English-Video.net comment policy

The comment field is common to all languages

Let's write in your language and use "Google Translate" together

Please refer to informative community guidelines on TED.com

TED2009

JoAnn Kuchera-Morin: Stunning data visualization in the AlloSphere

喬安•庫吉拉莫丁帶我們遊覽全像球

Filmed
Views 635,333

喬安•庫吉拉莫丁示範全像球,一個觀看和解釋科學資料的全新方法,置身於一個充滿色彩和聲音的巨大金屬球形裝置裏。潛入大腦,感受電子的自旋,聆聽元素的音樂...

- Composer
Composer JoAnn Kuchera-Morin is the director of the Center for Research in Electronic Art Technology (CREATE) at UC Santa Barbara. Full bio

The AlloSphere: it's a three-story metal sphere
這就是全像球,一個不會產生回音的,
00:18
in an echo-free chamber.
三層樓高的金屬球狀內部空間。
00:21
Think of the AlloSphere as a large,
你可以把全像球想像為一個大的、
00:23
dynamically varying digital microscope
連接著超級電腦的
00:25
that's connected to a supercomputer.
動態數位顯微鏡。
00:28
20 researchers can stand on a bridge
20 個研究員可以站在球體內
00:30
suspended inside of the sphere, and be
懸置的橋上,
00:33
completely immersed in their data.
完全地和他們的數據融為一體。
00:35
Imagine if a team of physicists
想像一下如果一組物理學家,
00:37
could stand inside of an atom
可以站在原子裏面,
00:39
and watch and hear electrons spin.
並且可以看到、聽到電子的自旋。
00:42
Imagine if a group of sculptors
想像一下如果一組雕塑家,
00:44
could be inside of a lattice of atoms
可以站在原子的矩陣內
00:48
and sculpt with their material.
並用他們的材料進行雕塑。
00:51
Imagine if a team of surgeons could fly
想像一下如果一組外科醫生,可以
00:53
into the brain, as though it was a world,
在大腦裏飛翔,就好像大腦內是另一個世界一樣,
00:55
and see tissues as landscapes,
將組織想像成地形景緻,
00:58
and hear blood density levels as music.
將血液密度高低當成音樂來聽。
01:00
This is some of the research that you're going to see
這就是你們將看到的一部分
01:03
that we're undertaking at the AlloSphere.
我們正在全像球裡進行的研究。
01:05
But first a little bit about this group
但是先讓我介紹一下,
01:07
of artists, scientists, and engineers
跟我們一起工作的藝術家、科學家和
01:09
that are working together.
工程師小組。
01:11
I'm a composer, orchestrally-trained,
我是一個交響樂團的作曲家,
01:13
and the inventor of the AlloSphere.
也是全像球的發明者。
01:15
With my visual artist colleagues, we map
跟我的視覺藝術家同事一起,我們利用
01:17
complex mathematical algorithms that unfold in time and space,
聲音與圖像繪出了各種
01:19
visually and sonically.
在時間與空間中拓展的複雜數學演算法。
01:22
Our scientist colleagues are finding new patterns
我們的科學家同事正在
01:24
in the information.
資訊裡尋找新的規律。
01:26
And our engineering colleagues are making
而我們的工程師同事正在製造一個
01:28
one of the largest dynamically varying computers in the world
世界上最大的動態電腦,
01:30
for this kind of data exploration.
以用於這種資料探索。
01:34
I'm going to fly you into five research projects
我將要帶你們飛進全像球
01:36
in the AlloSphere that are going to take you from
裡的五個研究計畫,那將帶領你們從
01:39
biological macroscopic data
宏觀生物學數據
01:41
all the way down to electron spin.
一路縮小到電子的自旋。
01:43
This first project is called the AlloBrain.
第一個項目叫做全像大腦。
01:46
And it's our attempt to quantify beauty
這是我們試圖在找出大腦
01:49
by finding which regions of the brain
和美麗事物互動區域的同時
01:51
are interactive while witnessing something beautiful.
去量化美麗。
01:53
You're flying through the cortex of my colleague's brain.
你們正在飛躍我一個同事的大腦皮層,
01:57
Our narrative here is real fMRI data
我們在這裡所做的,是將真實的 fMRI 資料
02:00
that's mapped visually and sonically.
以視覺和聽覺的方式顯現。
02:03
The brain now a world that we can fly through and interact with.
現在大腦就像一個我們可以在其中飛翔並與之互動的世界。
02:05
You see 12 intelligent computer agents,
你看到了 12 個智慧電腦媒介,
02:09
the little rectangles that are flying in the brain with you.
就是那些和你一起在腦內飛翔的長方形,
02:12
They're mining blood density levels.
它們在探測血液密度的高低,
02:15
And they're reporting them back to you sonically.
然後它們通過聲音將狀態回報給你。
02:17
Higher density levels mean
密度高表示著
02:20
more activity in that point of the brain.
大腦中那個部位較為活躍。
02:22
They're actually singing these densities to you
他們實際上正在將密度「唱」給你們聽,
02:24
with higher pitches mapped to higher densities.
愈高的音調代表著愈高的密度。
02:27
We're now going to move from real biological data
我們現在將要從真正的生物資料
02:30
to biogenerative algorithms that create artificial nature
移到創造人工自然的生物合成演算法,
02:33
in our next artistic and scientific installation.
我將在下一個藝術和科學的裝置中展現給你們。
02:37
In this artistic and scientific installation, biogenerative algorithms
在這個兼具藝術性和科學性的裝置中,生物合成演算法
02:41
are helping us to understand
將要幫我們去瞭解
02:45
self-generation and growth:
自我繁殖和生長。
02:47
very important for simulation in the nanoscaled sciences.
這是在奈米規模的科學上的一個十分重要的模擬。
02:49
For artists, we're making new worlds
對藝術家而言,我們正在創造
02:53
that we can uncover and explore.
我們可以開拓和探索的新世界。
02:55
These generative algorithms grow over time,
就在這些自我生長演算法在成長的同時,
02:57
and they interact and communicate as a swarm of insects.
他們就像一群昆蟲一樣地在互動和交流。
03:00
Our researchers are interacting with this data
我們的研究員通過注入細菌代碼
03:03
by injecting bacterial code,
去和這個數據互動,
03:05
which are computer programs,
那些都是允許讓這些生物
03:07
that allow these creatures to grow over time.
不停成長的電腦程式。
03:09
We're going to move now from the biological
我們現在要從這個生物性的
03:13
and the macroscopic world,
宏觀世界
03:15
down into the atomic world,
深入到原子的世界,
03:17
as we fly into a lattice of atoms.
現在我們正在飛往原子的矩陣中。
03:19
This is real AFM -- Atomic Force Microscope -- data
這是真正的 AFM,原子力顯微鏡資料,
03:22
from my colleagues in the Solid State Lighting and Energy Center.
這些資料來自於我在固態光學暨能源中心的同事。
03:25
They've discovered a new bond,
他們已經發現了一個新的化學鍵,
03:28
a new material for transparent solar cells.
一種可以應用到透明太陽能電池的新材料。
03:30
We're flying through 2,000 lattice of atoms --
我們正在飛躍二千個原子的矩陣 --
03:33
oxygen, hydrogen and zinc.
氧、氫和鋅。
03:36
You view the bond in the triangle.
你看到了這個三角形的化學鍵。
03:38
It's four blue zinc atoms
這是四個藍色的鋅原子
03:41
bonding with one white hydrogen atom.
和一個白色的氫原子鍵結在一起。
03:43
You see the electron flow with the streamlines
你們看到了這些帶著流線型軌跡的電子流,
03:46
we as artists have generated for the scientists.
這是作為藝術家的我們為科學家們所設計的。
03:48
This is allowing them to find the bonding nodes in any lattice of atoms.
這可以讓他們在任何原子矩陣中去尋找鍵結的節點。
03:51
We think it makes a beautiful structural art.
我們認為這是一個美麗的結構藝術。
03:54
The sound that you're hearing are the actual
你們現在聽到的聲音實際上是
03:57
emission spectrums of these atoms.
這些原子的放射光譜。
03:59
We've mapped them into the audio domain,
我們將它們對應到聲音的頻帶中。
04:01
so they're singing to you.
所以它們就在對你們唱歌。
04:03
Oxygen, hydrogen and zinc have their own signature.
氧、氫和鋅有它們自己的特徵。
04:05
We're going to actually move even further down
我們甚至可以更深入一點,
04:08
as we go from this lattice of atoms
從這個原子矩陣
04:11
to one single hydrogen atom.
到一個單獨的氫原子。
04:14
We're working with our physicist colleagues
我們和物理學的同事一起工作,
04:17
that have given us the mathematical calculations
他們為我們解出「三度空間中與時間相關的
04:19
of the n-dimensional Schrödinger equation in time.
薛丁格方程式」。
04:22
What you're seeing here right now is a superposition of an electron
現在你們看到的是,在氫原子裡
04:26
in the lower three orbitals of a hydrogen atom.
三個低階電子軌域的混成軌域。
04:29
You're actually hearing and seeing the electron flow with the lines.
你們可以聽到和看到這些帶著軌跡的電子流動情形,
04:32
The white dots are the probability wave
白色的點是概率波,
04:36
that will show you where the electron is
它告訴你在任何一個時空中,
04:38
in any given point of time and space
在這特殊的三軌域組態中
04:40
in this particular three-orbital configuration.
電子的所在位置。
04:42
In a minute we're going to move to a two-orbital configuration,
一會兒後我們將要移至兩個軌域的組態,
04:46
and you're going to notice a pulsing.
然後你將會注意到一個脈衝。
04:50
And you're going to hear an undulation between the sound.
然後你會聽到一個波動的聲音,
04:52
This is actually a light emitter.
這實際上是一個放射光子。
04:55
As the sound starts to pulse and contract,
當這聲音開始脈衝然後收縮,
04:57
our physicists can tell when a photon is going to be emitted.
我們的物理學家可以得知,何時光子將被放射。
05:00
They're starting to find new mathematical structures
他們開始在這些計算中找到
05:03
in these calculations.
新的數學結構。
05:07
And they're understanding more about quantum mathematics.
然後他們就會更加瞭解量子數學。
05:09
We're going to move even further down,
我們要繼續深入,
05:12
and go to one single electron spin.
去看看單個電子的自旋。
05:15
This will be the final project that I show you.
這將是我為你們展示的最後一個計畫。
05:19
Our colleagues in the Center for Quantum Computation
我們在量子計算研究中心和自旋電子學
05:22
and Spintronics are actually measuring with their lasers
的同事,通過雷射去
05:24
decoherence in a single electron spin.
測量電子的環繞。
05:28
We've taken this information and we've
我們取得這些資料,然後
05:31
made a mathematical model out of it.
我們用它做出了一個數學模型。
05:33
You're actually seeing and hearing
你們現在看到和聽到的是
05:35
quantum information flow.
量子資訊流。
05:37
This is very important for the next step in simulating
這對於接下來模擬量子電腦和資訊科技
05:39
quantum computers and information technology.
是十分重要的一步。
05:42
So these brief examples that I've shown you
好了,這些是我為你們展示的小例子,
05:45
give you an idea of the kind of work that we're doing
讓你們對於我們在加州大學
05:49
at the University of California, Santa Barbara,
聖塔芭芭拉分校的工作有個概念,
05:52
to bring together, arts, science
是將藝術、科學
05:54
and engineering
和工程學混合在一起,
05:57
into a new age of math, science and art.
創造出一個數學、科學和藝術的新領域。
06:00
We hope that all of you will come to see the AlloSphere.
我們希望你們都能來參觀全像球。
06:03
Inspire us to think of new ways that we can use
來啟發我們思考對於我們在聖塔芭芭拉
06:06
this unique instrument that we've created at Santa Barbara.
所創造的這個獨特的新儀器能有什麼全新的應用。
06:10
Thank you very much.
十分感謝。
06:14
(Applause)
(掌聲)
06:16
Translated by Wang Qian
Reviewed by Bill Hsiung

▲Back to top

About the speaker:

JoAnn Kuchera-Morin - Composer
Composer JoAnn Kuchera-Morin is the director of the Center for Research in Electronic Art Technology (CREATE) at UC Santa Barbara.

Why you should listen

Composer JoAnn Kuchera-Morin works on  the Allosphere, one of the largest scientific and artistic instruments in the world. Based at UCSB, the Allosphere and its 3D immersive theater maps complex data in time and space. Kuchera-Morin founded the Center for Research in Electronic Art Technology (CREATE) and has been the director since its birth in 1986. In 2000 she began work on a Digital Media Center within the California NanoSystems Institute at Santa Barbara. Her fascinations include gestural interfaces for performance and the expression of complex data in nontraditional forms.

Hew own music explores the boundaries of electric/acoustic instrumentation, welcoming digital players into the ensemble in works such as Concerto For Clarinet and Clarinets, a composition for solo clarinet and computer-generated tape.

More profile about the speaker
JoAnn Kuchera-Morin | Speaker | TED.com