕, for example,
160
608000
6000
你很多的資源。比如說,當你害怕的時候,
10:32
you may可能 discard丟棄 your long-range長距離 goals目標, but you may可能 think deeply
161
614000
4000
你就會拋棄你的大範圍目標,專注深入地
10:36
and focus焦點 on exactly究竟 how to achieve實現 that particular特定 goal目標.
162
618000
4000
思考如何達到某個特定的目標。
10:40
You throw everything else其他 away. You become成為 a monomaniac獨斷論者 --
163
622000
3000
你把所有的東西都丟掉,變成了一個偏執狂--
10:43
all you care關心 about is not stepping步進 out on that platform平台.
164
625000
4000
你在乎的只是不要離開這個平台。
10:47
And when you're hungry飢餓, food餐飲 becomes more attractive有吸引力, and so forth向前.
165
629000
4000
當你很餓的時候,食物變得更加迷人之類的。
10:51
So I see emotions情緒 as highly高度 evolved進化 subsets of your capability能力.
166
633000
6000
我認為情感是高度演化下的附屬功能,
10:57
Emotion情感 is not something added添加 to thought. An emotional情緒化 state
167
639000
4000
情感不是思想的附屬品。
11:01
is what you get when you remove去掉 100 or 200
168
643000
4000
情感是當你移除100個或200個正常有用的資源後,
11:05
of your normally一般 available可得到 resources資源.
169
647000
3000
你所會得到的東西。
11:08
So thinking思維 of emotions情緒 as the opposite對面 of -- as something
170
650000
3000
所以,情感並不亞於思想,
11:11
less than thinking思維 is immensely非常 productive生產的. And I hope希望,
171
653000
4000
同時我希望,
11:15
in the next下一個 few少數 years年份, to show顯示 that this will lead to smart聰明 machines.
172
657000
4000
在接下來的幾年內,這些東西能引導智慧機器的誕生。
11:19
And I guess猜測 I better skip跳躍 all the rest休息 of this, which哪一個 are some details細節
173
661000
3000
我想我最好跳過這些關於如何
11:22
on how we might威力 make those smart聰明 machines and --
174
664000
5000
建造這些智慧機器的細節--
11:27
(Laughter笑聲)
175
669000
5000
(笑聲)
11:32
-- and the main主要 idea理念 is in fact事實 that the core核心 of a really smart聰明 machine
176
674000
5000
超級智慧機器最重要的核心,
11:37
is one that recognizes識別 that a certain某些 kind of problem問題 is facing面對 you.
177
679000
5000
是去清楚定義自己所面對的是哪種問題。
11:42
This is a problem問題 of such這樣 and such這樣 a type類型,
178
684000
3000
這些是這一類的問題,
11:45
and therefore因此 there's a certain某些 way or ways方法 of thinking思維
179
687000
5000
這些是解決這些問題
11:50
that are good for that problem問題.
180
692000
2000
可能的思考方向。
11:52
So I think the future未來, main主要 problem問題 of psychology心理學 is to classify分類
181
694000
4000
所以我認為未來心理學的主要問題,
11:56
types類型 of predicaments困境, types類型 of situations情況, types類型 of obstacles障礙
182
698000
4000
是去區分出各種困境型態、各種情境及各種障礙,
12:00
and also to classify分類 available可得到 and possible可能 ways方法 to think and pair them up.
183
702000
6000
同時也要去區分出與之相對應的可能思考方向。
12:06
So you see, it's almost幾乎 like a Pavlovian巴甫洛夫 --
184
708000
3000
所以你看,這幾乎就像是巴夫洛夫的古典制約學習--
12:09
we lost丟失 the first hundred years年份 of psychology心理學
185
711000
2000
我們因為一些無用的理論,
12:11
by really trivial不重要的 theories理論, where you say,
186
713000
3000
而捨棄了心理學最初一百年的研究,你會問:
12:14
how do people learn學習 how to react應對 to a situation情況? What I'm saying is,
187
716000
6000
人們如何學習對某種情境做出適當回應?我要說的是,
12:20
after we go through通過 a lot of levels水平, including包含 designing設計
188
722000
5000
在我們經歷過各種階段,
12:25
a huge巨大, messy system系統 with thousands數千 of ports港口,
189
727000
3000
包括用數千個零組件設計出一個的龐大的系統之後,
12:28
we'll end結束 up again with the central中央 problem問題 of psychology心理學.
190
730000
4000
我們還是得面對心理學最核心的問題,
12:32
Saying, not what are the situations情況,
191
734000
3000
那就是情境不重要,
12:35
but what are the kinds of problems問題
192
737000
2000
問題才是最重要的、
12:37
and what are the kinds of strategies策略, how do you learn學習 them,
193
739000
3000
策略及學習的方法才是重要的、
12:40
how do you connect them up, how does a really creative創作的 person
194
742000
3000
怎麼把各種事情聯結在一起才是重要的、如何讓一個真正有創意的人
12:43
invent發明 a new way of thinking思維 out of the available可得到 resources資源 and so forth向前.
195
745000
5000
從有限的資源裡,發展出新的思考模式才是重要的。
12:48
So, I think in the next下一個 20 years年份,
196
750000
2000
所以我想在接下來的20年中,
12:50
if we can get rid擺脫 of all of the traditional傳統 approaches方法 to artificial人造 intelligence情報,
197
752000
5000
如果我們能擺脫傳統發展人工智慧的方法,
12:55
like neural神經 nets and genetic遺傳 algorithms算法
198
757000
2000
像是神經網路、遺傳基因演算法
12:57
and rule-based有章可循 systems系統, and just turn our sights景點 a little bit higher更高 to say,
199
759000
6000
和規則式系統等,然後把我們的視野提高一點點說:
13:03
can we make a system系統 that can use all those things
200
765000
2000
我們能否用以上所有的方法,創造出一個
13:05
for the right kind of problem問題? Some problems問題 are good for neural神經 nets;
201
767000
4000
可以解決某種問題的系統?有些問題可以用神經網路去解決;
13:09
we know that others其他, neural神經 nets are hopeless絕望 on them.
202
771000
3000
但我知道,在某些方面神經網路是沒有用處的。
13:12
Genetic遺傳 algorithms算法 are great for certain某些 things;
203
774000
3000
遺傳基因演算法,對某些事情來說是很有用的;
13:15
I suspect疑似 I know what they're bad at, and I won't慣於 tell you.
204
777000
4000
我猜我知道它們有一些不好的地方,但我不會告訴你。
13:19
(Laughter笑聲)
205
781000
1000
(笑聲)
13:20
Thank you.
206
782000
2000
謝謝
13:22
(Applause掌聲)
207
784000
6000
(掌聲)
Translated by Chen Sheng-fu
Reviewed by Marie Wu

▲Back to top

ABOUT THE SPEAKER
Marvin Minsky - AI pioneer
Marvin Minsky is one of the great pioneers of artificial intelligence -- and using computing metaphors to understand the human mind. His contributions to mathematics, robotics and computational linguistics are legendary and far-reaching.

Why you should listen

Marvin Minsky is the superstar-elder of artificial intelligence, one of the most productive and important cognitive scientists of the century, and the leading proponent of the Society of Mind theory. Articulated in his 1985 book of the same name, Minsky's theory says intelligence is not born of any single mechanism, but from the interaction of many independent agents. The book's sequel,The Emotion Machine (2006), says similar activity also accounts for feelings, goals, emotions and conscious thoughts.

Minsky also pioneered advances in mathematics, computational linguistics, optics, robotics and telepresence. He built SNARC, the first neural network simulator, some of the first visual scanners, and the first LOGO "turtle." From his headquarters at MIT's Media Lab and the AI Lab (which he helped found), he continues to work on, as he says, "imparting to machines the human capacity for commonsense reasoning."

More profile about the speaker
Marvin Minsky | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee