Sebastian Wernicke: How to use data to make a hit TV show
Sebastian Wernicke: Kaip naudojantis duomenimis sukurti kultinę TV laidą
After making a splash in the field of bioinformatics, Sebastian Wernicke moved on to the corporate sphere, where he motivates and manages multidimensional projects. Full bio
Double-click the English transcript below to play the video.
have probably never heard about,
esate girdėję apie Roy Price’ą,
22 savo gyvenimo minutes
minutes of your life on April 19, 2013.
for 22 very entertaining minutes,
praėjo labai linksmai,
Roy priėmė sprendimą.
about three years ago.
is a senior executive with Amazon Studios.
„Amazon Studios“ vyr. vadovas.
company of Amazon.
jis lieknas, pašiauštais plaukais.
as "movies, TV, technology, tacos."
„Kinas, TV, technologijos, taco“.
because it's his responsibility
kokias laidas kurs „Amazon“ kompanija.
that Amazon is going to make.
a highly competitive space.
labai didelė konkurencija.
TV shows already out there,
tad Roy negali rinktis bet ko.
that are really, really great.
pačias geriausias TV laidas.
pačiame dešiniajame šios kreivės gale.
of this curve here.
is the rating distribution
maždaug 2 500 TV laidų „IMDb“ tinklapyje.
on the website IMDB,
how many shows get that rating.
kiek laidų gauna tokį reitingą.
of nine points or higher, that's a winner.
9 punktus ar daugiau,
"Game of Thrones," "The Wire,"
„Sostų karams“, „Blakei“.
your brain is basically like,
smegenys nerimsta:
here on that end,
yra tokios laidos kaip...
"Toddlers and Tiaras" --
kas dedasi tame kreivės gale.
on that end of the curve.
getting on the left end of the curve,
kairysis kreivės galas,
some serious brainpower
kad nurungtum „Vaikus ir tiaras“.
is this middle bulge here,
įprastinės laidos.
that aren't really good or really bad,
that he's really on the right end of this.
dešiniajame kreivės gale.
doing something like this,
to take any chances.
he holds a competition.
through an evaluation,
of each one of these shows
jis sukurė pirmąsias serijas
for everyone to watch.
kad žiūrėtum nemokamai.
is giving out free stuff,
negi neimsi?
are watching those episodes.
žiūrėjo šias serijas.
while they're watching their shows,
kad kol žiūrėjo laidas...
by Roy Price and his team,
ir viską įrašinėjo.
when somebody presses pause,
kada paspaudžiama „pauzė“,
what parts they watch again.
o kas – žiūrima antrąsyk.
milijonai duomenų taškų,
to have those data points
kokį serialą sukurti.
which show they should make.
so they collect all the data,
juos išnagrinėjus, buvo gautas atsakymas:
and an answer emerges,
apie 4 JAV senatorius respublikonus.“
about four Republican US Senators."
remember that show, actually,
atsimenat šią laidą.
the average of this curve here is at 7.4,
nes šios kreivės vidurkis – 7,4 punktai,
and his team were aiming for.
siekė Roy Price'as ir jo komanda.
at about the same time,
pavyko sukurti puikią laidą,
to land a top show using data analysis,
the Chief Content Officer of Netflix,
atsakingą už turinį.
he's on a constant mission
sukurti tą puikiąją TV laidą.
tik naudojasi jais kiek kitaip.
a little bit differently.
what he did -- and his team of course --
bet kartu su savo komanda
they already had about Netflix viewers,
apie „Netflix“ žiūrovus.
they give their shows,
ką žiūrėjo, ką mėgsta ir panašiai.
what shows people like, and so on.
visokiausių detalių apie savo žiūrovus.
about the audience:
kokius prodiuserius, kokius aktorius.
what kind of actors.
all of these pieces together,
visas šias detales į vieną,
ne serialą apie keturis senatorius,
of course, nailed it with that show,
a 9.1 rating on this curve,
9,1 punktais – ko „Netflix“ ir siekė.
where they wanted it to be.
what happened here?
data-savvy companies.
abi sujungė milijonus duomenų taškų.
millions of data points,
beautifully for one of them,
that this should be working all the time.
millions of data points
kad priimtum sprendimą,
to make a pretty good decision.
turėtų būti gana neblogas.
of statistics to rely on.
with very powerful computers.
rezultatui pagerinti.
is good TV, right?
does not work that way,
darosi kiek baisoka.
where we're turning to data more and more
mes vis dažniau griebiamės duomenų,
that go far beyond TV.
nei to reikalauja televizija.
Multi-Health Systems?
„Multi-Health Systems“?
is a software company,
gamina kompiuterinę įrangą.
neteks susidurti su šia programa.
with that software,
it means you're in prison.
and they apply for parole,
paprašo jį lygtinai paleisti,
data analysis software from that company
naudojant būtent šios kompanijos programą.
whether to grant that parole.
as Amazon and Netflix,
a TV show is going to be good or bad,
ar TV laida bus gera, ar bloga.
is going to be good or bad.
ar žmogus bus geras, ar blogas.
that can be pretty bad,
gali būti gana skausmingos,
I guess, even worse.
ilgesniam laikui kalėjime.
some evidence that this data analysis,
kiek bebūtų joje duomenų,
does not always produce optimum results.
kaip „Multi-Health Systems“
like Multi-Health Systems
čia suklumpa net išmaniausios kompanijos.
companies get it wrong.
that they were able, with data analysis,
naudodami duomenų analizę,
the nasty kind of flu,
on their Google searches.
„Google“ paieškos sistemoje.
and it made a big splash in the news,
of scientific success:
užsitarnavo straipsnį žurnale „Nature“.
for year after year after year,
kodėl tais metais jis nesuveikė.
buvo išimtas.
from the journal "Nature."
Amazon and Google,
ekspertės „Amazon“ ir „Google“.
sprendimams realiame gyvenime:
into real-life decision-making --
that data is helping.
kad duomenys mums padeda.
a lot of this struggle with data myself,
su duomenų keliamomis problemomis,
where lots of very smart people
naudoja neįsivaizduojamą kiekį duomenų,
to make pretty serious decisions
pvz., kaip gydyti vėžį ar sukurti vaistą.
or developing a drug.
I've noticed a sort of pattern
tam tikrą dėsnį ar taisyklę tarp
about the difference
decision-making with data
sprendimams priimti ir nesėkmingo.
and it goes something like this.
solving a complex problem,
iš esmės atliekame du veiksmus.
į daugybę detalių,
apart into its bits and pieces
those bits and pieces,
you do the second part.
kad priimtume sprendimą.
back together again
have to do it over again,
bet du dalykai išlieka:
back together again.
no matter how powerful,
tepadeda išskaidyti problemą
and understanding its pieces.
back together again
ir šitaip daryti sprendimo.
and we all have it,
kaip sudėti detales atgal į vieną.
back together again,
net kai informacija nepilna.
that Netflix was so successful,
where they belong in the process.
panaudojo ten, kur reikia.
lots of pieces about their audience
susipažino su savo žiūrovais.
been able to understand at that depth,
būtų buvusi paviršutiniška.
to take all these bits and pieces
ir sukurė laidą „Kortų namelis“.
and make a show like "House of Cards,"
priėmė sprendimą ją sukurti.
made that decision to license that show,
that they were taking
with that decision.
they did it the wrong way around.
nes naudojo duomenis visiems sprendimams.
to drive their decision-making,
their competition of TV ideas,
išrinko „Alfa namelį“.
to make as a show.
a very safe decision for them,
buvo labai saugus.
point at the data, saying,
ir sakyti: „Taip sako duomenys.“
results that they were hoping for.
kurių jie norėjo, taip ir nenuvedė.
useful tool to make better decisions,
kad būtų priimtas geresnis sprendimas.
pakrypsta ne į tą pusę,
to drive those decisions.
data is just a tool,
bet jie tėra įrankis.
I find this device here quite useful.
man padeda šis daikčiukas.
device to use.
naudodamiesi šiuo daikčiuku.
yra tikrai nuostabus.
„taip“ ar „ne“,
a yes or no question,
and then you get an answer --
in this window in real time.
so I've made some decisions in my life
esu priėmęs sprendimų,
I should have just listened to the ball.
kad vertėjo paklausyti rutulio.
if you have the data available,
much more sophisticated,
kažkuo daug įmantresniu,
to come to a better decision.
kad priimtum geresnį sprendimą.
and smarter and smarter,
to make the decisions
something extraordinary,
dešiniajame kreivės gale.
message, in fact,
of huge amounts of data,
leis atsidurti dešiniajame kreivės gale.
on the right end of the curve.
ABOUT THE SPEAKER
Sebastian Wernicke - Data scientistAfter making a splash in the field of bioinformatics, Sebastian Wernicke moved on to the corporate sphere, where he motivates and manages multidimensional projects.
Why you should listen
Dr. Sebastian Wernicke is the Chief Data Scientist of ONE LOGIC, a data science boutique that supports organizations across industries to make sense of their vast data collections to improve operations and gain strategic advantages. Wernicke originally studied bioinformatics and previously led the strategy and growth of Seven Bridges Genomics, a Cambridge-based startup that builds platforms for genetic analysis.
Before his career in statistics began, Wernicke worked stints as both a paramedic and successful short animated filmmaker. He's also the author of the TEDPad app, an irreverent tool for creating an infinite number of "amazing and really bad" and mostly completely meaningless talks. He's the author of the statistically authoritative and yet completely ridiculous "How to Give the Perfect TEDTalk."
Sebastian Wernicke | Speaker | TED.com