ABOUT THE SPEAKER
Eric Berridge - Entrepreneur
Eric Berridge is an entrepreneurial humanist who believes our society is overly obsessed with STEM.

Why you should listen

As the co-founder of global consulting agency and Salesforce strategic partner Bluewolf, an IBM Company, Eric Berridge has applied his passion for the humanities over the past 17 years to pioneer a cloud consulting practice with less than 10 percent of employees holding engineering or computer science degrees. The way he sees it, as technology becomes easier to use and build, the humanities offer skills that are becoming increasingly valuable to the success of business everywhere. And today’s AI-driven discussion holds the key to freeing the human condition to be balanced, healthy, creative and productive.

More profile about the speaker
Eric Berridge | Speaker | TED.com
TED@IBM

Eric Berridge: Why tech needs the humanities

艾瑞克·貝瑞吉: 為什麼科技需要人文

Filmed:
1,226,683 views

企業家艾瑞克·貝瑞吉認為,如果你想要打造一個有創新力、能夠解決問題的團隊,就應該把人文學科看得和科學學科一樣重要。他分享為什麼科技公司在僱用新人時,應該要尋找 STEM 畢業生以外的人。他以實例說明,藝術和人文學科背景的人能把創造和洞見帶進科技工作場所。
- Entrepreneur
Eric Berridge is an entrepreneurial humanist who believes our society is overly obsessed with STEM. Full bio

Double-click the English transcript below to play the video.

00:12
You've all been in a bar酒吧, right?
0
647
2242
你們都曾經去過酒吧,對嗎?
00:14
(Laughter笑聲)
1
2913
1491
(笑聲)
00:16
But have you ever gone走了 to a bar酒吧
2
4759
2694
但,你們是否去過一個酒吧,
00:19
and come out with a $200 million百萬 business商業?
3
7477
2952
帶著兩億美元的生意出來?
00:24
That's what happened發生 to us
about 10 years年份 ago.
4
12276
2280
那就是大約十年前我們遇到的事。
00:27
We'd星期三 had a terrible可怕 day.
5
15445
1705
我們那天過得很糟。
00:30
We had this huge巨大 client客戶
that was killing謀殺 us.
6
18012
4064
我們有個要命的超級大客戶。
00:34
We're a software軟件 consulting諮詢 firm公司,
7
22100
2604
我們是家軟體顧問公司,
00:36
and we couldn't不能 find
a very specific具體 programming程序設計 skill技能
8
24728
2982
我們找不到一項很特殊的程式技巧
00:39
to help this client客戶 deploy部署
a cutting-edge前沿 cloud system系統.
9
27734
3158
來協助這客戶部署先進雲端系統。
00:43
We have a bunch of engineers工程師,
10
31798
1421
我們有一票工程師,
00:45
but none沒有 of them could please this client客戶.
11
33243
2594
但沒有一個能夠讓這位客戶滿意。
00:49
And we were about to be fired解僱.
12
37274
1657
我們差不多就要被開除了。
00:51
So we go out to the bar酒吧,
13
39888
2335
所以我們去了一間酒吧,
00:54
and we're hanging out
with our bartender酒保 friend朋友 Jeff傑夫,
14
42247
4047
我們和我們的酒保朋友
傑夫在那裡打發時間,
00:58
and he's doing
what all good bartenders調酒師 do:
15
46318
2001
他做的是所有好酒保都會做的事:
01:00
he's commiserating同情 with us,
making製造 us feel better,
16
48343
3022
他同情我們,讓我們感覺好些,
01:03
relating有關 to our pain疼痛,
17
51389
2292
同理我們的痛苦,
01:05
saying, "Hey, these guys
are overblowingoverblowing it.
18
53705
2048
他說:「嘿,這些傢伙誇大其詞。
01:07
Don't worry擔心 about it."
19
55777
1183
別太擔心。」
01:08
And finally最後, he deadpansdeadpans us and says,
20
56984
2214
最後,他面無表情地對我們說:
01:11
"Why don't you send發送 me in there?
21
59222
2293
「為什麼你們不派我去那裡?
01:13
I can figure數字 it out."
22
61539
1507
我可以想出辦法。」
01:15
So the next下一個 morning早上,
we're hanging out in our team球隊 meeting會議,
23
63585
3081
所以,隔天早上,我們
就在團隊會議上消磨時間,
01:19
and we're all a little hazy朦朧 ...
24
67901
2555
我們都還有一點朦朧……
01:22
(Laughter笑聲)
25
70480
1150
(笑聲)
01:24
and I half-jokingly半開玩笑地 throw it out there.
26
72504
2120
半開玩笑地把話丟出來。
01:26
I say, "Hey, I mean,
we're about to be fired解僱."
27
74648
2584
我說:「嘿,我們就要被炒魷魚了。」
01:29
So I say,
28
77256
1302
於是我說:
01:30
"Why don't we send發送 in
Jeff傑夫, the bartender酒保?"
29
78582
2082
「我們不如就派酒保傑夫去吧?」
01:32
(Laughter笑聲)
30
80688
3077
(笑聲)
01:35
And there's some silence安靜,
some quizzical古怪 looks容貌.
31
83789
4061
沉默了一會兒,有些人表情滑稽。
01:39
Finally最後, my chief首席 of staff員工 says,
"That is a great idea理念."
32
87874
3542
最後,我的參謀長說:
「那是個好主意。」
01:43
(Laughter笑聲)
33
91440
1737
(笑聲)
01:45
"Jeff傑夫 is wicked邪惡 smart聰明. He's brilliant輝煌.
34
93201
2094
「傑夫有小聰明,他很優秀。
01:48
He'll地獄 figure數字 it out.
35
96168
1150
他會想出辦法。
01:50
Let's send發送 him in there."
36
98328
1413
就派他去吧。」
01:52
Now, Jeff傑夫 was not a programmer程序員.
37
100189
2526
傑夫並不是程式人員。
01:54
In fact事實, he had dropped下降 out of Penn佩恩
as a philosophy哲學 major重大的.
38
102739
3889
事實上他在賓州大學
主修哲學,但退學了。
01:59
But he was brilliant輝煌,
39
107491
1994
但他很優秀,
02:01
and he could go deep on topics主題,
40
109509
2627
他能深入主題,
02:04
and we were about to be fired解僱.
41
112160
2032
而且我們就要被開除了。
02:06
So we sent發送 him in.
42
114216
1150
所以我們就派他去。
02:09
After a couple一對 days of suspense懸念,
43
117839
1986
懸念幾天後,
02:11
Jeff傑夫 was still there.
44
119849
2157
傑夫還在那裡。
02:15
They hadn't有沒有 sent發送 him home.
45
123002
2140
他們沒有趕他回家。
02:17
I couldn't不能 believe it.
46
125166
2066
我無法置信。
02:19
What was he doing?
47
127256
1491
他在做什麼?
02:21
Here's這裡的 what I learned學到了.
48
129281
1150
我所知道的如下。
02:23
He had completely全然 disarmed解除 武裝
their fixation固定術 on the programming程序設計 skill技能.
49
131318
4210
他完全解除了
他們對於程式技巧的堅持,
02:29
And he had changed the conversation會話,
50
137004
2921
改變了對談,
02:31
even changing改變 what we were building建造.
51
139949
2016
甚至改變了我們正在建的東西。
02:33
The conversation會話 was now
about what we were going to build建立 and why.
52
141989
4552
對談變成是在談
我們要建什麼,以及為什麼建。
02:41
And yes, Jeff傑夫 figured想通 out
how to program程序 the solution,
53
149059
5358
是的,傑夫想出解決方案,
02:46
and the client客戶 became成為
one of our best最好 references引用.
54
154441
2365
這客戶成了我們最佳的參考人之一。
02:50
Back then, we were 200 people,
55
158782
1977
那時,我們公司有兩百人,
02:52
and half of our company公司 was made製作 up
of computer電腦 science科學 majors專業 or engineers工程師,
56
160783
6320
半數主修資訊科學或是工程,
02:59
but our experience經驗 with Jeff傑夫
left us wondering想知道:
57
167127
2261
但和傑夫合作的經驗讓我們納悶:
03:02
Could we repeat重複 this through通過 our business商業?
58
170627
2071
我們能在事業上重覆這做法嗎?
03:06
So we changed the way
we recruited應徵 and trained熟練.
59
174017
4261
我們因而改變招募和訓練的方式,
03:11
And while we still sought追捧 after computer電腦
engineers工程師 and computer電腦 science科學 majors專業,
60
179766
5984
雖然還是會找電腦工程師
和主修資訊科學的人,
03:17
we sprinkled in artists藝術家,
musicians音樂家, writers作家 ...
61
185774
4976
也分散找些藝術家、音樂家、作家……
03:24
and Jeff's傑夫的 story故事 started開始 to multiply
itself本身 throughout始終 our company公司.
62
192818
4374
傑夫的故事在我們公司裡開始擴增。
03:29
Our chief首席 technology技術 officer
is an English英語 major重大的,
63
197216
3333
我們的技術長主修的是英文,
03:34
and he was a bike自行車 messenger信使 in Manhattan曼哈頓.
64
202168
2214
他原是曼哈頓的自行車送貨員。
03:38
And today今天, we're a thousand people,
65
206680
1946
我們現今有一千人,
03:41
yet然而 still less than a hundred have degrees
in computer電腦 science科學 or engineering工程.
66
209935
5452
但其中有資訊科學或工程
相關學位的人不到一百人。
03:48
And yes, we're still
a computer電腦 consulting諮詢 firm公司.
67
216984
3183
是的,我們還是電腦顧問公司。
03:52
We're the number one player播放機 in our market市場.
68
220191
2126
我們是這個領域的第一名。
03:54
We work with the fastest-growing增長最快
software軟件 package
69
222341
2353
我們的套裝軟體快速成長,
03:56
to ever reach達到 10 billion十億 dollars美元
in annual全年 sales銷售.
70
224718
2293
是市場上最早達到
年業績一百億美元的。
04:01
So it's working加工.
71
229015
1626
這行得通。
在此同時,我國正在推行
以 STEM 為基礎的教育──
04:05
Meanwhile與此同時, the push for STEM-based莖基
education教育 in this country國家 --
72
233426
5731
04:11
science科學, technology技術,
engineering工程, mathematics數學 --
73
239181
3334
STEM 代表科學、
科技、工程、數學──
04:14
is fierce激烈.
74
242539
1212
推行得如火如荼,
04:15
It's in all of our faces面孔.
75
243775
1880
全面性地推動。
04:18
And this is a colossal龐大 mistake錯誤.
76
246355
1674
這是個巨大的錯誤。
04:21
Since以來 2009, STEM majors專業
in the United聯合的 States狀態
77
249707
4229
從 2009 年起,
美國主修 STEM 的人增加了 43%,
04:25
have increased增加 by 43 percent百分,
78
253960
2056
04:28
while the humanities人文 have stayed flat平面.
79
256040
2428
而人文學科則持平。
04:30
Our past過去 president主席
80
258492
1365
我們過去的總統
04:33
dedicated專用 over a billion十億 dollars美元
towards STEM education教育
81
261047
3503
投入了十億美元到 STEM 教育上,
04:36
at the expense費用 of other subjects主題,
82
264574
2839
犧牲了其他的學科,
04:39
and our current當前 president主席
83
267437
2876
而我們目前的總統
04:42
recently最近 redirected重定向 200 million百萬 dollars美元
of Department of Education教育 funding資金
84
270337
4867
最近將兩億美元的教育部資金
轉為導入資訊科學。
04:47
into computer電腦 science科學.
85
275228
1469
04:49
And CEOs老總 are continually不斷 complaining抱怨的
about an engineering-starved工程-餓死 workforce勞動力.
86
277788
6381
而執行長們不斷地抱怨
勞動力中很缺乏工程師。
04:57
These campaigns活動,
87
285717
1445
這些倡議
05:00
coupled耦合 with the undeniable不可否認 success成功
of the tech高科技 economy經濟 --
88
288583
3548
和無可否認的資訊經濟
成功結合在一起──
05:04
I mean, let's face面對 it,
89
292155
1248
我們要面對這個事實,
05:05
seven out of the 10 most valuable有價值
companies公司 in the world世界 by market市場 cap
90
293427
5508
世界上市值最有高的公司,
十個中有七個是科技公司──
05:10
are technology技術 firms公司 --
91
298959
1511
05:13
these things create創建 an assumption假設
92
301662
1976
因而形成了一個假設,
05:16
that the path路徑 of our future未來 workforce勞動力
will be dominated佔主導地位 by STEM.
93
304805
4214
假設我們未來的勞動力之路
將會由 STEM 所支配。
05:24
I get it.
94
312583
1150
我懂。
05:26
On paper, it makes品牌 sense.
95
314692
1621
理論上這是合理的,
05:29
It's tempting誘人的.
96
317498
1212
它很誘人。
05:33
But it's totally完全 overblown誇大.
97
321597
1933
但它完全是誇大其詞,
05:35
It's like, the entire整個 soccer足球 team球隊
chases追逐 the ball into the corner,
98
323554
6051
這就像是整支足球隊
都追著球跑到角落,
05:41
because that's where the ball is.
99
329629
1778
只因為球在角落。
05:44
We shouldn't不能 overvalue過份尊重 STEM.
100
332841
2246
我們不應該過度重視 STEM。
05:48
We shouldn't不能 value the sciences科學
any more than we value the humanities人文.
101
336133
3573
我們不應該把科學學科
看得比人文學科還重要。
05:52
And there are a couple一對 of reasons原因.
102
340544
1722
原因有幾個:
05:55
Number one, today's今天的 technologies技術
are incredibly令人難以置信 intuitive直觀的.
103
343058
5986
第一,現今的科技是極端直覺的。
06:01
The reason原因 we've我們已經 been able能夠
to recruit from all disciplines學科
104
349068
4000
我們之所以能從各學科領域招募人才
06:05
and swivel旋轉 into specialized專門 skills技能
105
353092
2119
再轉為專業技能,
06:08
is because modern現代 systems系統
can be manipulated操縱 without writing寫作 code.
106
356377
4754
是因為現代的系統
不需要寫程式碼也可以操作。
06:13
They're like LEGOLEGO: easy簡單 to put together一起,
easy簡單 to learn學習, even easy簡單 to program程序,
107
361155
5854
它們就像樂高:容易組裝、
容易學,甚至容易寫程式,
06:19
given特定 the vast廣大 amounts of information信息
that are available可得到 for learning學習.
108
367033
3491
前提是能取得大量的資訊
供學習之用。
06:23
Yes, our workforce勞動力
needs需求 specialized專門 skill技能,
109
371173
2835
是的,我們的勞動力
需要特殊化的技能,
06:27
but that skill技能 requires要求 a far less
rigorous嚴格 and formalized形式化 education教育
110
375242
4794
但和過去相比,那技能不再需要
那麼嚴格和制式化的教育。
06:32
than it did in the past過去.
111
380060
1856
06:34
Number two, the skills技能
that are imperative勢在必行 and differentiated分化
112
382876
5739
第二,這個直覺式的科技世界
06:40
in a world世界 with intuitive直觀的 technology技術
113
388639
3149
必須有差異性的技能,
06:43
are the skills技能 that help us
to work together一起 as humans人類,
114
391812
3587
那些能協助人類團結合作的技能,
06:49
where the hard work
is envisioning構想 the end結束 product產品
115
397184
3984
困難的是要預想出最終產品
06:54
and its usefulness用處,
116
402193
1492
以及其用處,
06:55
which哪一個 requires要求 real-world真實世界 experience經驗
and judgment判斷 and historical歷史的 context上下文.
117
403709
6214
這就需要有真實世界的經驗、
判斷,以及歷史的情境。
07:03
What Jeff's傑夫的 story故事 taught us
118
411232
2286
傑夫的故事讓我們學到,
07:05
is that the customer顧客
was focused重點 on the wrong錯誤 thing.
119
413542
3531
客戶把焦點放錯了地方。
07:10
It's the classic經典 case案件:
120
418160
1507
這是個經典的案例:
07:12
the technologist技術專家 struggling奮鬥的 to communicate通信
with the business商業 and the end結束 user用戶,
121
420661
4262
技術人員努力和那些
未能表達需求的企業、
終端使用者溝通。
07:16
and the business商業 failing失敗
to articulate說出 their needs需求.
122
424947
4186
07:22
I see it every一切 day.
123
430033
1706
我每天都會看到這種事,
07:25
We are scratching搔抓 the surface表面
124
433448
1922
我們正觸及
07:27
in our ability能力 as humans人類
to communicate通信 and invent發明 together一起,
125
435394
4809
人類溝通和共同發明能力的表面。
07:32
and while the sciences科學 teach us
how to build建立 things,
126
440227
4580
雖然科學教我們如何建造東西,
07:36
it's the humanities人文 that teach us
what to build建立 and why to build建立 them.
127
444831
5410
但人文卻教導我們
要建什麼和為什麼要建。
07:43
And they're equally一樣 as important重要,
128
451612
2604
它們同等重要,
07:46
and they're just as hard.
129
454240
1507
也一樣困難。
07:50
It irks惹惱 me ...
130
458476
1995
有件事會讓我惱怒……
07:54
when I hear people
treat對待 the humanities人文 as a lesser較小 path路徑,
131
462532
5493
就是聽到有人把人文學科
視為是比較差的路、
08:00
as the easier更輕鬆 path路徑.
132
468049
1184
比較簡單的路。
08:01
Come on!
133
469840
1150
拜託!
08:04
The humanities人文 give us
the context上下文 of our world世界.
134
472258
4150
人文學科讓我們能夠了解
世界的來龍去脈,
08:10
They teach us how to think critically危重.
135
478573
3437
教導我們如何做批評性思考。
08:14
They are purposely故意 unstructured非結構化,
136
482034
1969
它們本來就沒有結構,
08:16
while the sciences科學
are purposely故意 structured結構化的.
137
484027
2546
而科學本來就有結構。
08:19
They teach us to persuade說服,
they give us our language語言,
138
487745
3588
它們教我們說服,給我們語言,
08:23
which哪一個 we use to convert兌換 our emotions情緒
to thought and action行動.
139
491357
6839
我們用語言把情緒
轉換成思想和行動。
08:32
And they need to be
on equal等於 footing立足點 with the sciences科學.
140
500267
4264
它們必需要和科學學科
有一樣的立基點。
08:36
And yes, you can hire聘請 a bunch of artists藝術家
141
504555
3992
你的確可以僱用一群藝術家
08:40
and build建立 a tech高科技 company公司
142
508571
1333
來創立一間科技公司,
08:43
and have an incredible難以置信 outcome結果.
143
511166
1770
得到了不起的結果。
08:46
Now, I'm not here today今天
to tell you that STEM's莖的 bad.
144
514616
4722
今天我來這裡並不是要
告訴各位 STEM 不好。
08:52
I'm not here today今天
to tell you that girls女孩 shouldn't不能 code.
145
520778
3984
我今天在這裡不是要告訴各位
女生不應該寫程式。
08:57
(Laughter笑聲)
146
525111
1039
(笑聲)
08:58
Please.
147
526174
1150
拜託。
09:00
And that next下一個 bridge I drive駕駛 over
148
528355
2568
我開車經過的下一座橋,
09:02
or that next下一個 elevator電梯 we all jump into --
149
530947
3550
或是我們進入的下一台電梯──
我們要確保它背後有個工程師。
09:07
let's make sure
there's an engineer工程師 behind背後 it.
150
535602
2207
09:09
(Laughter笑聲)
151
537833
3642
(笑聲)
09:14
But to fall秋季 into this paranoia偏執
152
542233
3295
但若是陷入這種偏執,
09:17
that our future未來 jobs工作
will be dominated佔主導地位 by STEM,
153
545552
4872
認為我們未來的工作
將由 STEM 主導,
09:22
that's just folly蠢事.
154
550448
1635
那就是太愚蠢了。
09:24
If you have friends朋友 or kids孩子
or relatives親戚們 or grandchildren孫子
155
552526
4091
如果你有朋友、孩子、
親戚、孫子孫女,
09:28
or nieces侄女 or nephews侄子 ...
156
556641
1799
或姪子姪女……
09:30
encourage鼓勵 them to be
whatever隨你 they want to be.
157
558464
3150
鼓勵他們做他們想要做的。
09:34
(Applause掌聲)
158
562336
6896
(掌聲)
09:41
The jobs工作 will be there.
159
569607
2015
工作會等在那裡的。
09:45
Those tech高科技 CEOs老總
160
573741
1477
那些大聲吵著
09:48
that are clamoring吵著 for STEM grads畢業生,
161
576235
3334
要 STEM 畢業生的執行長們,
09:51
you know what they're hiring招聘 for?
162
579593
1784
他們僱人是要做什麼工作?
09:54
Google谷歌, Apple蘋果, FacebookFacebook的.
163
582430
2025
Google、蘋果、臉書,
09:57
Sixty-five六十五 percent百分
of their open打開 job工作 opportunities機會
164
585468
3627
它們的事求人中
有 65% 是非技術的工作:
10:01
are non-technical非技術:
165
589119
1721
10:03
marketers營銷, designers設計師,
project項目 managers經理, program程序 managers經理,
166
591845
4889
行銷人員、設計師、
專案經理、項目經理、
10:08
product產品 managers經理, lawyers律師, HRHR specialists專家,
167
596758
3381
產品經理、律師、人力資源專員、
10:12
trainers培訓師, coaches教練, sellers賣家,
buyers買家, on and on.
168
600163
3325
訓練師、教練、銷售員、買家等等,
10:15
These are the jobs工作 they're hiring招聘 for.
169
603512
3438
是他們要僱人來做的工作。
10:20
And if there's one thing
that our future未來 workforce勞動力 needs需求 --
170
608602
5405
如果我們未來的勞動力
真需要什麼的話──
10:26
and I think we can all agree同意 on this --
171
614031
1952
我想大家都能認同這點──
10:29
it's diversity多樣.
172
617056
1150
那就是多樣性。
10:31
But that diversity多樣 shouldn't不能 end結束
with gender性別 or race種族.
173
619706
4074
但,多樣性不該只限於
性別或種族方面而已。
10:35
We need a diversity多樣 of backgrounds背景
174
623804
2103
我們也需要有多樣的背景和技能,
10:39
and skills技能,
175
627192
1150
10:42
with introverts內向的人 and extroverts外向的人
176
630100
3738
有內向者也有外向者,
10:45
and leaders領導者 and followers追隨者.
177
633862
2953
有領導者也有追隨者。
10:48
That is our future未來 workforce勞動力.
178
636839
1689
那是我們未來的勞動力。
10:51
And the fact事實 that the technology技術
is getting得到 easier更輕鬆 and more accessible無障礙
179
639767
5699
科技越來越簡單、
越來越容易取得的事實,
10:57
frees的FreeS that workforce勞動力 up
180
645490
1818
讓勞動力能夠有餘裕,
10:59
to study研究 whatever隨你 they damn該死的 well please.
181
647332
3372
依他們的意願去學他們想學的。
11:03
Thank you.
182
651273
1151
謝謝。
11:04
(Applause掌聲)
183
652448
6623
(掌聲)
Translated by Lilian Chiu
Reviewed by Yanyan Hong

▲Back to top

ABOUT THE SPEAKER
Eric Berridge - Entrepreneur
Eric Berridge is an entrepreneurial humanist who believes our society is overly obsessed with STEM.

Why you should listen

As the co-founder of global consulting agency and Salesforce strategic partner Bluewolf, an IBM Company, Eric Berridge has applied his passion for the humanities over the past 17 years to pioneer a cloud consulting practice with less than 10 percent of employees holding engineering or computer science degrees. The way he sees it, as technology becomes easier to use and build, the humanities offer skills that are becoming increasingly valuable to the success of business everywhere. And today’s AI-driven discussion holds the key to freeing the human condition to be balanced, healthy, creative and productive.

More profile about the speaker
Eric Berridge | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee