ABOUT THE SPEAKER
Stephen Wolfram - Scientist, inventor
Stephen Wolfram is the creator of Mathematica and Wolfram|Alpha, the author of A New Kind of Science, and the founder and CEO of Wolfram Research.

Why you should listen

Stephen Wolfram published his first scientific paper at the age of 15, and received his PhD in theoretical physics from Caltech by the age of 20. Having started to use computers in 1973, Wolfram rapidly became a leader in the emerging field of scientific computing.

In 1981 Wolfram became the youngest recipient of a MacArthur Prize Fellowship. He then set out on an ambitious new direction in science aimed at understanding the origins of complexity in nature. Wolfram's first key idea was to use computer experiments to study the behavior of simple computer programs known as cellular automata. This allowed him to make a series of startling discoveries about the origins of complexity.

Wolfram founded the first research center and the first journal in the field, Complex Systems, and began the development of Mathematica. Wolfram Research soon became a world leader in the software industry -- widely recognized for excellence in both technology and business.

Following the release of Mathematica Version 2 in 1991, Wolfram began to divide his time between Mathematica development and scientific research. Building on his work from the mid-1980s, and now with Mathematica as a tool, Wolfram made a rapid succession of major new discoveries, which he described in his book, A New Kind of Science.

Building on Mathematica, A New Kind of Science, and the success of Wolfram Research, Wolfram recently launched Wolfram|Alpha -- an ambitious, long-term project to make as much of the world's knowledge as possible computable, and accessible to everyone.

More profile about the speaker
Stephen Wolfram | Speaker | TED.com
TED2010

Stephen Wolfram: Computing a theory of all knowledge

斯蒂芬.沃尔夫勒姆:计算万物的理论

Filmed:
1,811,819 views

斯蒂芬.沃尔夫勒姆,Mathematica的创始人,谈论了他试图通过搜索、处理及操作各种信息从而计算所有知识的构想。他的新一代搜索引擎,Wolfram Alpha,致力于对宇宙根本的物理问题进行建模和解释。
- Scientist, inventor
Stephen Wolfram is the creator of Mathematica and Wolfram|Alpha, the author of A New Kind of Science, and the founder and CEO of Wolfram Research. Full bio

Double-click the English transcript below to play the video.

00:16
So I want to talk today今天 about an idea理念. It's a big idea理念.
0
1000
3000
接下来,我今天想谈的是一个宏观理念。
00:19
Actually其实, I think it'll它会 eventually终于
1
4000
2000
其实,我认为这个构想最终
00:21
be seen看到 as probably大概 the single biggest最大 idea理念
2
6000
2000
会被视为上个世纪出现过的
00:23
that's emerged出现 in the past过去 century世纪.
3
8000
2000
最伟大的理念
00:25
It's the idea理念 of computation计算.
4
10000
2000
那就是计算的理念
00:27
Now, of course课程, that idea理念 has brought us
5
12000
2000
现在,当然,这个理念已经带给我们
00:29
all of the computer电脑 technology技术 we have today今天 and so on.
6
14000
3000
所有今天所拥有的电脑科技
00:32
But there's actually其实 a lot more to computation计算 than that.
7
17000
3000
然而,除此之外,还有更多可以计算的事物。
00:35
It's really a very deep, very powerful强大, very fundamental基本的 idea理念,
8
20000
3000
这真是个非常深刻,非常有用,非常基本的理念
00:38
whose谁的 effects效果 we've我们已经 only just begun开始 to see.
9
23000
3000
而我们只是刚开始见证这个理念的作用
00:41
Well, I myself have spent花费 the past过去 30 years年份 of my life
10
26000
3000
过去30年里,我致力于
00:44
working加工 on three large projects项目
11
29000
2000
研究3个大型的项目
00:46
that really try to take the idea理念 of computation计算 seriously认真地.
12
31000
3000
这些项目认真地将计算的理念付诸实践
00:50
So I started开始 off at a young年轻 age年龄 as a physicist物理学家
13
35000
3000
刚开始时我只是个年轻的物理学家
00:53
using运用 computers电脑 as tools工具.
14
38000
2000
运用电脑作为工具
00:55
Then, I started开始 drilling钻孔 down,
15
40000
2000
然后,我开始深入
00:57
thinking思维 about the computations计算 I might威力 want to do,
16
42000
2000
思考我可能想做的计算
00:59
trying to figure数字 out what primitives原语 they could be built内置 up from
17
44000
3000
尝试找出可以加以演变的主数据类型
01:02
and how they could be automated自动化 as much as possible可能.
18
47000
3000
以及它们尽可能自动运行的方式
01:05
Eventually终于, I created创建 a whole整个 structure结构体
19
50000
2000
最终,我创立了整个架构
01:07
based基于 on symbolic象征 programming程序设计 and so on
20
52000
2000
基于符号编程等等
01:09
that let me build建立 Mathematica数学.
21
54000
2000
然后创造出了Mathematica
01:11
And for the past过去 23 years年份, at an increasing增加 rate,
22
56000
2000
过去23年间,以逐年增长的态势
01:13
we've我们已经 been pouring浇注 more and more ideas思路
23
58000
2000
我们已经为Mathematica注入了
01:15
and capabilities功能 and so on into Mathematica数学,
24
60000
2000
越来越多的概念和性能
01:17
and I'm happy快乐 to say that that's led to many许多 good things
25
62000
3000
而且我很高兴地说这带来了很多进步
01:20
in R & D and education教育,
26
65000
2000
在研发和教育
01:22
lots of other areas.
27
67000
2000
以及其他很多方面
01:24
Well, I have to admit承认, actually其实,
28
69000
2000
当然,我必须承认,事实上
01:26
that I also had a very selfish自私 reason原因 for building建造 Mathematica数学:
29
71000
3000
我开发Mathematica也有个自私的原因
01:29
I wanted to use it myself,
30
74000
2000
那就是我想要用它
01:31
a bit like Galileo伽利略 got to use his telescope望远镜
31
76000
2000
就像伽利略在400年前
01:33
400 years年份 ago.
32
78000
2000
想要用望远镜一样
01:35
But I wanted to look not at the astronomical天文 universe宇宙,
33
80000
3000
但我想了解的不是天文宇宙
01:38
but at the computational计算 universe宇宙.
34
83000
3000
而是可计算空间
01:41
So we normally一般 think of programs程式 as being存在
35
86000
2000
通常我们觉得程序是
01:43
complicated复杂 things that we build建立
36
88000
2000
复杂的东西
01:45
for very specific具体 purposes目的.
37
90000
2000
我们编程有很多特定的目的
01:47
But what about the space空间 of all possible可能 programs程式?
38
92000
3000
然而所有程序的空间又有多少呢?
01:50
Here's这里的 a representation表示 of a really simple简单 program程序.
39
95000
3000
这里有个非常简单的程序
01:53
So, if we run this program程序,
40
98000
2000
所以呢,如果我们运行这个程序
01:55
this is what we get.
41
100000
2000
这就是我们得到的结果
01:57
Very simple简单.
42
102000
2000
很简单
01:59
So let's try changing改变 the rule规则
43
104000
2000
接下来,我们稍微修改一下
02:01
for this program程序 a little bit.
44
106000
2000
这个程序的规则
02:03
Now we get another另一个 result结果,
45
108000
2000
我们便得到了另一个结果
02:05
still very simple简单.
46
110000
2000
仍旧非常简单
02:07
Try changing改变 it again.
47
112000
3000
再试着改一下
02:10
You get something a little bit more complicated复杂.
48
115000
2000
你就看到稍微复杂一点的东西
02:12
But if we keep running赛跑 this for a while,
49
117000
2000
不过如果我们把这个程序继续运行下去
02:14
we find out that although虽然 the pattern模式 we get is very intricate错综复杂,
50
119000
3000
我们将发现,尽管我们获得的图案十分复杂
02:17
it has a very regular定期 structure结构体.
51
122000
3000
但它具有有规律的结构
02:20
So the question is: Can anything else其他 happen发生?
52
125000
3000
接下来的问题是:还能发生什么?
02:23
Well, we can do a little experiment实验.
53
128000
2000
好,我们可以做个小实验
02:25
Let's just do a little mathematical数学的 experiment实验, try and find out.
54
130000
3000
来做个小的数学实验,试着找出规律
02:29
Let's just run all possible可能 programs程式
55
134000
3000
运行我们所关注的特定总类的
02:32
of the particular特定 type类型 that we're looking at.
56
137000
2000
所有可能的程序
02:34
They're called cellular细胞的 automata自动机.
57
139000
2000
他们被称为单元自动机
02:36
You can see a lot of diversity多样 in the behavior行为 here.
58
141000
2000
你能看到这里有各种各样的图案模式
02:38
Most of them do very simple简单 things,
59
143000
2000
大多数都很简单
02:40
but if you look along沿 all these different不同 pictures图片,
60
145000
2000
但是,如果你注意所有不同的图片
02:42
at rule规则 number 30,
61
147000
2000
在30号规则上
02:44
you start开始 to see something interesting有趣 going on.
62
149000
2000
你开始看见一些有趣的东西出现
02:46
So let's take a closer接近 look
63
151000
2000
所以我们仔细看一下
02:48
at rule规则 number 30 here.
64
153000
2000
在30号规则这里
02:50
So here it is.
65
155000
2000
就在这里
02:52
We're just following以下 this very simple简单 rule规则 at the bottom底部 here,
66
157000
3000
我们只是按照底部非常简单的规律
02:55
but we're getting得到 all this amazing惊人 stuff东东.
67
160000
2000
然而我们得到了惊人的结果
02:57
It's not at all what we're used to,
68
162000
2000
这与我们过去习惯的事物完全不同
02:59
and I must必须 say that, when I first saw this,
69
164000
2000
而且,我必须说,当我第一次看见它的时候
03:01
it came来了 as a huge巨大 shock休克 to my intuition直觉.
70
166000
3000
它让我直觉为之震惊
03:04
And, in fact事实, to understand理解 it,
71
169000
2000
实际上,为了理解它
03:06
I eventually终于 had to create创建
72
171000
2000
我们最终不得不建立
03:08
a whole整个 new kind of science科学.
73
173000
2000
一套全新的科学
03:11
(Laughter笑声)
74
176000
2000
(笑声)
03:13
This science科学 is different不同, more general一般,
75
178000
3000
这套科学是与众不同的,并且更加广义的
03:16
than the mathematics-based数学基础 science科学 that we've我们已经 had
76
181000
2000
比起已经存在的基于数学的其他科学来说
03:18
for the past过去 300 or so years年份.
77
183000
3000
在过去300年甚至更久的时间内
03:21
You know, it's always seemed似乎 like a big mystery神秘:
78
186000
2000
你知道的,它总是看似神秘
03:23
how nature性质, seemingly似乎 so effortlessly毫不费力,
79
188000
3000
自然毫不费力地
03:26
manages管理 to produce生产 so much
80
191000
2000
制造出如此多的东西
03:28
that seems似乎 to us so complex复杂.
81
193000
3000
让我们觉得如此复杂
03:31
Well, I think we've我们已经 found发现 its secret秘密:
82
196000
3000
于是,我觉得我们已经发现了其中的奥秘
03:34
It's just sampling采样 what's out there in the computational计算 universe宇宙
83
199000
3000
这只是我们能探索的计算空间的一个样本
03:37
and quite相当 often经常 getting得到 things like Rule规则 30
84
202000
3000
它们都像30号规则
03:40
or like this.
85
205000
3000
或者像这个
03:44
And knowing会心 that starts启动 to explain说明
86
209000
2000
在知道这件事后,我们可以开始解释
03:46
a lot of long-standing由来已久 mysteries奥秘 in science科学.
87
211000
3000
很多科学中长期以来的谜团
03:49
It also brings带来 up new issues问题, though虽然,
88
214000
2000
不过,它也带来新的问题
03:51
like computational计算 irreducibility不可约.
89
216000
3000
就像计算的不可化归性
03:54
I mean, we're used to having science科学 let us predict预测 things,
90
219000
3000
我的意思是我们曾习惯让科学帮我们预测一些事情
03:57
but something like this
91
222000
2000
但是像这样的事情
03:59
is fundamentally从根本上 irreducible束缚.
92
224000
2000
是根本不可简化的
04:01
The only way to find its outcome结果
93
226000
2000
发现它结果的唯一方法
04:03
is, effectively有效, just to watch it evolve发展.
94
228000
3000
实际上就是看着它演化
04:06
It's connected连接的 to, what I call,
95
231000
2000
与之相关的便是我所谓的
04:08
the principle原理 of computational计算 equivalence等价,
96
233000
2000
计算等价性原则
04:10
which哪一个 tells告诉 us that even incredibly令人难以置信 simple简单 systems系统
97
235000
3000
它告诉我们即使超级简单的系统
04:13
can do computations计算 as sophisticated复杂的 as anything.
98
238000
3000
也能做极端复杂的计算
04:16
It doesn't take lots of technology技术 or biological生物 evolution演化
99
241000
3000
不需要多先进的技术或是生物进化过程
04:19
to be able能够 to do arbitrary随意 computation计算;
100
244000
2000
就能使得它能够做任意的计算
04:21
just something that happens发生, naturally自然,
101
246000
2000
这就是自然发生的事情
04:23
all over the place地点.
102
248000
2000
随处可见
04:25
Things with rules规则 as simple简单 as these can do it.
103
250000
3000
有如此简单规则的东西能达此目的
04:29
Well, this has deep implications启示
104
254000
2000
而且,这件事有深刻的意义
04:31
about the limits范围 of science科学,
105
256000
2000
涉及科学的极限
04:33
about predictability预测 and controllability可控性
106
258000
2000
概率论和控制论等
04:35
of things like biological生物 processes流程 or economies经济,
107
260000
3000
在生物进程或者经济方面发挥作用
04:38
about intelligence情报 in the universe宇宙,
108
263000
2000
还有关于宇宙中的智能
04:40
about questions问题 like free自由 will
109
265000
2000
关于自由意志
04:42
and about creating创建 technology技术.
110
267000
3000
以及创新技术的问题
04:45
You know, in working加工 on this science科学 for many许多 years年份,
111
270000
2000
从事这些科学工作很多年后
04:47
I kept不停 wondering想知道,
112
272000
2000
我开始思考
04:49
"What will be its first killer凶手 app应用?"
113
274000
2000
第一个令人震惊的应用程序是什么?
04:51
Well, ever since以来 I was a kid孩子,
114
276000
2000
恩,甚至我还是孩子时
04:53
I'd been thinking思维 about systematizing系统化 knowledge知识
115
278000
2000
我就想过关于知识系统化的问题
04:55
and somehow不知何故 making制造 it computable可计算.
116
280000
2000
以及怎么让它变得可计算
04:57
People like Leibniz莱布尼茨 had wondered想知道 about that too
117
282000
2000
莱布尼兹之辈也已经想过这个问题
04:59
300 years年份 earlier.
118
284000
2000
在300年前
05:01
But I'd always assumed假定 that to make progress进展,
119
286000
2000
但是我总是假设,为了进步,
05:03
I'd essentially实质上 have to replicate复制 a whole整个 brain.
120
288000
3000
我不得不克隆出整个大脑
05:06
Well, then I got to thinking思维:
121
291000
2000
而现在,我想的是
05:08
This scientific科学 paradigm范例 of mine suggests提示 something different不同 --
122
293000
3000
我的科学模式意味着不一样的东西。
05:11
and, by the way, I've now got
123
296000
2000
并且,顺便提一下,我已经
05:13
huge巨大 computation计算 capabilities功能 in Mathematica数学,
124
298000
3000
使Mathematica具备了超强的计算能力
05:16
and I'm a CEOCEO with some worldly世俗 resources资源
125
301000
3000
并且,我是公司的首席执行官,拥有大量的资源
05:19
to do large, seemingly似乎 crazy, projects项目 --
126
304000
3000
来做大型的,看似疯狂的项目。
05:22
So I decided决定 to just try to see
127
307000
2000
所以,我决定尝试知道
05:24
how much of the systematic系统的 knowledge知识 that's out there in the world世界
128
309000
3000
在这世界上,有多少系统化的知识
05:27
we could make computable可计算.
129
312000
2000
是我们能够计算的
05:29
So, it's been a big, very complex复杂 project项目,
130
314000
2000
所以,这是个大型、复杂的项目,
05:31
which哪一个 I was not sure was going to work at all.
131
316000
3000
我不完全确定它是否可行
05:34
But I'm happy快乐 to say it's actually其实 going really well.
132
319000
3000
但是我很高兴地说,它现在进行的不错
05:37
And last year we were able能够
133
322000
2000
就在去年
05:39
to release发布 the first website网站 version
134
324000
2000
我们发布了第一个网络版本的
05:41
of Wolfram AlphaΑ.
135
326000
2000
Wolfram Alpha
05:43
Its purpose目的 is to be a serious严重 knowledge知识 engine发动机
136
328000
3000
目的是提供一个专业的知识搜索引擎
05:46
that computes单位计算 answers答案 to questions问题.
137
331000
3000
它为提问计算答案
05:49
So let's give it a try.
138
334000
2000
所以呢,我们来试试看
05:51
Let's start开始 off with something really easy简单.
139
336000
2000
让我们先试试简单的东西
05:53
Hope希望 for the best最好.
140
338000
2000
希望没问题
05:55
Very good. Okay.
141
340000
2000
非常好,没问题
05:57
So far so good.
142
342000
2000
到目前为止,不错
05:59
(Laughter笑声)
143
344000
3000
(笑声)
06:02
Let's try something a little bit harder更难.
144
347000
3000
让我们试试难一点的东西
06:05
Let's do
145
350000
2000
比如
06:07
some mathymathy thing,
146
352000
3000
我们做点数学
06:10
and with luck运气 it'll它会 work out the answer回答
147
355000
3000
希望它能幸运的计算出结果
06:13
and try and tell us some interesting有趣 things
148
358000
2000
并且试着告诉我们一些
06:15
things about related有关 math数学.
149
360000
2000
关于数学的有趣的事
06:17
We could ask it something about the real真实 world世界.
150
362000
3000
我们可以问他一些现实生活的事情
06:20
Let's say -- I don't know --
151
365000
2000
比如,--- 让我想想 -----
06:22
what's the GDPGDP of Spain西班牙?
152
367000
3000
西班牙的国民生产总值是多少?
06:25
And it should be able能够 to tell us that.
153
370000
2000
它应该能告诉我们
06:27
Now we could compute计算 something related有关 to this,
154
372000
2000
现在我们能计算和它相关的事
06:29
let's say ... the GDPGDP of Spain西班牙
155
374000
2000
比如西班牙的国民生产总值
06:31
divided分为 by, I don't know,
156
376000
2000
除以, 让我想想
06:33
the -- hmmm ...
157
378000
2000
06:35
let's say the revenue收入 of Microsoft微软.
158
380000
2000
比如微软公司的收入
06:37
(Laughter笑声)
159
382000
2000
(笑声)
06:39
The idea理念 is that we can just type类型 this in,
160
384000
2000
想法就是我们输入一些好奇的问题
06:41
this kind of question in, however然而 we think of it.
161
386000
3000
不论是什么奇怪的问题
06:44
So let's try asking a question,
162
389000
2000
所以,我们提个问题
06:46
like a health健康 related有关 question.
163
391000
2000
比如有关健康的问题
06:48
So let's say we have a lab实验室 finding发现 that ...
164
393000
3000
比如,跟据实验室数据
06:51
you know, we have an LDLLDL level水平 of 140
165
396000
2000
你知道的,有低密度脂蛋白浓度值是140的数据
06:53
for a male aged 50.
166
398000
3000
这是针对50多岁的男性
06:56
So let's type类型 that in, and now Wolfram AlphaΑ
167
401000
2000
我们输入这个,然后Wolfram Alpha
06:58
will go and use available可得到 public上市 health健康 data数据
168
403000
2000
就会使用存在的公共健康数据库
07:00
and try and figure数字 out
169
405000
2000
来试着分析出
07:02
what part部分 of the population人口 that corresponds对应 to and so on.
170
407000
3000
这组数据对应哪部分人群等等
07:05
Or let's try asking about, I don't know,
171
410000
3000
或者我们可以问,让我想想
07:08
the International国际 Space空间 Station.
172
413000
2000
国际空间站的问题
07:10
And what's happening事件 here is that
173
415000
2000
结果就是
07:12
Wolfram AlphaΑ is not just looking up something;
174
417000
2000
Wolfram Alpha不仅在查找信息
07:14
it's computing计算, in real真实 time,
175
419000
3000
它是在实时计算
07:17
where the International国际 Space空间 Station is right now at this moment时刻,
176
422000
3000
国际空间站现在此刻的位置
07:20
how fast快速 it's going, and so on.
177
425000
3000
它运行的速度等等
07:24
So Wolfram AlphaΑ knows知道 about lots and lots of kinds of things.
178
429000
3000
所以呢,Wolfram Alpha知道很多很多不同的事情
07:27
It's got, by now,
179
432000
2000
到现在为止
07:29
pretty漂亮 good coverage覆盖 of everything you might威力 find
180
434000
2000
它几乎可以很好的涵盖了你能在
07:31
in a standard标准 reference参考 library图书馆.
181
436000
3000
一个标准图书馆中找到的知识
07:34
But the goal目标 is to go much further进一步
182
439000
2000
不过,我们的目标远不止这些
07:36
and, very broadly宽广地, to democratize民主化
183
441000
3000
概括地说
07:39
all of this knowledge知识,
184
444000
3000
是要使所有的知识民主化
07:42
and to try and be an authoritative权威性
185
447000
2000
并且试着提供
07:44
source资源 in all areas.
186
449000
2000
所有领域中的权威资料
07:46
To be able能够 to compute计算 answers答案 to specific具体 questions问题 that people have,
187
451000
3000
使它能够计算人们特定问题的答案
07:49
not by searching搜索 what other people
188
454000
2000
不是靠搜索其他人
07:51
may可能 have written书面 down before,
189
456000
2000
之前可能写下的资料
07:53
but by using运用 built内置 in knowledge知识
190
458000
2000
而是使用内建知识
07:55
to compute计算 fresh新鲜 new answers答案 to specific具体 questions问题.
191
460000
3000
来对特定问题计算新的答案
07:58
Now, of course课程, Wolfram AlphaΑ
192
463000
2000
现在,当然,Wolfram Alpha
08:00
is a monumentally身世 huge巨大, long-term长期 project项目
193
465000
2000
是一个非常大型、长远的项目
08:02
with lots and lots of challenges挑战.
194
467000
2000
面临着众多挑战
08:04
For a start开始, one has to curate策划 a zillion无数
195
469000
3000
开始的时候,我们要收集数以万计的
08:07
different不同 sources来源 of facts事实 and data数据,
196
472000
3000
不同的事实来源和数据
08:10
and we built内置 quite相当 a pipeline管道 of Mathematica数学 automation自动化
197
475000
3000
而且,我们建立了Mathematica自动化流水线
08:13
and human人的 domain experts专家 for doing this.
198
478000
3000
还有知识领域专家来做这件事
08:16
But that's just the beginning开始.
199
481000
2000
不过,这只是开始
08:18
Given特定 raw生的 facts事实 or data数据
200
483000
2000
对于运用一些没有处理的事实和数据
08:20
to actually其实 answer回答 questions问题,
201
485000
2000
来解答实际问题
08:22
one has to compute计算:
202
487000
2000
一方面要计算
08:24
one has to implement实行 all those methods方法 and models楷模
203
489000
2000
另一方面要执行所有的方法、模型
08:26
and algorithms算法 and so on
204
491000
2000
以及算法等等
08:28
that science科学 and other areas have built内置 up over the centuries百年.
205
493000
3000
而科学以及其他领域于此已发展了数个世纪
08:31
Well, even starting开始 from Mathematica数学,
206
496000
3000
甚至从Mathematica开始
08:34
this is still a huge巨大 amount of work.
207
499000
2000
这仍然是一项浩大工程
08:36
So far, there are about 8 million百万 lines线
208
501000
2000
至今为止,有8百万行
08:38
of Mathematica数学 code in Wolfram AlphaΑ
209
503000
2000
Mathematica的代码写在Wolfram Alpha里
08:40
built内置 by experts专家 from many许多, many许多 different不同 fields领域.
210
505000
3000
这些代码由很多来自不同领域的专家构建
08:43
Well, a crucial关键 idea理念 of Wolfram AlphaΑ
211
508000
3000
Wolfram Alpha中的一个最重要的想法
08:46
is that you can just ask it questions问题
212
511000
2000
是你可以问它问题
08:48
using运用 ordinary普通 human人的 language语言,
213
513000
3000
使用普通人类语言
08:51
which哪一个 means手段 that we've我们已经 got to be able能够 to take
214
516000
2000
这意味着我们必须能够接受
08:53
all those strange奇怪 utterances话语 that people type类型 into the input输入 field领域
215
518000
3000
人们输入所有的奇怪的文字
08:56
and understand理解 them.
216
521000
2000
并理解它们
08:58
And I must必须 say that I thought that step
217
523000
2000
我必须说我曾觉得做到那一步
09:00
might威力 just be plain impossible不可能.
218
525000
3000
相当不可能
09:04
Two big things happened发生:
219
529000
2000
后来有了两大重要进步
09:06
First, a bunch of new ideas思路 about linguistics语言学
220
531000
3000
首先是语言学上的很多新想法
09:09
that came来了 from studying研究 the computational计算 universe宇宙;
221
534000
3000
来自于对计算空间的研究
09:12
and second第二, the realization实现 that having actual实际 computable可计算 knowledge知识
222
537000
3000
其次,可计算知识的实现
09:15
completely全然 changes变化 how one can
223
540000
2000
完全地改变了如何一个人能够
09:17
set about understanding理解 language语言.
224
542000
3000
开始理解语言
09:20
And, of course课程, now
225
545000
2000
当然,现在
09:22
with Wolfram AlphaΑ actually其实 out in the wild野生,
226
547000
2000
在浩瀚的网络中有了Wolfram Alpha
09:24
we can learn学习 from its actual实际 usage用法.
227
549000
2000
我们就能学习它的使用方法
09:26
And, in fact事实, there's been
228
551000
2000
实际上,一直都有
09:28
an interesting有趣 coevolution协同进化 that's been going on
229
553000
2000
一个有趣的共同进化
09:30
between之间 Wolfram AlphaΑ
230
555000
2000
发生在Wolfram Alpha
09:32
and its human人的 users用户,
231
557000
2000
和用户之间
09:34
and it's really encouraging鼓舞人心的.
232
559000
2000
并且,这相当鼓舞人心
09:36
Right now, if we look at web卷筒纸 queries查询,
233
561000
2000
现在,对于任意网络搜索
09:38
more than 80 percent百分 of them get handled处理 successfully顺利 the first time.
234
563000
3000
超过百分之80的搜索在第一时间就被成功处理。
09:41
And if you look at things like the iPhone苹果手机 app应用,
235
566000
2000
如果你看看类似iPhone应用程序的东西
09:43
the fraction分数 is considerably相当 larger.
236
568000
2000
那被成功搜索部分就相当大了
09:45
So, I'm pretty漂亮 pleased满意 with it all.
237
570000
2000
所以我对此很满意
09:47
But, in many许多 ways方法,
238
572000
2000
但是,从很多角度看
09:49
we're still at the very beginning开始 with Wolfram AlphaΑ.
239
574000
3000
我们仍然处于Wolfram Alpha开发的初级阶段。
09:52
I mean, everything is scaling缩放 up very nicely很好
240
577000
2000
我的意思是,每件事情的规模都在扩大
09:54
and we're getting得到 more confident信心.
241
579000
2000
我们也变得更有信心
09:56
You can expect期望 to see Wolfram AlphaΑ technology技术
242
581000
2000
你能期待看到Wolfram Alpha技术
09:58
showing展示 up in more and more places地方,
243
583000
2000
在越来越多的地方使用
10:00
working加工 both with this kind of public上市 data数据, like on the website网站,
244
585000
3000
既能使用公共数据,比如网站
10:03
and with private私人的 knowledge知识
245
588000
2000
又能使用私人数据
10:05
for people and companies公司 and so on.
246
590000
3000
给个人和公司等等提供服务
10:08
You know, I've realized实现 that Wolfram AlphaΑ actually其实 gives one
247
593000
3000
我觉得Wolfram Alpha其实是一个
10:11
a whole整个 new kind of computing计算
248
596000
2000
全新的计算方法
10:13
that one can call knowledge-based以知识为基础 computing计算,
249
598000
2000
我们可以称之基于知识的计算
10:15
in which哪一个 one's那些 starting开始 not just from raw生的 computation计算,
250
600000
3000
这种计算方法,不仅可以使用原始数据
10:18
but from a vast广大 amount of built-in内建的 knowledge知识.
251
603000
3000
还能使用大量的内建知识
10:21
And when one does that, one really changes变化
252
606000
2000
而且,一个能做这样计算的工具真的能够改变
10:23
the economics经济学 of delivering交付 computational计算 things,
253
608000
3000
传递可计算事物的理论
10:26
whether是否 it's on the web卷筒纸 or elsewhere别处.
254
611000
2000
无论在网络上或者是其他地方
10:28
You know, we have a fairly相当 interesting有趣 situation情况 right now.
255
613000
3000
我们现在处于一个很有意思的状态
10:31
On the one hand, we have Mathematica数学,
256
616000
2000
一方面,我们拥有Mathematica这个软件
10:33
with its sort分类 of precise精确, formal正式 language语言
257
618000
3000
它有精确性,正规性
10:36
and a huge巨大 network网络
258
621000
2000
以及大规模
10:38
of carefully小心 designed设计 capabilities功能
259
623000
2000
设计仔细的功能网络
10:40
able能够 to get a lot doneDONE in just a few少数 lines线.
260
625000
3000
用几行代码就能做很多事情
10:43
Let me show显示 you a couple一对 of examples例子 here.
261
628000
3000
我来展示几个例子
10:47
So here's这里的 a trivial不重要的 piece of Mathematica数学 programming程序设计.
262
632000
3000
这是Mathematica编程中很小的一段代码
10:51
Here's这里的 something where we're sort分类 of
263
636000
2000
这里是我们整合
10:53
integrating整合 a bunch of different不同 capabilities功能 here.
264
638000
3000
大量不同的功能
10:56
Here we'll just create创建, in this line线,
265
641000
3000
这行,我们就能建立
10:59
a little user用户 interface接口 that allows允许 us to
266
644000
3000
一个简单的用户界面
11:02
do something fun开玩笑 there.
267
647000
2000
它允许我们做一些有趣的事情
11:05
If you go on, that's a slightly more complicated复杂 program程序
268
650000
2000
如果你继续的话,那就出现一些更复杂的程序
11:07
that's now doing all sorts排序 of algorithmic算法 things
269
652000
3000
这些程序在运行算法之类的程序
11:10
and creating创建 user用户 interface接口 and so on.
270
655000
2000
并且建立用户界面等等
11:12
But it's something that is very precise精确 stuff东东.
271
657000
3000
不过,这是非常精准的东西
11:15
It's a precise精确 specification规范 with a precise精确 formal正式 language语言
272
660000
3000
它精准的命令需要精准的正式编程语言
11:18
that causes原因 Mathematica数学 to know what to do here.
273
663000
3000
才能让Mathematica知道要干什么
11:21
Then on the other hand, we have Wolfram AlphaΑ,
274
666000
3000
另一方面,我们拥有Wolfram Alpha
11:24
with all the messiness杂乱 of the world世界
275
669000
2000
包含了世界上所有杂乱无章的东西
11:26
and human人的 language语言 and so on built内置 into it.
276
671000
2000
以及人类语言等内建的知识体系
11:28
So what happens发生 when you put these things together一起?
277
673000
3000
如果把他们放一起,会发生什么呢?
11:31
I think it's actually其实 rather wonderful精彩.
278
676000
2000
我觉得真是非常棒
11:33
With Wolfram AlphaΑ inside Mathematica数学,
279
678000
2000
Mathematica里有Wolfram Alpha,
11:35
you can, for example, make precise精确 programs程式
280
680000
2000
你就能编写精准的程序
11:37
that call on real真实 world世界 data数据.
281
682000
2000
来接触真实世界的数据
11:39
Here's这里的 a real真实 simple简单 example.
282
684000
2000
这里有个很简单的例子
11:44
You can also just sort分类 of give vague模糊 input输入
283
689000
3000
你可以只是输入模棱两可的话语
11:47
and then try and have Wolfram AlphaΑ
284
692000
2000
试着让Wolfram Alpha
11:49
figure数字 out what you're talking about.
285
694000
2000
来分析出你想研究的内容
11:51
Let's try this here.
286
696000
2000
我们在这儿试试看
11:53
But actually其实 I think the most exciting扣人心弦 thing about this
287
698000
3000
不过事实上我想最激动人心的事是
11:56
is that it really gives one the chance机会
288
701000
2000
它给了我们一个机会
11:58
to democratize民主化 programming程序设计.
289
703000
3000
来全民编程
12:01
I mean, anyone任何人 will be able能够 to say what they want in plain language语言.
290
706000
3000
我的意思是,任何人都能用日常用语说话
12:04
Then, the idea理念 is that Wolfram AlphaΑ will be able能够 to figure数字 out
291
709000
3000
关键在于,Wolfram Alpha能分析出
12:07
what precise精确 pieces of code
292
712000
2000
什么样的精准代码
12:09
can do what they're asking for
293
714000
2000
能符合人们要求的事情
12:11
and then show显示 them examples例子 that will let them pick what they need
294
716000
3000
然后显示出样例来帮助人们找到想要的答案
12:14
to build建立 up bigger and bigger, precise精确 programs程式.
295
719000
3000
由此建立越来越多的精准程序
12:17
So, sometimes有时, Wolfram AlphaΑ
296
722000
2000
所以,有时候,Wolfram Alpha
12:19
will be able能够 to do the whole整个 thing immediately立即
297
724000
2000
能够立即处理整个问题
12:21
and just give back a whole整个 big program程序 that you can then compute计算 with.
298
726000
3000
然后仅仅回馈你能用来计算的整个大程序
12:24
Here's这里的 a big website网站
299
729000
2000
这里有个大网站
12:26
where we've我们已经 been collecting搜集 lots of educational教育性
300
731000
3000
这里,我们收集了很多关于教育等
12:29
and other demonstrations示威 about lots of kinds of things.
301
734000
3000
各种事物的样例
12:32
I'll show显示 you one example here.
302
737000
3000
我来展示一个例子,例如这个
12:36
This is just an example of one of these computable可计算 documents文件.
303
741000
3000
这只是可计算文档的其中一个样例
12:39
This is probably大概 a fairly相当 small
304
744000
2000
它是相当小的
12:41
piece of Mathematica数学 code
305
746000
2000
一段Mathematica代码
12:43
that's able能够 to be run here.
306
748000
2000
能在这里运行
12:47
Okay. Let's zoom放大 out again.
307
752000
3000
我们再缩小一下
12:50
So, given特定 our new kind of science科学,
308
755000
2000
所以,有了这个新版科学
12:52
is there a general一般 way to use it to make technology技术?
309
757000
3000
存在一个通用的办法来用它革新技术吗?
12:55
So, with physical物理 materials物料,
310
760000
2000
使用物理材料
12:57
we're used to going around the world世界
311
762000
2000
我们过去常常遍步世界
12:59
and discovering发现 that particular特定 materials物料
312
764000
2000
并发现特定材料
13:01
are useful有用 for particular特定
313
766000
2000
用于特定的
13:03
technological技术性 purposes目的.
314
768000
2000
技术目的等等。
13:05
Well, it turns out we can do very much the same相同 kind of thing
315
770000
2000
结果,我们可以做很多差不多的事情
13:07
in the computational计算 universe宇宙.
316
772000
2000
在这个可计算的世界中。
13:09
There's an inexhaustible取之不尽,用之不竭 supply供应 of programs程式 out there.
317
774000
3000
有无穷无尽的程序资源在那儿。
13:12
The challenge挑战 is to see how to
318
777000
2000
面临的挑战是如何
13:14
harness马具 them for human人的 purposes目的.
319
779000
2000
让它们供人类使用
13:16
Something like Rule规则 30, for example,
320
781000
2000
举个例子,一些像30号规则的东西
13:18
turns out to be a really good randomness随机性 generator发电机.
321
783000
2000
结果可以是很好的随机生成器。
13:20
Other simple简单 programs程式 are good models楷模
322
785000
2000
其他简单的程序是很好的模型
13:22
for processes流程 in the natural自然 or social社会 world世界.
323
787000
3000
来处理自然世界或者社交活动的问题
13:25
And, for example, Wolfram AlphaΑ and Mathematica数学
324
790000
2000
再比如,Wolfram Alpha和Mathematica
13:27
are actually其实 now full充分 of algorithms算法
325
792000
2000
确实包含很多算法
13:29
that we discovered发现 by searching搜索 the computational计算 universe宇宙.
326
794000
3000
我们通过搜索计算空间找到它们
13:33
And, for example, this -- if we go back here --
327
798000
3000
再比如,我们返回到这里
13:37
this has become成为 surprisingly出奇 popular流行
328
802000
2000
这个已经变成相当的流行
13:39
among其中 composers作曲家
329
804000
2000
在作曲家间
13:41
finding发现 musical音乐 forms形式 by searching搜索 the computational计算 universe宇宙.
330
806000
3000
通过搜索计算空间来找出音乐模式
13:45
In a sense, we can use the computational计算 universe宇宙
331
810000
2000
某种意义上说,我们可以使用计算空间
13:47
to get mass customized定制 creativity创造力.
332
812000
3000
来获得大量的个性化创造。
13:50
I'm hoping希望 we can, for example,
333
815000
2000
我希望我们能够
13:52
use that even to get Wolfram AlphaΑ
334
817000
2000
使用Wolfram Alpha
13:54
to routinely常规 do invention发明 and discovery发现 on the fly,
335
819000
3000
来运行常规的发明和发现的过程
13:57
and to find all sorts排序 of wonderful精彩 stuff东东
336
822000
2000
并且来找出所有令人惊讶的事情
13:59
that no engineer工程师
337
824000
2000
这些事情没有一个工程师
14:01
and no process处理 of incremental增加的 evolution演化 would ever come up with.
338
826000
3000
也没有一个渐进式演化的过程能够找出
14:05
Well, so, that leads引线 to kind of an ultimate最终 question:
339
830000
3000
这些最终导向一个终极问题
14:08
Could it be that someplace某个地方 out there in the computational计算 universe宇宙
340
833000
3000
有没有可能使这个计算空间
14:11
we might威力 find our physical物理 universe宇宙?
341
836000
3000
与我们的物理世界相融合?
14:14
Perhaps也许 there's even some quite相当 simple简单 rule规则,
342
839000
2000
也许存在简单的规则
14:16
some simple简单 program程序 for our universe宇宙.
343
841000
3000
一些简单的程序,对于我们的物理世界来说。
14:19
Well, the history历史 of physics物理 would have us believe
344
844000
2000
物理的历史让我们相信
14:21
that the rule规则 for the universe宇宙 must必须 be pretty漂亮 complicated复杂.
345
846000
3000
宇宙的内部规则一定是很复杂的
14:24
But in the computational计算 universe宇宙,
346
849000
2000
但是在计算空间中
14:26
we've我们已经 now seen看到 how rules规则 that are incredibly令人难以置信 simple简单
347
851000
3000
我们已经看到那些规则惊人的简单
14:29
can produce生产 incredibly令人难以置信 rich丰富 and complex复杂 behavior行为.
348
854000
3000
却能够产生非常丰富和复杂的结果
14:32
So could that be what's going on with our whole整个 universe宇宙?
349
857000
3000
所以,这可能是我们的物理世界的本质吗?
14:36
If the rules规则 for the universe宇宙 are simple简单,
350
861000
2000
如果这个宇宙的规则很简单
14:38
it's kind of inevitable必然 that they have to be
351
863000
2000
不可避免的,他们一定是
14:40
very abstract抽象 and very low level水平;
352
865000
2000
十分抽象以及初级
14:42
operating操作, for example, far below下面
353
867000
2000
远远运行于
14:44
the level水平 of space空间 or time,
354
869000
2000
时间、空间之下
14:46
which哪一个 makes品牌 it hard to represent代表 things.
355
871000
2000
这种运行方法很难表现某种东西
14:48
But in at least最小 a large class of cases,
356
873000
2000
但是至少,从其中一类大量的事例中
14:50
one can think of the universe宇宙 as being存在
357
875000
2000
我们能把这个宇宙想成
14:52
like some kind of network网络,
358
877000
2000
某种网络
14:54
which哪一个, when it gets得到 big enough足够,
359
879000
2000
当它变得足够大时
14:56
behaves的行为 like continuous连续 space空间
360
881000
2000
它表现得像一个连续空间
14:58
in much the same相同 way as having lots of molecules分子
361
883000
2000
某种程度上就像很多分子
15:00
can behave表现 like a continuous连续 fluid流体.
362
885000
2000
表现得像流体一样。
15:02
Well, then the universe宇宙 has to evolve发展 by applying应用
363
887000
3000
之后,宇宙进化就要依靠
15:05
little rules规则 that progressively逐步 update更新 this network网络.
364
890000
3000
应用这个网络中不断更新的简单规则。
15:08
And each possible可能 rule规则, in a sense,
365
893000
2000
并且,每一个可能的规则,在某种程度上说,
15:10
corresponds对应 to a candidate候选人 universe宇宙.
366
895000
2000
对应一个候选空间
15:12
Actually其实, I haven't没有 shown显示 these before,
367
897000
3000
事实上,我之前从来没有展示过
15:16
but here are a few少数 of the candidate候选人 universes宇宙
368
901000
3000
不过,这里有几个候选空间
15:19
that I've looked看着 at.
369
904000
2000
我正在研究的
15:21
Some of these are hopeless绝望 universes宇宙,
370
906000
2000
一些是没希望的空间
15:23
completely全然 sterile无菌,
371
908000
2000
完全不能演化,
15:25
with other kinds of pathologies病理 like no notion概念 of space空间,
372
910000
2000
包括很多缺点,例如没有空间的观念
15:27
no notion概念 of time, no matter,
373
912000
3000
没有时间的概念,没有物质
15:30
other problems问题 like that.
374
915000
2000
或者类似的其他问题
15:32
But the exciting扣人心弦 thing that I've found发现 in the last few少数 years年份
375
917000
3000
但是,我近几年发现的最令人激动的事
15:35
is that you actually其实 don't have to go very far
376
920000
2000
是你其实不必深入
15:37
in the computational计算 universe宇宙
377
922000
2000
在计算空间中
15:39
before you start开始 finding发现 candidate候选人 universes宇宙
378
924000
2000
你就能发现与我们的物理空间
15:41
that aren't obviously明显 not our universe宇宙.
379
926000
3000
明显不同的候选空间
15:44
Here's这里的 the problem问题:
380
929000
2000
问题在这里:
15:46
Any serious严重 candidate候选人 for our universe宇宙
381
931000
3000
任何有可能的候选空间
15:49
is inevitably必将 full充分 of computational计算 irreducibility不可约.
382
934000
3000
不可避免地充满了计算不可化归性,
15:52
Which哪一个 means手段 that it is irreducibly不可还原 difficult
383
937000
3000
这意味着简化它的具体表现
15:55
to find out how it will really behave表现,
384
940000
2000
是极其困难的
15:57
and whether是否 it matches火柴 our physical物理 universe宇宙.
385
942000
3000
并且不易判断它是否符合我们的物理世界。
16:01
A few少数 years年份 ago, I was pretty漂亮 excited兴奋 to discover发现
386
946000
3000
几年前,我非常兴奋地发现
16:04
that there are candidate候选人 universes宇宙 with incredibly令人难以置信 simple简单 rules规则
387
949000
3000
有些候选空间具有极其简单的规则
16:07
that successfully顺利 reproduce复制 special特别 relativity相对论,
388
952000
2000
却能成功再现狭义相对论
16:09
and even general一般 relativity相对论 and gravitation引力,
389
954000
3000
和广义相对论以及重力
16:12
and at least最小 give hints提示 of quantum量子 mechanics机械学.
390
957000
3000
而且至少还给出了量子力学的暗示。
16:15
So, will we find the whole整个 of physics物理?
391
960000
2000
所以,我们将会发现整个物理学吗?
16:17
I don't know for sure,
392
962000
2000
我不确定。
16:19
but I think at this point it's sort分类 of
393
964000
2000
但是我觉得现在
16:21
almost几乎 embarrassing尴尬 not to at least最小 try.
394
966000
2000
不去尝试的话真的是令人羞愧的。
16:23
Not an easy简单 project项目.
395
968000
2000
虽然这不是件简单的事。
16:25
One's那些 got to build建立 a lot of technology技术.
396
970000
2000
一方面要发展技术
16:27
One's那些 got to build建立 a structure结构体 that's probably大概
397
972000
2000
一方面要建立架构
16:29
at least最小 as deep as existing现有 physics物理.
398
974000
2000
这架构至少要达到现有物理学的深度。
16:31
And I'm not sure what the best最好 way to organize组织 the whole整个 thing is.
399
976000
3000
而且,我不确定去整合整件事情最好的方法是什么。
16:34
Build建立 a team球队, open打开 it up, offer提供 prizes奖品 and so on.
400
979000
3000
建立一个团队,运营它,还是提供奖励等等。
16:37
But I'll tell you, here today今天,
401
982000
2000
但是,我今天要告诉你
16:39
that I'm committed提交 to seeing眼看 this project项目 doneDONE,
402
984000
2000
我要把这个项目做完,
16:41
to see if, within this decade,
403
986000
3000
要看看在这10年内
16:44
we can finally最后 hold保持 in our hands
404
989000
2000
我们是否最终可以掌握
16:46
the rule规则 for our universe宇宙
405
991000
2000
我们宇宙的规则
16:48
and know where our universe宇宙 lies
406
993000
2000
并且知道我们宇宙在
16:50
in the space空间 of all possible可能 universes宇宙 ...
407
995000
2000
所有可能的宇宙空间的位置
16:52
and be able能够 to type类型 into Wolfram AlphaΑ, "the theory理论 of the universe宇宙,"
408
997000
3000
并且,能够在Wolfram Alpha中输入“宇宙理论”
16:55
and have it tell us.
409
1000000
2000
让它告诉我们结果。
16:57
(Laughter笑声)
410
1002000
2000
(笑声)
17:00
So I've been working加工 on the idea理念 of computation计算
411
1005000
2000
我已经在计算的这个想法上做了
17:02
now for more than 30 years年份,
412
1007000
2000
超过30年了研究
17:04
building建造 tools工具 and methods方法 and turning车削 intellectual知识分子 ideas思路
413
1009000
3000
打造工具,创立方法,将专业知识
17:07
into millions百万 of lines线 of code
414
1012000
2000
编写成数百万行的代码
17:09
and grist谷物 for server服务器 farms农场 and so on.
415
1014000
2000
在服务器中收获结果等等。
17:11
With every一切 passing通过 year,
416
1016000
2000
每过去一年
17:13
I realize实现 how much more powerful强大
417
1018000
2000
我都意识到
17:15
the idea理念 of computation计算 really is.
418
1020000
2000
计算的想法是多么的强大。
17:17
It's taken采取 us a long way already已经,
419
1022000
2000
它已引领我们走过很长一段路
17:19
but there's so much more to come.
420
1024000
2000
但是还有更多可以做的事情。
17:21
From the foundations基金会 of science科学
421
1026000
2000
从科学的根基
17:23
to the limits范围 of technology技术
422
1028000
2000
到技术的极限
17:25
to the very definition定义 of the human人的 condition条件,
423
1030000
2000
再到人类条件的定义,
17:27
I think computation计算 is destined注定 to be
424
1032000
2000
我觉得,计算注定
17:29
the defining确定 idea理念 of our future未来.
425
1034000
2000
是定义我们的未来的想法
17:31
Thank you.
426
1036000
2000
谢谢。
17:33
(Applause掌声)
427
1038000
14000
(鼓掌)
17:47
Chris克里斯 Anderson安德森: That was astonishing惊人.
428
1052000
2000
Chris Anderson(克里斯 安德森):太令人惊讶了。
17:49
Stay here. I've got a question.
429
1054000
2000
别走,我有问题。
17:51
(Applause掌声)
430
1056000
4000
(鼓掌)
17:57
So, that was, fair公平 to say, an astonishing惊人 talk.
431
1062000
3000
说实在的,那真的是很惊人的演讲。
18:01
Are you able能够 to say in a sentence句子 or two
432
1066000
3000
您能用一两句话概括
18:04
how this type类型 of thinking思维
433
1069000
3000
这种思考方式如何
18:07
could integrate整合 at some point
434
1072000
2000
能在某些点上整合
18:09
to things like string theory理论 or the kind of things that people think of
435
1074000
2000
一些如弦论或者
18:11
as the fundamental基本的 explanations说明 of the universe宇宙?
436
1076000
3000
人们在思考的一些关于根本宇宙解释的问题?
18:14
Stephen斯蒂芬 Wolfram: Well, the parts部分 of physics物理
437
1079000
2000
Stephen Wolfram(斯蒂芬.沃尔夫勒姆):好的。
18:16
that we kind of know to be true真正,
438
1081000
2000
那部分我们视作真理的物理学
18:18
things like the standard标准 model模型 of physics物理:
439
1083000
2000
就像标准物理模型
18:20
what I'm trying to do better reproduce复制 the standard标准 model模型 of physics物理
440
1085000
3000
我尝试做得更好的是再现标准物理模型
18:23
or it's simply只是 wrong错误.
441
1088000
2000
或者说明它是错的。
18:25
The things that people have tried试着 to do in the last 25 years年份 or so
442
1090000
2000
人们在近25年里已尝试的事情
18:27
with string theory理论 and so on
443
1092000
2000
有关弦论等等
18:29
have been an interesting有趣 exploration勘探
444
1094000
2000
都是非常有趣的探索
18:31
that has tried试着 to get back to the standard标准 model模型,
445
1096000
3000
这些探索已经尝试回到标准模型,
18:34
but hasn't有没有 quite相当 gotten得到 there.
446
1099000
2000
却还不能到那一步。
18:36
My guess猜测 is that some great simplifications简化 of what I'm doing
447
1101000
3000
我猜我的研究中的一些极端简化
18:39
may可能 actually其实 have considerable大量 resonance谐振
448
1104000
3000
可能和弦论中的某些研究
18:42
with what's been doneDONE in string theory理论,
449
1107000
2000
有相当的相似度
18:44
but that's a complicated复杂 math数学 thing
450
1109000
3000
不过,那是复杂的数学
18:47
that I don't yet然而 know how it's going to work out.
451
1112000
3000
我还不知道有些是怎么回事情。
18:50
CACA: Benoit伯努瓦 Mandelbrot曼德尔布罗 is in the audience听众.
452
1115000
2000
克里斯 安德森: Benoit Mandlebrot也在观众席中。
18:52
He also has shown显示 how complexity复杂
453
1117000
2000
他也展示了如何复杂
18:54
can arise出现 out of a simple简单 start开始.
454
1119000
2000
可以从简单的初始状态演化过来。
18:56
Does your work relate涉及 to his?
455
1121000
2000
这和你的研究相关吗?
18:58
SWSW: I think so.
456
1123000
2000
史蒂芬:我觉得有。
19:00
I view视图 Benoit伯努瓦 Mandelbrot's曼德尔布罗的 work
457
1125000
2000
我看过Benoit Mandlebrot的研究,
19:02
as one of the founding创建 contributions捐款
458
1127000
3000
觉得像这个领域的
19:05
to this kind of area.
459
1130000
3000
基础贡献
19:08
Benoit伯努瓦 has been particularly尤其 interested有兴趣
460
1133000
2000
Benoit致力于
19:10
in nested嵌套 patterns模式, in fractals分形 and so on,
461
1135000
2000
复杂图样,分型等等的研究,
19:12
where the structure结构体 is something
462
1137000
2000
在那些方面,结构就像
19:14
that's kind of tree-like树状,
463
1139000
2000
树型之类的东西,
19:16
and where there's sort分类 of a big branch that makes品牌 little branches分支机构
464
1141000
2000
有大分支,能产生小分支
19:18
and even smaller branches分支机构 and so on.
465
1143000
3000
和更小分支
19:21
That's one of the ways方法
466
1146000
2000
那也是一种方法
19:23
that you get towards true真正 complexity复杂.
467
1148000
3000
来到达真正的复杂。
19:26
I think things like the Rule规则 30 cellular细胞的 automaton自动机
468
1151000
3000
我觉得像30号规则的单元自动机
19:29
get us to a different不同 level水平.
469
1154000
2000
将我们带到了不同的水平上。
19:31
In fact事实, in a very precise精确 way, they get us to a different不同 level水平
470
1156000
3000
事实上,更精确地说,它能将我们带到不同的水平
19:34
because they seem似乎 to be things that are
471
1159000
2000
因为他们看似能够
19:37
capable of complexity复杂
472
1162000
3000
达到复杂状态
19:40
that's sort分类 of as great as complexity复杂 can ever get ...
473
1165000
3000
这种复杂是前所未有的...
19:44
I could go on about this at great length长度, but I won't惯于. (Laughter笑声) (Applause掌声)
474
1169000
3000
我可以持续不断地讲下去,但是我不打算去做。
19:47
CACA: Stephen斯蒂芬 Wolfram, thank you.
475
1172000
2000
克里斯:史蒂芬,谢谢你。
19:49
(Applause掌声)
476
1174000
2000
(鼓掌)
Translated by Hao Li
Reviewed by Vivian Lee

▲Back to top

ABOUT THE SPEAKER
Stephen Wolfram - Scientist, inventor
Stephen Wolfram is the creator of Mathematica and Wolfram|Alpha, the author of A New Kind of Science, and the founder and CEO of Wolfram Research.

Why you should listen

Stephen Wolfram published his first scientific paper at the age of 15, and received his PhD in theoretical physics from Caltech by the age of 20. Having started to use computers in 1973, Wolfram rapidly became a leader in the emerging field of scientific computing.

In 1981 Wolfram became the youngest recipient of a MacArthur Prize Fellowship. He then set out on an ambitious new direction in science aimed at understanding the origins of complexity in nature. Wolfram's first key idea was to use computer experiments to study the behavior of simple computer programs known as cellular automata. This allowed him to make a series of startling discoveries about the origins of complexity.

Wolfram founded the first research center and the first journal in the field, Complex Systems, and began the development of Mathematica. Wolfram Research soon became a world leader in the software industry -- widely recognized for excellence in both technology and business.

Following the release of Mathematica Version 2 in 1991, Wolfram began to divide his time between Mathematica development and scientific research. Building on his work from the mid-1980s, and now with Mathematica as a tool, Wolfram made a rapid succession of major new discoveries, which he described in his book, A New Kind of Science.

Building on Mathematica, A New Kind of Science, and the success of Wolfram Research, Wolfram recently launched Wolfram|Alpha -- an ambitious, long-term project to make as much of the world's knowledge as possible computable, and accessible to everyone.

More profile about the speaker
Stephen Wolfram | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee