ABOUT THE SPEAKER
Priyanka Jain - Technologist
Priyanka Jain heads up product for pymetrics, an NYC-based startup that uses neuroscience and AI to make hiring more diverse and effective.

Why you should listen

Passionate about using technology to create a fairer workplace and global economy, Priyanka Jain is a spokesperson for the United Nations Foundation's Girl Up Campaign, Chair of the Acumen Fund's Junior Council and on the Innovation Board for the XPrize Foundation. She received her B.S. from Stanford University, where she was President of Stanford Women in Business and one of 12 Mayfield Entrepreneurship Fellows. Her previous experience includes internships at IBM Watson, Shift Technologies, Canvas Ventures and the Institute for Learning and Brain Sciences. Outside of work, she loves playing tennis and eating anything covered in dark chocolate.

More profile about the speaker
Priyanka Jain | Speaker | TED.com
The Way We Work

Priyanka Jain: How to make applying for jobs less painful

菩里楊卡 · 簡恩: 如何讓找工作不那麼痛苦

Filmed:
548,985 views

人們找工作不外乎就是從丟一堆的履歷開始,但大部分卻是石沉大海。然而有越來越多公司採用高科技方法來找出合適的人選。如果人工智慧是未來求職市場的趨勢,對你而言它意味著什麼呢?科技工作者菩里楊卡 · 簡恩(Priyanka Jain)帶我們一窺這個求職新視野。
- Technologist
Priyanka Jain heads up product for pymetrics, an NYC-based startup that uses neuroscience and AI to make hiring more diverse and effective. Full bio

Double-click the English transcript below to play the video.

00:00
Applying應用 for jobs工作 online線上
0
548
1416
網路上求職
00:01
is one of the worst最差
digital數字 experiences經驗 of our time.
1
1988
2616
是現代最糟糕的一種數位體驗,
00:04
And applying應用 for jobs工作 in person
really isn't much better.
2
4628
2696
但親自求職也好不了多少。
00:07
[The Way We Work]
3
7349
1720
【我們的工作方式】
00:11
Hiring招聘 as we know it
is broken破碎 on many許多 fronts戰線.
4
11588
2456
我們所知的招聘方式
在很多方面存在缺陷,
00:14
It's a terrible可怕 experience經驗 for people.
5
14068
1856
對很多人來說都是難受的體驗。
00:15
About 75 percent百分 of people
6
15948
1816
過去一年中,
00:17
who applied應用的 to jobs工作
using運用 various各個 methods方法 in the past過去 year
7
17788
2856
以不同方式找工作的求職者裡面
00:20
said they never heard聽說 anything back
from the employer雇主.
8
20668
2656
有 75% 的人表示從未得到雇主回覆。
00:23
And at the company公司 level水平
it's not much better.
9
23348
2176
而對招聘的公司來說,
情況也沒好到哪裡。
00:25
46 percent百分 of people get fired解僱 or quit放棄
10
25548
2776
任職不到一年
就被解聘或辭職的人也高達 46%,
00:28
within the first year
of starting開始 their jobs工作.
11
28348
2176
00:30
It's pretty漂亮 mind-blowing令人興奮.
12
30548
1216
實在令人震驚,
00:31
It's also bad for the economy經濟.
13
31788
1456
也不利於經濟發展。
00:33
For the first time in history歷史,
14
33268
1456
第一次在歷史上出現了
00:34
we have more open打開 jobs工作
than we have unemployed失業的 people,
15
34748
2856
職位空缺多於失業人數的現象,
00:37
and to me that screams尖叫聲
that we have a problem問題.
16
37628
2176
這是個令人不容小覷的問題。
00:39
I believe that at the crux癥結 of all of this
is a single piece of paper: the résumé.
17
39828
3976
我認為所有問題的關鍵在於
那一張紙——也就是履歷表。
00:43
A résumé definitely無疑 has
some useful有用 pieces in it:
18
43828
2336
履歷表固然有不少有用訊息:
00:46
what roles角色 people have had,
computer電腦 skills技能,
19
46188
2096
例如求職者曾經擔任的職位、
他們的電腦技能,
00:48
what languages語言 they speak說話,
20
48308
1256
及他們會的語言。
00:49
but what it misses錯過 is
what they have the potential潛在 to do
21
49588
3056
但履歷表無法顯示求職者的潛能,
00:52
that they might威力 not have had
the opportunity機會 to do in the past過去.
22
52668
2976
因為他們過去沒有機會
去擔任能展現長才的工作。
00:55
And with such這樣 a quickly很快 changing改變 economy經濟
where jobs工作 are coming未來 online線上
23
55668
3256
隨着經濟急促轉型,
網上湧現大批職缺
00:58
that might威力 require要求 skills技能 that nobody沒有人 has,
24
58948
2056
需要一些無前例可循的技能。
01:01
if we only look at what someone有人
has doneDONE in the past過去,
25
61028
2776
如果我們單看求職者過去的成就,
01:03
we're not going to be able能夠
to match比賽 people to the jobs工作 of the future未來.
26
63828
3256
則無法為未來的職位找到合適人才。
因此我認為科技在這方面能幫上很多忙。
01:07
So this is where I think technology技術
can be really helpful有幫助.
27
67108
2736
大家或許見識過演算法能針對需求
01:09
You've probably大概 seen看到
that algorithms算法 have gotten得到 pretty漂亮 good
28
69868
2856
為人們找到適合的東西。
01:12
at matching匹配 people to things,
29
72748
1536
01:14
but what if we could use
that same相同 technology技術
30
74308
2256
那麼是否我們可以將相同的技術
01:16
to actually其實 help us find jobs工作
that we're really well-suited非常適合 for?
31
76588
3096
應用在尋找適合的職缺呢?
01:19
But I know what you're thinking思維.
32
79708
1576
我知道大家在想什麼,
用演算法來媒合工作聽起來有點可怕,
01:21
Algorithms算法 picking選擇 your next下一個 job工作
sounds聲音 a little bit scary害怕,
33
81308
2776
但有一項技術能夠預測
01:24
but there is one thing that has been shown顯示
34
84108
2056
01:26
to be really predictive預測
of someone's誰家 future未來 success成功 in a job工作,
35
86188
2896
求職者在新工作上的成就,
那就是所謂的「多元測試」。
01:29
and that's what's called
a multimeasure多措施 test測試.
36
89108
2136
多元測試並不是什麼新玩意兒,
01:31
Multimeasure多措施 tests測試
really aren't anything new,
37
91268
2176
以前它的成本很高,
01:33
but they used to be really expensive昂貴
38
93468
1736
需要一位博士坐在你面前,
01:35
and required需要 a PhD博士 sitting坐在 across橫過 from you
39
95228
2016
回答一大堆問題、寫一堆報告。
01:37
and answering回答 lots of questions問題
and writing寫作 reports報告.
40
97268
2456
01:39
Multimeasure多措施 tests測試 are a way
41
99748
1696
多元測試能了解
01:41
to understand理解 someone's誰家 inherent固有 traits性狀 --
42
101468
2456
一個人與生俱有的特色,
01:43
your memory記憶, your attentiveness注意力.
43
103948
1776
例如:你的記憶力、注意力。
01:46
What if we could take multimeasure多措施 tests測試
44
106662
1942
如果我們可以運用多元測試,
01:48
and make them scalable可擴展性 and accessible無障礙,
45
108628
2536
讓它可量身訂做、普及,
01:51
and provide提供 data數據 to employers雇主
about really what the traits性狀 are
46
111188
3376
並將這些數據提供給雇主,
以個人特質來篩選
01:54
of someone有人 who can make
them a good fit適合 for a job工作?
47
114588
2896
真的適合這項工作的人選呢?
01:57
This all sounds聲音 abstract抽象.
48
117508
1296
這聽起來很抽象。
不如,我們來玩個小遊戲。
01:58
Let's try one of the games遊戲 together一起.
49
118828
1735
遊戲中你會看到一個圓圈閃過,
02:00
You're about to see a flashing閃爍 circle,
50
120587
1857
如果你看到紅色圓圈,
就要立刻拍手,
02:02
and your job工作 is going to be
to clap when the circle is red
51
122468
2960
02:06
and do nothing when it's green綠色.
52
126285
1496
如果是綠的,就不要做任何動作。
02:07
[Ready準備?]
53
127806
1376
[準備好了沒?]
02:09
[Begin開始!]
54
129207
1360
[開始!]
[綠色圓圈]
02:11
[Green綠色 circle]
55
131708
1000
02:13
[Green綠色 circle]
56
133708
1040
[綠色圓圈]
02:15
[Red circle]
57
135708
1000
[紅色圓圈]
02:17
[Green綠色 circle]
58
137708
1080
[綠色圓圈]
[紅色圓圈]
02:19
[Red circle]
59
139708
1000
或許你可以在紅色圈圈出現的
02:21
Maybe you're the type類型 of person
60
141928
1596
02:23
who claps拍手 the millisecond毫秒
after a red circle appears出現.
61
143548
2496
千分之一秒內拍手,
02:26
Or maybe you're the type類型 of person
62
146068
1656
也或許你是那種寧可多花點時間
02:27
who takes just a little bit longer
to be 100 percent百分 sure.
63
147748
2735
百分百肯定後才出手的人。
又或許你在綠色圈出現
就拍手,違反了規則。
02:30
Or maybe you clap on green綠色
even though雖然 you're not supposed應該 to.
64
150508
2936
最棒的一點在於這個測驗
和一般的測試不同,
02:33
The cool thing here is that
this isn't like a standardized標準化 test測試
65
153468
2976
一般測試會區分某些人適合
這工作,而某些人不是。
02:36
where some people are employable受 雇
and some people aren't.
66
156468
2656
但多元測試卻是去辨別
你的特質適合什麼,
02:39
Instead代替 it's about understanding理解
the fit適合 between之間 your characteristics特點
67
159148
3256
以及你能勝任某項工作的特長為何。
02:42
and what would make you
good a certain某些 job工作.
68
162428
2016
研究顯示如果你在出現紅圈時拍手,
而從沒在綠圈時誤拍,
02:44
We found發現 that if you clap late晚了 on red
and you never clap on the green綠色,
69
164468
3736
02:48
you might威力 be high in attentiveness注意力
and high in restraint克制.
70
168228
3176
那麼你有著相當高的
專注力及自制力,
02:51
People in that quadrant象限 tend趨向 to be
great students學生們, great test-takers考生,
71
171428
3576
這類的人通常會是好學生,
測試也能得到好成績,
02:55
great at project項目 management管理 or accounting會計.
72
175028
2136
適合當專案管理者或從事會計工作。
02:57
But if you clap immediately立即 on red
and sometimes有時 clap on green綠色,
73
177188
3336
如果你在紅圈圈出現時立即拍手,
偶爾在綠色出現時也不小心拍手,
03:00
that might威力 mean that
you're more impulsive浮躁 and creative創作的,
74
180548
2656
表示你有可能比較
隨興而為,也較有創意,
03:03
and we've我們已經 found發現 that top-performing表現最出色
salespeople銷售人員 often經常 embody體現 these traits性狀.
75
183228
3875
我們發現頂尖業務
通常具有這些特徵。
03:07
The way we actually其實 use this in hiring招聘
76
187128
2016
我們之所以能將
這項測試運用在聘僱上,
03:09
is we have top最佳 performers表演者 in a role角色
go through通過 neuroscience神經科學 exercises演習
77
189168
3696
是因為我們讓在該領域表現傑出的人
實際做過神經科學的測驗,
03:12
like this one.
78
192888
1216
就像這個。
03:14
Then we develop發展 an algorithm算法
79
194128
1376
根據結果,我們發展出一套演算公式
03:15
that understands理解 what makes品牌
those top最佳 performers表演者 unique獨特.
80
195528
2656
以了解是哪一項特質
讓優秀的人才脫穎而出。
03:18
And then when people apply應用 to the job工作,
81
198208
1936
因而人們在求職時,
03:20
we're able能夠 to surface表面 the candidates候選人
who might威力 be best最好 suited合適的 for that job工作.
82
200168
4136
我們才能篩選出最適任的人。
03:24
So you might威力 be thinking思維
there's a danger危險 in this.
83
204328
2376
也許你在想:這樣的測試也有風險,
03:26
The work world世界 today今天
is not the most diverse多種
84
206728
2136
因為今日的職場並沒有太多元化,
03:28
and if we're building建造 algorithms算法
based基於 on current當前 top最佳 performers表演者,
85
208888
3096
如果只針對現有優秀的工作者
特質來設計演算公式,
03:32
how do we make sure
86
212008
1216
那麼要如何確保
03:33
that we're not just perpetuating延續
the biases偏見 that already已經 exist存在?
87
213248
2976
我們不會讓現有的偏差
一再地重複發生?
03:36
For example, if we were building建造
an algorithm算法 based基於 on top最佳 performing執行 CEOs老總
88
216248
4056
假設我們的演算法是以
頂尖執行長為設計基礎,
03:40
and use the S&amp功放;P 500 as a training訓練 set,
89
220328
3216
並以標準普爾 500 家公司為訓練集,
03:43
you would actually其實 find
90
223568
1256
則會發現
03:44
that you're more likely容易 to hire聘請
a white白色 man named命名 John約翰 than any woman女人.
91
224848
3816
選出來的人大概都會是叫做
約翰的白人男性而少有女性,
03:48
And that's the reality現實
of who's誰是 in those roles角色 right now.
92
228688
2696
那是因為在現實職場中,
擔任該職位的都是這類型的人。
03:51
But technology技術 actually其實 poses姿勢
a really interesting有趣 opportunity機會.
93
231408
3376
在這裡科技就能提供
另一個有趣的機會,
03:54
We can create創建 algorithms算法
that are more equitable公平
94
234808
2256
我們可以做出一套更公正,
03:57
and more fair公平 than human人的 beings眾生
have ever been.
95
237088
2256
而且比人類更公平的演算系統。
03:59
Every一切 algorithm算法 that we put
into production生產 has been pretested預先測試
96
239368
3696
每套演算法在實際應用前
都需經過前置測試,
04:03
to ensure確保 that it doesn't favor偏愛
any gender性別 or ethnicity種族.
97
243088
3096
以確保不會偏好某性別或種族。
04:06
And if there's any population人口
that's being存在 overfavored過度青睞,
98
246208
2736
如果系統真有偏重某些族群,
04:08
we can actually其實 alter改變 the algorithm算法
until直到 that's no longer true真正.
99
248968
3120
那麼我們可以改變演算方法,
直到情況改善。
04:12
When we focus焦點 on the inherent固有
characteristics特點
100
252448
2216
當我們著重在發掘某人與生俱來、
04:14
that can make somebody
a good fit適合 for a job工作,
101
254688
2096
使他在職場上適任的人格特質,
04:16
we can transcend超越 racism種族主義,
classismclassism, sexism性別歧視, ageism年齡歧視 --
102
256808
3576
我們就能夠超越種族、
階級、性別、年齡,
04:20
even good schoolism學校主義.
103
260408
1416
甚至名校的偏見。
04:21
Our best最好 technology技術 and algorithms算法
shouldn't不能 just be used
104
261848
2896
我們這樣棒的科技
和演算法不應該只用在
04:24
for helping幫助 us find our next下一個 movie電影 binge狂歡
or new favorite喜愛 Justin賈斯汀 Bieber比伯 song歌曲.
105
264768
3736
追電影或尋找小賈斯汀的新歌上面。
04:28
Imagine想像 if we could harness馬俱
the power功率 of technology技術
106
268528
2656
而是應該要駕馭科技,
04:31
to get real真實 guidance指導
on what we should be doing
107
271208
2296
並根據我們的內在潛質
04:33
based基於 on who we are at a deeper更深 level水平.
108
273528
1936
來引導我們要追求的目標。
Translated by Sailin Lu
Reviewed by Bruce Sung

▲Back to top

ABOUT THE SPEAKER
Priyanka Jain - Technologist
Priyanka Jain heads up product for pymetrics, an NYC-based startup that uses neuroscience and AI to make hiring more diverse and effective.

Why you should listen

Passionate about using technology to create a fairer workplace and global economy, Priyanka Jain is a spokesperson for the United Nations Foundation's Girl Up Campaign, Chair of the Acumen Fund's Junior Council and on the Innovation Board for the XPrize Foundation. She received her B.S. from Stanford University, where she was President of Stanford Women in Business and one of 12 Mayfield Entrepreneurship Fellows. Her previous experience includes internships at IBM Watson, Shift Technologies, Canvas Ventures and the Institute for Learning and Brain Sciences. Outside of work, she loves playing tennis and eating anything covered in dark chocolate.

More profile about the speaker
Priyanka Jain | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee