Sebastian Wernicke: How to use data to make a hit TV show
Sebastian Wernicke: Jak użyć danych do stworzenia świetnego programu TV
After making a splash in the field of bioinformatics, Sebastian Wernicke moved on to the corporate sphere, where he motivates and manages multidimensional projects. Full bio
Double-click the English transcript below to play the video.
nigdy nie słyszała o Royu Price,
have probably never heard about,
minutes of your life on April 19, 2013.
część z was dobrze się bawiła,
for 22 very entertaining minutes,
którą Roy musiał podjąć trzy lata temu.
about three years ago.
is a senior executive with Amazon Studios.
company of Amazon.
produkcją telewizyjną.
i ma włosy na sztorc,
as "movies, TV, technology, tacos."
"filmy, telewizja, technologia, tacos".
because it's his responsibility
jakie stworzy Amazon.
that Amazon is going to make.
a highly competitive space.
TV shows already out there,
że nie można wybrać byle czego.
that are really, really great.
na prawym końcu tego wykresu.
of this curve here.
is the rating distribution
2 500 seriali w serwisie IMDB.
on the website IMDB,
dostało taką ocenę.
how many shows get that rating.
of nine points or higher, that's a winner.
jest bardzo dobry.
"Game of Thrones," "The Wire,"
"Gra o tron", "Prawo ulicy",
your brain is basically like,
here on that end,
"Toddlers and Tiaras" --
on that end of the curve.
getting on the left end of the curve,
some serious brainpower
is this middle bulge here,
that aren't really good or really bad,
ale nie są też złe.
that he's really on the right end of this.
po prawej stronie.
Amazon robi coś takiego po raz pierwszy.
doing something like this,
to take any chances.
liczyć na łut szczęścia.
he holds a competition.
through an evaluation,
wybiera osiem seriali.
of each one of these shows
for everyone to watch.
is giving out free stuff,
to kto by nie skorzystał?
are watching those episodes.
while they're watching their shows,
że są wtedy obserwowani.
by Roy Price and his team,
nagrywają wszystko.
when somebody presses pause,
co opuszczamy, a co oglądamy ponownie.
what parts they watch again.
potrzebnych przy wyborze serialu.
to have those data points
which show they should make.
so they collect all the data,
i dostają odpowiedź.
and an answer emerges,
z amerykańskiej Partii Republikańskiej".
about four Republican US Senators."
remember that show, actually,
że niewielu z was zna ten serial.
the average of this curve here is at 7.4,
bo średnia na tym wykresie to 7,4,
and his team were aiming for.
Roya Price'a i jego zespołu.
prezesowi innej firmy się udało.
at about the same time,
to land a top show using data analysis,
właśnie dzięki analizie danych
dyrektorze programowym Netflixa.
the Chief Content Officer of Netflix,
na jak najlepsze seriale.
he's on a constant mission
a little bit differently.
what he did -- and his team of course --
dane na temat widzów Netflixa.
they already had about Netflix viewers,
they give their shows,
what shows people like, and so on.
about the audience:
jakich producentów, jakich aktorów.
what kind of actors.
all of these pieces together,
o czterech senatorach,
of course, nailed it with that show,
Netflix trafił tutaj w dziesiątkę.
a 9.1 rating on this curve,
where they wanted it to be.
what happened here?
data-savvy companies.
zarządzające danymi.
millions of data points,
wszystko działa jak należy,
beautifully for one of them,
that this should be working all the time.
zawsze powinna działać.
millions of data points
na podstawie których podejmujemy decyzję,
to make a pretty good decision.
of statistics to rely on.
with very powerful computers.
nowoczesne komputery.
is good TV, right?
że serial będzie dobry.
does not work that way,
nie działa w ten sposób,
where we're turning to data more and more
podejmuje się bardzo ważne decyzje.
that go far beyond TV.
Multi-Health Systems?
is a software company,
się z nim nie zetkniecie,
with that software,
it means you're in prison.
że jesteście w więzieniu.
and they apply for parole,
wnioskuje o zwolnienie warunkowe,
data analysis software from that company
whether to grant that parole.
as Amazon and Netflix,
jak dla Amazona czy Netflixa,
a TV show is going to be good or bad,
is going to be good or bad.
that can be pretty bad,
stracić 22 minuty na średni serial,
I guess, even worse.
jest chyba jeszcze gorsze.
some evidence that this data analysis,
że analiza danych nie zawsze się sprawdza.
does not always produce optimum results.
like Multi-Health Systems
nie wiedzą, co zrobić z danymi.
companies get it wrong.
that they were able, with data analysis,
że może przewidzieć epidemie grypy.
the nasty kind of flu,
dane wyszukiwania.
on their Google searches.
and it made a big splash in the news,
rozpisywały się o tym gazety.
of scientific success:
w postaci artykułu w tygodniku "Nature".
for year after year after year,
przez rok, drugi, trzeci,
artykułu w tygodniku "Nature".
from the journal "Nature."
Amazon and Google,
i Google popełniają błędy,
wpływają na nasze decyzje,
into real-life decision-making --
that data is helping.
że dane rzeczywiście pomagają.
a lot of this struggle with data myself,
where lots of very smart people
używa niesamowicie wiele danych
to make pretty serious decisions
or developing a drug.
czy opracowanie leku.
I've noticed a sort of pattern
about the difference
i niewłaściwym podejmowaniem decyzji.
decision-making with data
and it goes something like this.
moimi przemyśleniami.
solving a complex problem,
złożony problem, robimy dwie rzeczy.
apart into its bits and pieces
żeby go dogłębnie przeanalizować.
those bits and pieces,
you do the second part.
z powrotem i wyciągamy wnioski.
back together again
have to do it over again,
i składanie części.
back together again.
sprawdza się tylko na pierwszym etapie.
no matter how powerful,
części składowe problemu.
and understanding its pieces.
back together again
ani do wyciągania wniosków.
and we all have it,
które ma każdy z nas.
części informacji, nawet niekompletnych,
back together again,
that Netflix was so successful,
Netflixowi się udało.
where they belong in the process.
i mózg tak, jak należało.
lots of pieces about their audience
żeby zrozumieć preferencje widzów,
been able to understand at that depth,
zrobić tak dogłębnie.
to take all these bits and pieces
o stworzeniu "House of Cards".
and make a show like "House of Cards,"
made that decision to license that show,
that they were taking
with that decision.
they did it the wrong way around.
to drive their decision-making,
jak i wyborze "Alpha House".
their competition of TV ideas,
to make as a show.
a very safe decision for them,
bo zawsze można było zrzucić winę na dane.
point at the data, saying,
results that they were hoping for.
jakich się spodziewano.
useful tool to make better decisions,
przy podejmowaniu decyzji.
jedynie na danych, zaczynają się problemy.
to drive those decisions.
data is just a tool,
nieważne jak potężnym.
I find this device here quite useful.
że to urządzenie jest bardzo przydatne.
device to use.
a yes or no question,
and then you get an answer --
i od razu dostajemy odpowiedź.
in this window in real time.
so I've made some decisions in my life
I should have just listened to the ball.
mogłem zostawić kuli.
if you have the data available,
to chcemy użyć czegoś bardziej złożonego,
much more sophisticated,
to come to a better decision.
and smarter and smarter,
ale to my powinniśmy podjąć decyzję.
to make the decisions
something extraordinary,
co znajdzie się po prawej stronie.
message, in fact,
of huge amounts of data,
znaleźć się po prawej stronie, a nie dane.
on the right end of the curve.
ABOUT THE SPEAKER
Sebastian Wernicke - Data scientistAfter making a splash in the field of bioinformatics, Sebastian Wernicke moved on to the corporate sphere, where he motivates and manages multidimensional projects.
Why you should listen
Dr. Sebastian Wernicke is the Chief Data Scientist of ONE LOGIC, a data science boutique that supports organizations across industries to make sense of their vast data collections to improve operations and gain strategic advantages. Wernicke originally studied bioinformatics and previously led the strategy and growth of Seven Bridges Genomics, a Cambridge-based startup that builds platforms for genetic analysis.
Before his career in statistics began, Wernicke worked stints as both a paramedic and successful short animated filmmaker. He's also the author of the TEDPad app, an irreverent tool for creating an infinite number of "amazing and really bad" and mostly completely meaningless talks. He's the author of the statistically authoritative and yet completely ridiculous "How to Give the Perfect TEDTalk."
Sebastian Wernicke | Speaker | TED.com