ABOUT THE SPEAKER
Stephen Wolfram - Scientist, inventor
Stephen Wolfram is the creator of Mathematica and Wolfram|Alpha, the author of A New Kind of Science, and the founder and CEO of Wolfram Research.

Why you should listen

Stephen Wolfram published his first scientific paper at the age of 15, and received his PhD in theoretical physics from Caltech by the age of 20. Having started to use computers in 1973, Wolfram rapidly became a leader in the emerging field of scientific computing.

In 1981 Wolfram became the youngest recipient of a MacArthur Prize Fellowship. He then set out on an ambitious new direction in science aimed at understanding the origins of complexity in nature. Wolfram's first key idea was to use computer experiments to study the behavior of simple computer programs known as cellular automata. This allowed him to make a series of startling discoveries about the origins of complexity.

Wolfram founded the first research center and the first journal in the field, Complex Systems, and began the development of Mathematica. Wolfram Research soon became a world leader in the software industry -- widely recognized for excellence in both technology and business.

Following the release of Mathematica Version 2 in 1991, Wolfram began to divide his time between Mathematica development and scientific research. Building on his work from the mid-1980s, and now with Mathematica as a tool, Wolfram made a rapid succession of major new discoveries, which he described in his book, A New Kind of Science.

Building on Mathematica, A New Kind of Science, and the success of Wolfram Research, Wolfram recently launched Wolfram|Alpha -- an ambitious, long-term project to make as much of the world's knowledge as possible computable, and accessible to everyone.

More profile about the speaker
Stephen Wolfram | Speaker | TED.com
TED2010

Stephen Wolfram: Computing a theory of all knowledge

史蒂芬•沃夫朗:計算一切的理論

Filmed:
1,811,819 views

史蒂芬•沃夫朗是Mathematica的創始人,他所談的是關於他探究如何讓所有的知識都可計算-可搜尋,可處理,也可操控-的追尋之路。他的Wolfram Alpha搜索引擎之最終目的無非在於建構一個模型,可用來解說宇宙奠基的物理原則。
- Scientist, inventor
Stephen Wolfram is the creator of Mathematica and Wolfram|Alpha, the author of A New Kind of Science, and the founder and CEO of Wolfram Research. Full bio

Double-click the English transcript below to play the video.

00:16
So I want to talk today今天 about an idea理念. It's a big idea理念.
0
1000
3000
我今天要談的是一個想法,很大的想法
00:19
Actually其實, I think it'll它會 eventually終於
1
4000
2000
其實我認為這個想法
00:21
be seen看到 as probably大概 the single biggest最大 idea理念
2
6000
2000
終究會被視爲上個世紀
00:23
that's emerged出現 in the past過去 century世紀.
3
8000
2000
最具有意義的想法
00:25
It's the idea理念 of computation計算.
4
10000
2000
那就是計算的想法
00:27
Now, of course課程, that idea理念 has brought us
5
12000
2000
當然,這想法已為我們帶來
00:29
all of the computer電腦 technology技術 we have today今天 and so on.
6
14000
3000
今日電腦科技上所有的成就等等
00:32
But there's actually其實 a lot more to computation計算 than that.
7
17000
3000
但計算的想法其實並不止這些
00:35
It's really a very deep, very powerful強大, very fundamental基本的 idea理念,
8
20000
3000
它實在很深入、很強又很基本
00:38
whose誰的 effects效果 we've我們已經 only just begun開始 to see.
9
23000
3000
我們才剛開始明白它的效應
00:41
Well, I myself have spent花費 the past過去 30 years年份 of my life
10
26000
3000
我自己過去30年來
00:44
working加工 on three large projects項目
11
29000
2000
進行了三個大型計劃
00:46
that really try to take the idea理念 of computation計算 seriously認真地.
12
31000
3000
認真研究關於計算的想法
00:50
So I started開始 off at a young年輕 age年齡 as a physicist物理學家
13
35000
3000
早年我是物理學家
00:53
using運用 computers電腦 as tools工具.
14
38000
2000
把電腦當作工具使用
00:55
Then, I started開始 drilling鑽孔 down,
15
40000
2000
然後開始深入這個領域
00:57
thinking思維 about the computations計算 I might威力 want to do,
16
42000
2000
思考我想做的計算
00:59
trying to figure數字 out what primitives原語 they could be built內置 up from
17
44000
3000
試圖找出建構那些計算的基本要素
01:02
and how they could be automated自動化 as much as possible可能.
18
47000
3000
以及如何盡量自動化那些計算
01:05
Eventually終於, I created創建 a whole整個 structure結構體
19
50000
2000
最後我創造出一個完整的架構
01:07
based基於 on symbolic象徵 programming程序設計 and so on
20
52000
2000
建構在符號程式設計等等之上
01:09
that let me build建立 Mathematica數學.
21
54000
2000
這讓我建構了Mathematica
01:11
And for the past過去 23 years年份, at an increasing增加 rate,
22
56000
2000
其後23年來加快速度
01:13
we've我們已經 been pouring澆注 more and more ideas思路
23
58000
2000
將越來越多的想法和産能
01:15
and capabilities功能 and so on into Mathematica數學,
24
60000
2000
注入Mathematica
01:17
and I'm happy快樂 to say that that's led to many許多 good things
25
62000
3000
我很高興能說許多好東西由此産生
01:20
in R & D and education教育,
26
65000
2000
應用到研發和教育方面
01:22
lots of other areas.
27
67000
2000
以及其他許多領域上
01:24
Well, I have to admit承認, actually其實,
28
69000
2000
我必須承認
01:26
that I also had a very selfish自私 reason原因 for building建造 Mathematica數學:
29
71000
3000
我建構Mathematica其實有個很自私的理由
01:29
I wanted to use it myself,
30
74000
2000
我自己想利用它
01:31
a bit like Galileo伽利略 got to use his telescope望遠鏡
31
76000
2000
有點像四百年前
01:33
400 years年份 ago.
32
78000
2000
伽利略利用他的望遠鏡那樣
01:35
But I wanted to look not at the astronomical天文 universe宇宙,
33
80000
3000
但我並不想觀察天文的宇宙
01:38
but at the computational計算 universe宇宙.
34
83000
3000
而是想觀察計算的宇宙
01:41
So we normally一般 think of programs程式 as being存在
35
86000
2000
通常我們認爲程式是
01:43
complicated複雜 things that we build建立
36
88000
2000
我們爲了特定的目的
01:45
for very specific具體 purposes目的.
37
90000
2000
所建構出來的複雜東西
01:47
But what about the space空間 of all possible可能 programs程式?
38
92000
3000
可是所有可能的程式之空間又如何呢?
01:50
Here's這裡的 a representation表示 of a really simple簡單 program程序.
39
95000
3000
這裡有個極簡單的程式之代表式
01:53
So, if we run this program程序,
40
98000
2000
如果跑這個程式
01:55
this is what we get.
41
100000
2000
得到的就是這個結果
01:57
Very simple簡單.
42
102000
2000
很簡單
01:59
So let's try changing改變 the rule規則
43
104000
2000
那麽稍稍改變
02:01
for this program程序 a little bit.
44
106000
2000
這個程式的規則
02:03
Now we get another另一個 result結果,
45
108000
2000
現在得到別的結果
02:05
still very simple簡單.
46
110000
2000
還是很簡單
02:07
Try changing改變 it again.
47
112000
3000
再改變一下看看
02:10
You get something a little bit more complicated複雜.
48
115000
2000
結果稍微複雜了一點
02:12
But if we keep running賽跑 this for a while,
49
117000
2000
但如果讓它再跑一陣子
02:14
we find out that although雖然 the pattern模式 we get is very intricate錯綜複雜,
50
119000
3000
結果看來雖然錯綜複雜
02:17
it has a very regular定期 structure結構體.
51
122000
3000
但具有很規律的結構
02:20
So the question is: Can anything else其他 happen發生?
52
125000
3000
那麼問題是:還能產生出別的東西嗎?
02:23
Well, we can do a little experiment實驗.
53
128000
2000
那麽來做個小小的實驗
02:25
Let's just do a little mathematical數學的 experiment實驗, try and find out.
54
130000
3000
小小的數學實驗-試試看就知道
02:29
Let's just run all possible可能 programs程式
55
134000
3000
我們來跑某種特殊類型
02:32
of the particular特定 type類型 that we're looking at.
56
137000
2000
可能的所有程式
02:34
They're called cellular細胞的 automata自動機.
57
139000
2000
此類程式叫細胞自動機
02:36
You can see a lot of diversity多樣 in the behavior行為 here.
58
141000
2000
這兒可看到許多不同的行爲表現
02:38
Most of them do very simple簡單 things,
59
143000
2000
大多只能做出很簡單的東西
02:40
but if you look along沿 all these different不同 pictures圖片,
60
145000
2000
但逐一檢視所有這些圖片
02:42
at rule規則 number 30,
61
147000
2000
在規則30上可以看到
02:44
you start開始 to see something interesting有趣 going on.
62
149000
2000
開始發生有趣的情況
02:46
So let's take a closer接近 look
63
151000
2000
那麼仔細看看
02:48
at rule規則 number 30 here.
64
153000
2000
在規則30這裡
02:50
So here it is.
65
155000
2000
就在這裡
02:52
We're just following以下 this very simple簡單 rule規則 at the bottom底部 here,
66
157000
3000
程式跑的是底下這個很簡單的規則
02:55
but we're getting得到 all this amazing驚人 stuff東東.
67
160000
2000
得到的可是如此驚人的東西
02:57
It's not at all what we're used to,
68
162000
2000
這不是平常看得到的東西
02:59
and I must必須 say that, when I first saw this,
69
164000
2000
我必須說我第一次看到時
03:01
it came來了 as a huge巨大 shock休克 to my intuition直覺.
70
166000
3000
它對我的直覺造成很大的震撼
03:04
And, in fact事實, to understand理解 it,
71
169000
2000
事實上要理解這東西
03:06
I eventually終於 had to create創建
72
171000
2000
我最後不得不
03:08
a whole整個 new kind of science科學.
73
173000
2000
創造一個嶄新的科學
03:11
(Laughter笑聲)
74
176000
2000
(笑聲)
03:13
This science科學 is different不同, more general一般,
75
178000
3000
這個科學如果有所不同
03:16
than the mathematics-based數學基礎 science科學 that we've我們已經 had
76
181000
2000
那就是比起我們300年來
03:18
for the past過去 300 or so years年份.
77
183000
3000
在數學基礎上建構的科學更為通泛
03:21
You know, it's always seemed似乎 like a big mystery神秘:
78
186000
2000
這向來有如謎團
03:23
how nature性質, seemingly似乎 so effortlessly毫不費力,
79
188000
3000
大自然怎麼會如此輕鬆
03:26
manages管理 to produce生產 so much
80
191000
2000
自如地產出那麼多
03:28
that seems似乎 to us so complex複雜.
81
193000
3000
看來如此複雜的東西
03:31
Well, I think we've我們已經 found發現 its secret秘密:
82
196000
3000
我想我們已經找到其中的奧秘
03:34
It's just sampling採樣 what's out there in the computational計算 universe宇宙
83
199000
3000
只要在計算空間裡進行採樣
03:37
and quite相當 often經常 getting得到 things like Rule規則 30
84
202000
3000
往往就會找到像規則30
03:40
or like this.
85
205000
3000
那樣的東西或像這樣的東西
03:44
And knowing會心 that starts啟動 to explain說明
86
209000
2000
瞭解到這一點
03:46
a lot of long-standing由來已久 mysteries奧秘 in science科學.
87
211000
3000
便可開始解釋許多長久以來的科學謎題
03:49
It also brings帶來 up new issues問題, though雖然,
88
214000
2000
但這也帶來新的問題
03:51
like computational計算 irreducibility不可約.
89
216000
3000
比方說計算上的不可分解性
03:54
I mean, we're used to having science科學 let us predict預測 things,
90
219000
3000
我是說我們向來利用科學做預測
03:57
but something like this
91
222000
2000
但是像這樣的東西
03:59
is fundamentally從根本上 irreducible束縛.
92
224000
2000
基本上是不可分解的
04:01
The only way to find its outcome結果
93
226000
2000
要看到結果的唯一辦法
04:03
is, effectively有效, just to watch it evolve發展.
94
228000
3000
只能是看著它演化下去
04:06
It's connected連接的 to, what I call,
95
231000
2000
它關係到我稱為
04:08
the principle原理 of computational計算 equivalence等價,
96
233000
2000
「計算的等價」這個原則:
04:10
which哪一個 tells告訴 us that even incredibly令人難以置信 simple簡單 systems系統
97
235000
3000
也就是,即便是極其簡單的系統
04:13
can do computations計算 as sophisticated複雜的 as anything.
98
238000
3000
也能做出極其複雜的計算
04:16
It doesn't take lots of technology技術 or biological生物 evolution演化
99
241000
3000
並不需要許多生物演化科技
04:19
to be able能夠 to do arbitrary隨意 computation計算;
100
244000
2000
方能進行任意無常的計算
04:21
just something that happens發生, naturally自然,
101
246000
2000
就這樣自自然然地
04:23
all over the place地點.
102
248000
2000
到處發生了
04:25
Things with rules規則 as simple簡單 as these can do it.
103
250000
3000
具有這麼簡單規則的東西就行了
04:29
Well, this has deep implications啟示
104
254000
2000
這對於科學的極限
04:31
about the limits範圍 of science科學,
105
256000
2000
具有深沉的暗示意涵
04:33
about predictability預測 and controllability可控性
106
258000
2000
對於像是生物演化過程
04:35
of things like biological生物 processes流程 or economies經濟,
107
260000
3000
或經濟的可預測及可控制性
04:38
about intelligence情報 in the universe宇宙,
108
263000
2000
對於宇宙中的智識
04:40
about questions問題 like free自由 will
109
265000
2000
對於自由意志問題
04:42
and about creating創建 technology技術.
110
267000
3000
以及對科技的創造都有暗示意涵
04:45
You know, in working加工 on this science科學 for many許多 years年份,
111
270000
2000
研究這門科學多年
04:47
I kept不停 wondering想知道,
112
272000
2000
我始終有個異想
04:49
"What will be its first killer兇手 app應用?"
113
274000
2000
應用這門科學能有何等驚人之舉?
04:51
Well, ever since以來 I was a kid孩子,
114
276000
2000
打從孩提時代開始
04:53
I'd been thinking思維 about systematizing系統化 knowledge知識
115
278000
2000
我便想把知識系統化
04:55
and somehow不知何故 making製造 it computable可計算.
116
280000
2000
將它化為可計算
04:57
People like Leibniz萊布尼茨 had wondered想知道 about that too
117
282000
2000
三百年前
04:59
300 years年份 earlier.
118
284000
2000
萊布尼茲也有這個異想
05:01
But I'd always assumed假定 that to make progress進展,
119
286000
2000
但我原來的假設若要得到進展
05:03
I'd essentially實質上 have to replicate複製 a whole整個 brain.
120
288000
3000
那根本就必須複製整個大腦
05:06
Well, then I got to thinking思維:
121
291000
2000
我現在的想法是
05:08
This scientific科學 paradigm範例 of mine suggests提示 something different不同 --
122
293000
3000
我這個科學思維隱含著不同的東西
05:11
and, by the way, I've now got
123
296000
2000
另外順道一提
05:13
huge巨大 computation計算 capabilities功能 in Mathematica數學,
124
298000
3000
Mathematica現在具有龐大的計算能力
05:16
and I'm a CEOCEO with some worldly世俗 resources資源
125
301000
3000
我是執行長,擁有世界上的一些資源
05:19
to do large, seemingly似乎 crazy, projects項目 --
126
304000
3000
可以用來進行看似瘋狂的大型計劃
05:22
So I decided決定 to just try to see
127
307000
2000
因此我決定試看看
05:24
how much of the systematic系統的 knowledge知識 that's out there in the world世界
128
309000
3000
外間世界到底有多少系統化的知識
05:27
we could make computable可計算.
129
312000
2000
可以被轉化成能夠計算
05:29
So, it's been a big, very complex複雜 project項目,
130
314000
2000
這是一個很複雜的大計劃
05:31
which哪一個 I was not sure was going to work at all.
131
316000
3000
我原本也不確定是否可行
05:34
But I'm happy快樂 to say it's actually其實 going really well.
132
319000
3000
不過我很高興這個計劃進行得不錯
05:37
And last year we were able能夠
133
322000
2000
去年我們已經達到可以
05:39
to release發布 the first website網站 version
134
324000
2000
公布第一個網站版的
05:41
of Wolfram AlphaΑ.
135
326000
2000
Wolfram Alpha
05:43
Its purpose目的 is to be a serious嚴重 knowledge知識 engine發動機
136
328000
3000
其目的是要成為嚴肅的知識引擎
05:46
that computes單位計算 answers答案 to questions問題.
137
331000
3000
能計算出解答,有求必應
05:49
So let's give it a try.
138
334000
2000
那麼我們來試試看
05:51
Let's start開始 off with something really easy簡單.
139
336000
2000
先從極為簡單的開始
05:53
Hope希望 for the best最好.
140
338000
2000
但願不會出糗
05:55
Very good. Okay.
141
340000
2000
很好,可以
05:57
So far so good.
142
342000
2000
到目前為止還順利
05:59
(Laughter笑聲)
143
344000
3000
(笑聲)
06:02
Let's try something a little bit harder更難.
144
347000
3000
再試一下稍微困難的
06:05
Let's do
145
350000
2000
那麼...
06:07
some mathymathy thing,
146
352000
3000
做點數學上的東西吧
06:10
and with luck運氣 it'll它會 work out the answer回答
147
355000
3000
運氣好的話會有解答
06:13
and try and tell us some interesting有趣 things
148
358000
2000
試試看能不能告訴我們一些有趣的東西
06:15
things about related有關 math數學.
149
360000
2000
關於與數學相關的東西
06:17
We could ask it something about the real真實 world世界.
150
362000
3000
我們可以提問真實世界的東西
06:20
Let's say -- I don't know --
151
365000
2000
比方說-隨便提問-
06:22
what's the GDPGDP of Spain西班牙?
152
367000
3000
西班牙的國內生產毛額是多少?
06:25
And it should be able能夠 to tell us that.
153
370000
2000
這應該還能告訴我們
06:27
Now we could compute計算 something related有關 to this,
154
372000
2000
也可以計算與此相關的東西
06:29
let's say ... the GDPGDP of Spain西班牙
155
374000
2000
比方說西班牙的國內生產毛額
06:31
divided分為 by, I don't know,
156
376000
2000
除以-隨便舉例-
06:33
the -- hmmm ...
157
378000
2000
嗯...就說
06:35
let's say the revenue收入 of Microsoft微軟.
158
380000
2000
除以微軟的營業額
06:37
(Laughter笑聲)
159
382000
2000
(笑聲)
06:39
The idea理念 is that we can just type類型 this in,
160
384000
2000
不管對問題有何想法
06:41
this kind of question in, however然而 we think of it.
161
386000
3000
重點是,想提什麼問題都可以輸入
06:44
So let's try asking a question,
162
389000
2000
那麼試試看提個問題
06:46
like a health健康 related有關 question.
163
391000
2000
比方說與醫療保健相關的問題
06:48
So let's say we have a lab實驗室 finding發現 that ...
164
393000
3000
那麼比方說化驗室發現
06:51
you know, we have an LDLLDL level水平 of 140
165
396000
2000
一位50歲男子
06:53
for a male aged 50.
166
398000
3000
低密度脂蛋白水平達140
06:56
So let's type類型 that in, and now Wolfram AlphaΑ
167
401000
2000
我們把這輸入Wolfram Alpha
06:58
will go and use available可得到 public上市 health健康 data數據
168
403000
2000
搜尋所有公共醫療的資料
07:00
and try and figure數字 out
169
405000
2000
然後嘗試弄清楚
07:02
what part部分 of the population人口 that corresponds對應 to and so on.
170
407000
3000
哪部分人口符合這個情況等等
07:05
Or let's try asking about, I don't know,
171
410000
3000
或是試試看-隨便舉例-
07:08
the International國際 Space空間 Station.
172
413000
2000
比方說國際太空站
07:10
And what's happening事件 here is that
173
415000
2000
這裡發生的是
07:12
Wolfram AlphaΑ is not just looking up something;
174
417000
2000
Wolfram Alpha不只查出東西
07:14
it's computing計算, in real真實 time,
175
419000
3000
還計算出,實時計算出
07:17
where the International國際 Space空間 Station is right now at this moment時刻,
176
422000
3000
太空站目前所在的位置,現在的位置
07:20
how fast快速 it's going, and so on.
177
425000
3000
你們看它計算得多快
07:24
So Wolfram AlphaΑ knows知道 about lots and lots of kinds of things.
178
429000
3000
Wolfram Alpha知道許許多多種東西
07:27
It's got, by now,
179
432000
2000
目前涵蓋已經相當廣泛
07:29
pretty漂亮 good coverage覆蓋 of everything you might威力 find
180
434000
2000
你可能查找的所有東西
07:31
in a standard標準 reference參考 library圖書館.
181
436000
3000
全都在標準的參考資料庫裡
07:34
But the goal目標 is to go much further進一步
182
439000
2000
但目標還在更遠的地方
07:36
and, very broadly寬廣地, to democratize民主化
183
441000
3000
而且更廣泛地說就是要
07:39
all of this knowledge知識,
184
444000
3000
民主化所有的這類知識
07:42
and to try and be an authoritative權威性
185
447000
2000
試圖在所有的領域中
07:44
source資源 in all areas.
186
449000
2000
成為權威
07:46
To be able能夠 to compute計算 answers答案 to specific具體 questions問題 that people have,
187
451000
3000
為人們所提的特定問題計算出解答
07:49
not by searching搜索 what other people
188
454000
2000
這並不是去搜尋
07:51
may可能 have written書面 down before,
189
456000
2000
別人寫過的東西
07:53
but by using運用 built內置 in knowledge知識
190
458000
2000
而是利用內建的知識
07:55
to compute計算 fresh新鮮 new answers答案 to specific具體 questions問題.
191
460000
3000
為特定的問題計算出嶄新的解答
07:58
Now, of course課程, Wolfram AlphaΑ
192
463000
2000
當然,Wolfram Alpha是一個
08:00
is a monumentally身世 huge巨大, long-term長期 project項目
193
465000
2000
龐然大物的長期計劃
08:02
with lots and lots of challenges挑戰.
194
467000
2000
會遭遇到許許多多的挑戰
08:04
For a start開始, one has to curate策劃 a zillion無數
195
469000
3000
首先必須張羅極大量的
08:07
different不同 sources來源 of facts事實 and data數據,
196
472000
3000
不同的事實與資料的來源
08:10
and we built內置 quite相當 a pipeline管道 of Mathematica數學 automation自動化
197
475000
3000
我們為Mathematica建構相當強大的自動化安排
08:13
and human人的 domain experts專家 for doing this.
198
478000
3000
還有人文領域的專家處理這方面問題
08:16
But that's just the beginning開始.
199
481000
2000
但這只是開始而已
08:18
Given特定 raw生的 facts事實 or data數據
200
483000
2000
有了原始事實或資料
08:20
to actually其實 answer回答 questions問題,
201
485000
2000
要真正回答問題
08:22
one has to compute計算:
202
487000
2000
還必須進行計算
08:24
one has to implement實行 all those methods方法 and models楷模
203
489000
2000
必須建構所有那些方法和模型
08:26
and algorithms算法 and so on
204
491000
2000
以及演算式等等
08:28
that science科學 and other areas have built內置 up over the centuries百年.
205
493000
3000
幾個世紀以來科學和其他領域所建構的東西
08:31
Well, even starting開始 from Mathematica數學,
206
496000
3000
即使以Mathematica為基礎開始
08:34
this is still a huge巨大 amount of work.
207
499000
2000
也還是很大量的工作
08:36
So far, there are about 8 million百萬 lines
208
501000
2000
至今約有八百萬行的
08:38
of Mathematica數學 code in Wolfram AlphaΑ
209
503000
2000
Mathematica編碼用在Wolfram Alpha裡
08:40
built內置 by experts專家 from many許多, many許多 different不同 fields領域.
210
505000
3000
由許許多多領域的專家所建構
08:43
Well, a crucial關鍵 idea理念 of Wolfram AlphaΑ
211
508000
3000
Wolfram Alpha有一個關鍵性的想法
08:46
is that you can just ask it questions問題
212
511000
2000
那就是你可以隨興
08:48
using運用 ordinary普通 human人的 language語言,
213
513000
3000
使用人類的語言提問
08:51
which哪一個 means手段 that we've我們已經 got to be able能夠 to take
214
516000
2000
那是說我們必須能夠解讀
08:53
all those strange奇怪 utterances話語 that people type類型 into the input輸入 field領域
215
518000
3000
人們輸入的所有那些奇怪的言語
08:56
and understand理解 them.
216
521000
2000
還要明白意思
08:58
And I must必須 say that I thought that step
217
523000
2000
我必須說我原本
09:00
might威力 just be plain impossible不可能.
218
525000
3000
以為可能無法做到那個地步
09:04
Two big things happened發生:
219
529000
2000
其間發生兩件重大的事
09:06
First, a bunch of new ideas思路 about linguistics語言學
220
531000
3000
第一件是在進行計算宇宙的研究中
09:09
that came來了 from studying研究 the computational計算 universe宇宙;
221
534000
3000
我們取得了大量語言學上的見解
09:12
and second第二, the realization實現 that having actual實際 computable可計算 knowledge知識
222
537000
3000
第二件是實現了
09:15
completely全然 changes變化 how one can
223
540000
2000
擁有實際可計算的知識
09:17
set about understanding理解 language語言.
224
542000
3000
便會徹底改變人對語言理解的態度
09:20
And, of course課程, now
225
545000
2000
當然,現在
09:22
with Wolfram AlphaΑ actually其實 out in the wild野生,
226
547000
2000
Wolfram Alpha已經問世了
09:24
we can learn學習 from its actual實際 usage用法.
227
549000
2000
我們能在實際使用中學習
09:26
And, in fact事實, there's been
228
551000
2000
在Wolfram Alpha
09:28
an interesting有趣 coevolution協同進化 that's been going on
229
553000
2000
及其人類使用者之間
09:30
between之間 Wolfram AlphaΑ
230
555000
2000
實際上存在著有趣的
09:32
and its human人的 users用戶,
231
557000
2000
相輔相成的互動演進
09:34
and it's really encouraging鼓舞人心的.
232
559000
2000
這很令人振奮
09:36
Right now, if we look at web捲筒紙 queries查詢,
233
561000
2000
若此時看網站上的查詢
09:38
more than 80 percent百分 of them get handled處理 successfully順利 the first time.
234
563000
3000
80%以上在首次查詢就順利得到解答
09:41
And if you look at things like the iPhone蘋果手機 app應用,
235
566000
2000
若再較之於Phone之類的應用
09:43
the fraction分數 is considerably相當 larger.
236
568000
2000
這個百分比已可說相當大了
09:45
So, I'm pretty漂亮 pleased滿意 with it all.
237
570000
2000
因此我對此感到相當欣慰
09:47
But, in many許多 ways方法,
238
572000
2000
不過在許多方面
09:49
we're still at the very beginning開始 with Wolfram AlphaΑ.
239
574000
3000
我們還在Wolfram Alpha的開端
09:52
I mean, everything is scaling縮放 up very nicely很好
240
577000
2000
我是說一切都在順利進展之中
09:54
and we're getting得到 more confident信心.
241
579000
2000
我們越來越有信心
09:56
You can expect期望 to see Wolfram AlphaΑ technology技術
242
581000
2000
Wolfram Alpha的科技指日可待
09:58
showing展示 up in more and more places地方,
243
583000
2000
會在越來越多的地方出現
10:00
working加工 both with this kind of public上市 data數據, like on the website網站,
244
585000
3000
利用像網站上的這類資料
10:03
and with private私人的 knowledge知識
245
588000
2000
也會利用私有的知識
10:05
for people and companies公司 and so on.
246
590000
3000
為個人和公司等等進行工作
10:08
You know, I've realized實現 that Wolfram AlphaΑ actually其實 gives one
247
593000
3000
我實現了讓Wolfram Alpha真正
10:11
a whole整個 new kind of computing計算
248
596000
2000
給人嶄新的一種計算
10:13
that one can call knowledge-based以知識為基礎 computing計算,
249
598000
2000
可稱之為以知識為基的計算
10:15
in which哪一個 one's那些 starting開始 not just from raw生的 computation計算,
250
600000
3000
這種計算不僅從原始的計算開始
10:18
but from a vast廣大 amount of built-in內建的 knowledge知識.
251
603000
3000
也從大量的內建知識開始進行
10:21
And when one does that, one really changes變化
252
606000
2000
若是如此則會實際改變
10:23
the economics經濟學 of delivering交付 computational計算 things,
253
608000
3000
計算結果交付的經濟表現
10:26
whether是否 it's on the web捲筒紙 or elsewhere別處.
254
611000
2000
無論是在網上或在其它地方
10:28
You know, we have a fairly相當 interesting有趣 situation情況 right now.
255
613000
3000
各位知道,我們目前有一個蠻有趣的情況
10:31
On the one hand, we have Mathematica數學,
256
616000
2000
在一方面,我們有Mathematica
10:33
with its sort分類 of precise精確, formal正式 language語言
257
618000
3000
它使用精確的形式語言
10:36
and a huge巨大 network網絡
258
621000
2000
還有一個龐大的網絡
10:38
of carefully小心 designed設計 capabilities功能
259
623000
2000
具有經過仔細設計的能力
10:40
able能夠 to get a lot doneDONE in just a few少數 lines.
260
625000
3000
能在極少行的編碼內做許多事
10:43
Let me show顯示 you a couple一對 of examples例子 here.
261
628000
3000
讓大家看這裡的幾個例子
10:47
So here's這裡的 a trivial不重要的 piece of Mathematica數學 programming程序設計.
262
632000
3000
這是Mathematica的一個趣味雅程式設計
10:51
Here's這裡的 something where we're sort分類 of
263
636000
2000
在這裡頭可以說
10:53
integrating整合 a bunch of different不同 capabilities功能 here.
264
638000
3000
我們融入了許多不同的能力
10:56
Here we'll just create創建, in this line,
265
641000
3000
就在這行編碼裡,我們創造了一個
10:59
a little user用戶 interface接口 that allows允許 us to
266
644000
3000
小小的使用者介面,讓我們能做出
11:02
do something fun開玩笑 there.
267
647000
2000
一點好玩的事
11:05
If you go on, that's a slightly more complicated複雜 program程序
268
650000
2000
若再仔細看看,那是稍微
11:07
that's now doing all sorts排序 of algorithmic算法 things
269
652000
3000
複雜些的程式-用來處理所有的演算
11:10
and creating創建 user用戶 interface接口 and so on.
270
655000
2000
並用來建構使用者介面等等
11:12
But it's something that is very precise精確 stuff東東.
271
657000
3000
但它是很精確的東西
11:15
It's a precise精確 specification規範 with a precise精確 formal正式 language語言
272
660000
3000
是一個用精確形式語言表達的精確指示
11:18
that causes原因 Mathematica數學 to know what to do here.
273
663000
3000
讓Mathematica知道在此該做什麼
11:21
Then on the other hand, we have Wolfram AlphaΑ,
274
666000
3000
然後在另一方面,我們有Wolfram Alpha
11:24
with all the messiness雜亂 of the world世界
275
669000
2000
內建了世上的各式各樣紛亂
11:26
and human人的 language語言 and so on built內置 into it.
276
671000
2000
以及人類語言等等
11:28
So what happens發生 when you put these things together一起?
277
673000
3000
那麼把這些東西放在一起會發生什麼呢?
11:31
I think it's actually其實 rather wonderful精彩.
278
676000
2000
我認為這其實是很美妙的
11:33
With Wolfram AlphaΑ inside Mathematica數學,
279
678000
2000
把Wolfram Alpha放到Mathematica裡
11:35
you can, for example, make precise精確 programs程式
280
680000
2000
就能做出精確的程式-比方說-
11:37
that call on real真實 world世界 data數據.
281
682000
2000
用來調用真實世界的資料
11:39
Here's這裡的 a real真實 simple簡單 example.
282
684000
2000
這兒有個簡單的實例
11:44
You can also just sort分類 of give vague模糊 input輸入
283
689000
3000
這可以輸入不清晰的表述
11:47
and then try and have Wolfram AlphaΑ
284
692000
2000
然後嘗試讓Wolfram Alpha
11:49
figure數字 out what you're talking about.
285
694000
2000
弄清楚你說的是什麼
11:51
Let's try this here.
286
696000
2000
試試看這個
11:53
But actually其實 I think the most exciting扣人心弦 thing about this
287
698000
3000
但其實我認為在這頂上最令人興奮的
11:56
is that it really gives one the chance機會
288
701000
2000
是它真的給予
11:58
to democratize民主化 programming程序設計.
289
703000
3000
程式設計一個民主化的機會
12:01
I mean, anyone任何人 will be able能夠 to say what they want in plain language語言.
290
706000
3000
我是說誰都可用平常語言說出他們所要的
12:04
Then, the idea理念 is that Wolfram AlphaΑ will be able能夠 to figure數字 out
291
709000
3000
然後-我們的想法是-Wolfram Alpha就能弄清楚
12:07
what precise精確 pieces of code
292
712000
2000
確實是哪一段編碼
12:09
can do what they're asking for
293
714000
2000
能做到被要求做到的事情
12:11
and then show顯示 them examples例子 that will let them pick what they need
294
716000
3000
然後舉例讓使用者選擇他們所要的
12:14
to build建立 up bigger and bigger, precise精確 programs程式.
295
719000
3000
以便逐步建構越來越大的精確程式
12:17
So, sometimes有時, Wolfram AlphaΑ
296
722000
2000
那麼,有時Wolfram Alpha
12:19
will be able能夠 to do the whole整個 thing immediately立即
297
724000
2000
可能馬上什麼都做好了
12:21
and just give back a whole整個 big program程序 that you can then compute計算 with.
298
726000
3000
回應出整個能用來計算的大型程式
12:24
Here's這裡的 a big website網站
299
729000
2000
那麼,這兒是個大網站
12:26
where we've我們已經 been collecting蒐集 lots of educational教育性
300
731000
3000
我們在這兒一直收集著許多教育性質的
12:29
and other demonstrations示威 about lots of kinds of things.
301
734000
3000
和其它許許多多種東西的示範
12:32
I'll show顯示 you one example here.
302
737000
3000
那麼-隨便舉個例子-就這個好了
12:36
This is just an example of one of these computable可計算 documents文件.
303
741000
3000
這只是可計算之文件例子中的一個
12:39
This is probably大概 a fairly相當 small
304
744000
2000
這可能是一段相當短的
12:41
piece of Mathematica數學 code
305
746000
2000
能放在這兒跑的
12:43
that's able能夠 to be run here.
306
748000
2000
Mathematica編碼
12:47
Okay. Let's zoom放大 out again.
307
752000
3000
好,把它縮小吧
12:50
So, given特定 our new kind of science科學,
308
755000
2000
那麼,有了的新科學
12:52
is there a general一般 way to use it to make technology技術?
309
757000
3000
就會有通泛的方法來建構科技嗎?
12:55
So, with physical物理 materials物料,
310
760000
2000
那麼,我們一向利用
12:57
we're used to going around the world世界
311
762000
2000
物理材料來處理事物
12:59
and discovering發現 that particular特定 materials物料
312
764000
2000
然後發現特殊的材料
13:01
are useful有用 for particular特定
313
766000
2000
有助於達到
13:03
technological技術性 purposes目的.
314
768000
2000
特殊的科技目的等等
13:05
Well, it turns out we can do very much the same相同 kind of thing
315
770000
2000
結果發現在計算的空間裡
13:07
in the computational計算 universe宇宙.
316
772000
2000
我們也可以做到同樣的事
13:09
There's an inexhaustible取之不盡,用之不竭 supply供應 of programs程式 out there.
317
774000
3000
那兒有取之不盡、用之不竭的程式
13:12
The challenge挑戰 is to see how to
318
777000
2000
挑戰則在於如何駕馭它們
13:14
harness馬俱 them for human人的 purposes目的.
319
779000
2000
以達到人想要達到的目的
13:16
Something like Rule規則 30, for example,
320
781000
2000
比方說規則30這樣的東西
13:18
turns out to be a really good randomness隨機性 generator發電機.
321
783000
2000
真是個不錯的隨機產生器
13:20
Other simple簡單 programs程式 are good models楷模
322
785000
2000
其它簡單的程式是不錯的模型
13:22
for processes流程 in the natural自然 or social社會 world世界.
323
787000
3000
用於處理自然世界或社群生活的事物
13:25
And, for example, Wolfram AlphaΑ and Mathematica數學
324
790000
2000
又比方說Wolfram Alpha和Mathematica
13:27
are actually其實 now full充分 of algorithms算法
325
792000
2000
現今已充滿著演算式
13:29
that we discovered發現 by searching搜索 the computational計算 universe宇宙.
326
794000
3000
都是在計算空間裡搜尋得來的
13:33
And, for example, this -- if we go back here --
327
798000
3000
又比方說這個-我們回到這兒-
13:37
this has become成為 surprisingly出奇 popular流行
328
802000
2000
這個在作曲者之間
13:39
among其中 composers作曲家
329
804000
2000
已經意外地大受歡迎
13:41
finding發現 musical音樂 forms形式 by searching搜索 the computational計算 universe宇宙.
330
806000
3000
搜尋計算空間,以便找到音樂形式
13:45
In a sense, we can use the computational計算 universe宇宙
331
810000
2000
在某種意義上是
13:47
to get mass customized定制 creativity創造力.
332
812000
3000
利用計算空間取得大量客製化的創造力
13:50
I'm hoping希望 we can, for example,
333
815000
2000
我希望甚至能夠-比方說-
13:52
use that even to get Wolfram AlphaΑ
334
817000
2000
利用它使Wolfram Alpha
13:54
to routinely常規 do invention發明 and discovery發現 on the fly,
335
819000
3000
能利用套式快速地進行發明與發現
13:57
and to find all sorts排序 of wonderful精彩 stuff東東
336
822000
2000
並找到各種美妙的事物
13:59
that no engineer工程師
337
824000
2000
這不是任何工程師
14:01
and no process處理 of incremental增加的 evolution演化 would ever come up with.
338
826000
3000
任何逐步演化的流程所能做到的
14:05
Well, so, that leads引線 to kind of an ultimate最終 question:
339
830000
3000
那麼,最終的問題是:
14:08
Could it be that someplace某個地方 out there in the computational計算 universe宇宙
340
833000
3000
我們有可能在計算空間的某處
14:11
we might威力 find our physical物理 universe宇宙?
341
836000
3000
找到我們的物理宇宙嗎?
14:14
Perhaps也許 there's even some quite相當 simple簡單 rule規則,
342
839000
2000
也許我們的宇宙甚至有
14:16
some simple簡單 program程序 for our universe宇宙.
343
841000
3000
某種相當簡單的規則、相當簡單的程式
14:19
Well, the history歷史 of physics物理 would have us believe
344
844000
2000
然而,物理的歷史讓我們
14:21
that the rule規則 for the universe宇宙 must必須 be pretty漂亮 complicated複雜.
345
846000
3000
以為宇宙的規則肯定是相當複雜的
14:24
But in the computational計算 universe宇宙,
346
849000
2000
但在計算的空間裡
14:26
we've我們已經 now seen看到 how rules規則 that are incredibly令人難以置信 simple簡單
347
851000
3000
我們已經看到簡單得難以置信的規則
14:29
can produce生產 incredibly令人難以置信 rich豐富 and complex複雜 behavior行為.
348
854000
3000
也能產出難以置信的豐富又複雜的行為
14:32
So could that be what's going on with our whole整個 universe宇宙?
349
857000
3000
我們整個宇宙莫非不也是如此產生的嗎?
14:36
If the rules規則 for the universe宇宙 are simple簡單,
350
861000
2000
如果宇宙的規則是簡單的
14:38
it's kind of inevitable必然 that they have to be
351
863000
2000
那麼無可避免地必須是
14:40
very abstract抽象 and very low level水平;
352
865000
2000
很抽象也很低層次的規則
14:42
operating操作, for example, far below下面
353
867000
2000
操作在-例如-遠低於
14:44
the level水平 of space空間 or time,
354
869000
2000
空間或時間的層次之下
14:46
which哪一個 makes品牌 it hard to represent代表 things.
355
871000
2000
這使得事物不容易表示
14:48
But in at least最小 a large class of cases,
356
873000
2000
但至少在某大類的情況下
14:50
one can think of the universe宇宙 as being存在
357
875000
2000
可以把宇宙想像為
14:52
like some kind of network網絡,
358
877000
2000
像是某種網絡那樣的東西
14:54
which哪一個, when it gets得到 big enough足夠,
359
879000
2000
只要大到足夠的程度
14:56
behaves的行為 like continuous連續 space空間
360
881000
2000
其表現就會像是連綿的空間
14:58
in much the same相同 way as having lots of molecules分子
361
883000
2000
如同許多分子聚合在一起
15:00
can behave表現 like a continuous連續 fluid流體.
362
885000
2000
就會表現得像是不間斷的流體
15:02
Well, then the universe宇宙 has to evolve發展 by applying應用
363
887000
3000
那麼,宇宙的演進必須通過
15:05
little rules規則 that progressively逐步 update更新 this network網絡.
364
890000
3000
應用小小的規則逐步更新這個網絡
15:08
And each possible可能 rule規則, in a sense,
365
893000
2000
而每個可能的規則,某種意義上
15:10
corresponds對應 to a candidate候選人 universe宇宙.
366
895000
2000
相當於一個候選的宇宙
15:12
Actually其實, I haven't沒有 shown顯示 these before,
367
897000
3000
其實,我以前還沒有展示過這些
15:16
but here are a few少數 of the candidate候選人 universes宇宙
368
901000
3000
不過請看我已經檢視過的
15:19
that I've looked看著 at.
369
904000
2000
這一些候選的宇宙
15:21
Some of these are hopeless絕望 universes宇宙,
370
906000
2000
這些宇宙中有些毫無發展希望
15:23
completely全然 sterile無菌,
371
908000
2000
完全沒有繁衍能力
15:25
with other kinds of pathologies病理 like no notion概念 of space空間,
372
910000
2000
因為帶有他類的病因:
15:27
no notion概念 of time, no matter,
373
912000
3000
不具備空間或時間概念
15:30
other problems問題 like that.
374
915000
2000
不含有物質、其它問題等等
15:32
But the exciting扣人心弦 thing that I've found發現 in the last few少數 years年份
375
917000
3000
但我最近幾年發現最令人興奮的是
15:35
is that you actually其實 don't have to go very far
376
920000
2000
是:其實不必深遠
15:37
in the computational計算 universe宇宙
377
922000
2000
進入計算的空間
15:39
before you start開始 finding發現 candidate候選人 universes宇宙
378
924000
2000
便會開始找到一些候選的宇宙
15:41
that aren't obviously明顯 not our universe宇宙.
379
926000
3000
它們並不顯然不是我們的宇宙
15:44
Here's這裡的 the problem問題:
380
929000
2000
這裡有個問題:
15:46
Any serious嚴重 candidate候選人 for our universe宇宙
381
931000
3000
任何可嚴重考慮為我們的宇宙之候選者
15:49
is inevitably必將 full充分 of computational計算 irreducibility不可約.
382
934000
3000
無可避免地會充滿計算上的不可分解性
15:52
Which哪一個 means手段 that it is irreducibly不可還原 difficult
383
937000
3000
即是要弄清楚它的行為確切會是如何
15:55
to find out how it will really behave表現,
384
940000
2000
以及它是否符合我們的
15:57
and whether是否 it matches火柴 our physical物理 universe宇宙.
385
942000
3000
物理宇宙,這將會是無解的困難
16:01
A few少數 years年份 ago, I was pretty漂亮 excited興奮 to discover發現
386
946000
3000
幾年前,我相當興奮地發現
16:04
that there are candidate候選人 universes宇宙 with incredibly令人難以置信 simple簡單 rules規則
387
949000
3000
有些候選的宇宙具有難以置信的簡單規則
16:07
that successfully順利 reproduce複製 special特別 relativity相對論,
388
952000
2000
它們成功地複製了狹義相對論
16:09
and even general一般 relativity相對論 and gravitation引力,
389
954000
3000
甚至複製了廣義相對論和重力現象
16:12
and at least最小 give hints提示 of quantum量子 mechanics機械學.
390
957000
3000
還至少提示了量子力學的物理原則
16:15
So, will we find the whole整個 of physics物理?
391
960000
2000
那麼,我們會發現整個物理嗎?
16:17
I don't know for sure,
392
962000
2000
這我還不能確定
16:19
but I think at this point it's sort分類 of
393
964000
2000
但我認為在這個節骨眼上
16:21
almost幾乎 embarrassing尷尬 not to at least最小 try.
394
966000
2000
如果連試都不試,那就太不好意思了
16:23
Not an easy簡單 project項目.
395
968000
2000
這是不容易的計劃
16:25
One's那些 got to build建立 a lot of technology技術.
396
970000
2000
必須建構出大量的科技
16:27
One's那些 got to build建立 a structure結構體 that's probably大概
397
972000
2000
可能必須至少建構出
16:29
at least最小 as deep as existing現有 physics物理.
398
974000
2000
像現有的物理那樣深入的結構
16:31
And I'm not sure what the best最好 way to organize組織 the whole整個 thing is.
399
976000
3000
我還不確定如何妥善組織這一切
16:34
Build建立 a team球隊, open打開 it up, offer提供 prizes獎品 and so on.
400
979000
3000
組織團隊、對外開放、提供獎金等等
16:37
But I'll tell you, here today今天,
401
982000
2000
但我現在就可以告訴各位
16:39
that I'm committed提交 to seeing眼看 this project項目 doneDONE,
402
984000
2000
我決心投入實現這個計劃
16:41
to see if, within this decade,
403
986000
3000
要看我們能否在這十年內
16:44
we can finally最後 hold保持 in our hands
404
989000
2000
終於將我們的宇宙的規則
16:46
the rule規則 for our universe宇宙
405
991000
2000
掌握在手中
16:48
and know where our universe宇宙 lies
406
993000
2000
並得知我們的宇宙位於
16:50
in the space空間 of all possible可能 universes宇宙 ...
407
995000
2000
所有可能宇宙的空間中的何處
16:52
and be able能夠 to type類型 into Wolfram AlphaΑ, "the theory理論 of the universe宇宙,"
408
997000
3000
也能將宇宙的理論輸入Wolfram Alpha
16:55
and have it tell us.
409
1000000
2000
讓它來告訴我們
16:57
(Laughter笑聲)
410
1002000
2000
(笑聲)
17:00
So I've been working加工 on the idea理念 of computation計算
411
1005000
2000
那麼,我研究計算的想法
17:02
now for more than 30 years年份,
412
1007000
2000
至今已經超過30年
17:04
building建造 tools工具 and methods方法 and turning車削 intellectual知識分子 ideas思路
413
1009000
3000
建構著工具和方法,並將心智思想
17:07
into millions百萬 of lines of code
414
1012000
2000
化為幾百萬行的程式編碼
17:09
and grist穀物 for server服務器 farms農場 and so on.
415
1014000
2000
以及強力的伺服器聯合場等等
17:11
With every一切 passing通過 year,
416
1016000
2000
每過一個年
17:13
I realize實現 how much more powerful強大
417
1018000
2000
我就越明白計算的想法
17:15
the idea理念 of computation計算 really is.
418
1020000
2000
實在有多麼強大
17:17
It's taken採取 us a long way already已經,
419
1022000
2000
它已經帶領著我們走過長長的道路
17:19
but there's so much more to come.
420
1024000
2000
但是還會有許許多多事情發生
17:21
From the foundations基金會 of science科學
421
1026000
2000
從科學的基礎
17:23
to the limits範圍 of technology技術
422
1028000
2000
到科技的極限
17:25
to the very definition定義 of the human人的 condition條件,
423
1030000
2000
到人類狀況的精確定義
17:27
I think computation計算 is destined注定 to be
424
1032000
2000
我認為計算註定會是
17:29
the defining確定 idea理念 of our future未來.
425
1034000
2000
定義著我們的未來之想法
17:31
Thank you.
426
1036000
2000
謝謝大家聆聽
17:33
(Applause掌聲)
427
1038000
14000
(喝彩)
17:47
Chris克里斯 Anderson安德森: That was astonishing驚人.
428
1052000
2000
克里斯•安德森:太令人驚訝了
17:49
Stay here. I've got a question.
429
1054000
2000
請留步,我有個問題請教
17:51
(Applause掌聲)
430
1056000
4000
(喝彩)
17:57
So, that was, fair公平 to say, an astonishing驚人 talk.
431
1062000
3000
必須老實說,這場演講太令人驚訝了
18:01
Are you able能夠 to say in a sentence句子 or two
432
1066000
3000
您是否能用一兩句話說明
18:04
how this type類型 of thinking思維
433
1069000
3000
如何能在某一個點上
18:07
could integrate整合 at some point
434
1072000
2000
將這種想法融入像弦理論
18:09
to things like string theory理論 or the kind of things that people think of
435
1074000
2000
或人們所想的那些東西
18:11
as the fundamental基本的 explanations說明 of the universe宇宙?
436
1076000
3000
使它成為能夠解釋宇宙的基礎呢?
18:14
Stephen斯蒂芬 Wolfram: Well, the parts部分 of physics物理
437
1079000
2000
史蒂芬•沃夫朗:嗯
18:16
that we kind of know to be true真正,
438
1081000
2000
我們所知為真的那部分物理
18:18
things like the standard標準 model模型 of physics物理:
439
1083000
2000
比方說物理的標準模型
18:20
what I'm trying to do better reproduce複製 the standard標準 model模型 of physics物理
440
1085000
3000
我試圖改善的是複製物理的標準模型
18:23
or it's simply只是 wrong錯誤.
441
1088000
2000
或者說,錯的是
18:25
The things that people have tried試著 to do in the last 25 years年份 or so
442
1090000
2000
大約近25年來人們試圖
18:27
with string theory理論 and so on
443
1092000
2000
利用弦理論等等所做的研究
18:29
have been an interesting有趣 exploration勘探
444
1094000
2000
都是很有趣的探討
18:31
that has tried試著 to get back to the standard標準 model模型,
445
1096000
3000
那樣的研究試圖回歸到標準模型
18:34
but hasn't有沒有 quite相當 gotten得到 there.
446
1099000
2000
但是並沒有達到理想
18:36
My guess猜測 is that some great simplifications簡化 of what I'm doing
447
1101000
3000
我想我正在做的,若加以大大簡化
18:39
may可能 actually其實 have considerable大量 resonance諧振
448
1104000
3000
實際上可能與弦理論裡所做的
18:42
with what's been doneDONE in string theory理論,
449
1107000
2000
會有相當的共鳴
18:44
but that's a complicated複雜 math數學 thing
450
1109000
3000
不過那是很複雜的數學東西
18:47
that I don't yet然而 know how it's going to work out.
451
1112000
3000
我還不知道它會達到怎樣的地步
18:50
CACA: Benoit伯努瓦 Mandelbrot曼德爾布羅 is in the audience聽眾.
452
1115000
2000
克•安:貝諾特•曼德爾博特就在聽眾裡
18:52
He also has shown顯示 how complexity複雜
453
1117000
2000
他也曾經演示如何從簡單的開始
18:54
can arise出現 out of a simple簡單 start開始.
454
1119000
2000
發展出複雜的東西
18:56
Does your work relate涉及 to his?
455
1121000
2000
您的研究和他的有些相關嗎?
18:58
SWSW: I think so.
456
1123000
2000
史•沃:我想是有的
19:00
I view視圖 Benoit伯努瓦 Mandelbrot's曼德爾布羅的 work
457
1125000
2000
我看過曼德爾博特的著作
19:02
as one of the founding創建 contributions捐款
458
1127000
3000
他的著作可以說是開創這個領域
19:05
to this kind of area.
459
1130000
3000
研究的奠基著作之一
19:08
Benoit伯努瓦 has been particularly尤其 interested有興趣
460
1133000
2000
貝諾特對套疊式模式
19:10
in nested嵌套 patterns模式, in fractals分形 and so on,
461
1135000
2000
對不規則碎片等等特別有興趣
19:12
where the structure結構體 is something
462
1137000
2000
那種結構有點像
19:14
that's kind of tree-like樹狀,
463
1139000
2000
樹的分叉結構
19:16
and where there's sort分類 of a big branch that makes品牌 little branches分支機構
464
1141000
2000
而且有那種大枝分成小枝
19:18
and even smaller branches分支機構 and so on.
465
1143000
3000
又甚至分成更細的小枝等等
19:21
That's one of the ways方法
466
1146000
2000
那是逐步達到
19:23
that you get towards true真正 complexity複雜.
467
1148000
3000
真正複雜的一種方法
19:26
I think things like the Rule規則 30 cellular細胞的 automaton自動機
468
1151000
3000
我認為規則30那樣的細胞自動機
19:29
get us to a different不同 level水平.
469
1154000
2000
把我們帶到一個不同的層次上
19:31
In fact事實, in a very precise精確 way, they get us to a different不同 level水平
470
1156000
3000
事實上,此類規則確實把我們帶到不同的層次上
19:34
because they seem似乎 to be things that are
471
1159000
2000
因為它們顯然有
19:37
capable of complexity複雜
472
1162000
3000
繼續發展到極其複雜的能力
19:40
that's sort分類 of as great as complexity複雜 can ever get ...
473
1165000
3000
那是複雜到不能再複雜的程度 ...
19:44
I could go on about this at great length長度, but I won't慣於. (Laughter笑聲) (Applause掌聲)
474
1169000
3000
這點我還可以談很久,不過先到此為止了
19:47
CACA: Stephen斯蒂芬 Wolfram, thank you.
475
1172000
2000
克•安:史蒂夫•沃夫朗,謝謝您
19:49
(Applause掌聲)
476
1174000
2000
(喝彩)
Translated by Wenjer Leuschel
Reviewed by Zhu Jie

▲Back to top

ABOUT THE SPEAKER
Stephen Wolfram - Scientist, inventor
Stephen Wolfram is the creator of Mathematica and Wolfram|Alpha, the author of A New Kind of Science, and the founder and CEO of Wolfram Research.

Why you should listen

Stephen Wolfram published his first scientific paper at the age of 15, and received his PhD in theoretical physics from Caltech by the age of 20. Having started to use computers in 1973, Wolfram rapidly became a leader in the emerging field of scientific computing.

In 1981 Wolfram became the youngest recipient of a MacArthur Prize Fellowship. He then set out on an ambitious new direction in science aimed at understanding the origins of complexity in nature. Wolfram's first key idea was to use computer experiments to study the behavior of simple computer programs known as cellular automata. This allowed him to make a series of startling discoveries about the origins of complexity.

Wolfram founded the first research center and the first journal in the field, Complex Systems, and began the development of Mathematica. Wolfram Research soon became a world leader in the software industry -- widely recognized for excellence in both technology and business.

Following the release of Mathematica Version 2 in 1991, Wolfram began to divide his time between Mathematica development and scientific research. Building on his work from the mid-1980s, and now with Mathematica as a tool, Wolfram made a rapid succession of major new discoveries, which he described in his book, A New Kind of Science.

Building on Mathematica, A New Kind of Science, and the success of Wolfram Research, Wolfram recently launched Wolfram|Alpha -- an ambitious, long-term project to make as much of the world's knowledge as possible computable, and accessible to everyone.

More profile about the speaker
Stephen Wolfram | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee