ABOUT THE SPEAKER
Hans Rosling - Global health expert; data visionary
In Hans Rosling’s hands, data sings. Global trends in health and economics come to vivid life. And the big picture of global development—with some surprisingly good news—snaps into sharp focus.

Why you should listen

Even the most worldly and well-traveled among us have had their perspectives shifted by Hans Rosling. A professor of global health at Sweden's Karolinska Institute, his work focused on dispelling common myths about the so-called developing world, which (as he pointed out) is no longer worlds away from the West. In fact, most of the Third World is on the same trajectory toward health and prosperity, and many countries are moving twice as fast as the west did.

What set Rosling apart wasn't just his apt observations of broad social and economic trends, but the stunning way he presented them. Guaranteed: You've never seen data presented like this. A presentation that tracks global health and poverty trends should be, in a word: boring. But in Rosling's hands, data sings. Trends come to life. And the big picture — usually hazy at best — snaps into sharp focus.

Rosling's presentations were grounded in solid statistics (often drawn from United Nations and World Bank data), illustrated by the visualization software he developed. The animations transform development statistics into moving bubbles and flowing curves that make global trends clear, intuitive and even playful. During his legendary presentations, Rosling took this one step farther, narrating the animations with a sportscaster's flair.

Rosling developed the breakthrough software behind his visualizations through his nonprofit Gapminder, founded with his son and daughter-in-law. The free software — which can be loaded with any data — was purchased by Google in March 2007. (Rosling met the Google founders at TED.)

Rosling began his wide-ranging career as a physician, spending many years in rural Africa tracking a rare paralytic disease (which he named konzo) and discovering its cause: hunger and badly processed cassava. He co-founded Médecins sans Frontièrs (Doctors without Borders) Sweden, wrote a textbook on global health, and as a professor at the Karolinska Institut in Stockholm initiated key international research collaborations. He's also personally argued with many heads of state, including Fidel Castro.

Hans Rosling passed away in February 2017. He is greatly missed.


More profile about the speaker
Hans Rosling | Speaker | TED.com
TED2006

Hans Rosling: The best stats you've ever seen

ഹാന്സ് റൊസ്ലിംഗ് നിങ്ങള്‍ കണ്ട് ഏറ്റവും നല്ല സ്റ്റാറ്റിറ്റിക്സ് പ്രദര്ശിപ്പിക്കുന്നു.

Filmed:
14,386,844 views

ഡേറ്റയുടെ ഇതുപോലൊരുപയോഗം നിങ്ങളൊരിക്കലും കണ്ടിട്ടുണ്ടാവില്ല. കായിക ചടുലതയോടെയും വേഗത്തിലും സ്റ്റാറ്റിസ്റ്റിക്സ് ഗുരു – വികസിത രാജ്യമെന്ന ധാരണയെ ഇല്ലാതാക്കുന്നു.
- Global health expert; data visionary
In Hans Rosling’s hands, data sings. Global trends in health and economics come to vivid life. And the big picture of global development—with some surprisingly good news—snaps into sharp focus. Full bio

Double-click the English transcript below to play the video.

00:25
About 10 years ago, I took on the task to teach global development
0
0
4000
ഏതാണ്ടു പത്തു വറ്ഷം മുന്പ് സ്വീഡനിലെ ബിരുദവിദ്യാർഥികൾക്ക് ലോക വികസനമെന്ന
00:29
to Swedish undergraduate students. That was after having spent
1
4000
4000
ക്ലാസെടുക്കുവാന് ചുമതലയേറ്റു. അതിനു മുൻപ് ഞാന് ഏകദേശം
00:33
about 20 years together with African institutions studying hunger in Africa,
2
8000
4000
20 വര്ഷം ഞാന് ആഫ്രിക്കയിലെ ഒരു ഇന്സ്റ്റിറ്റ്യൂട്ടില് അവിടുത്തെ പട്ടിണിയെ പറ്റി പഠിക്കുകയായിരുന്നു,
00:37
so I was sort of expected to know a little about the world.
3
12000
4000
അതിനാല് എനിക്കു ലോകപരിചയമുണ്ടെന്നു ആളുകള് വിചാരിക്കുന്നു.
00:41
And I started in our medical university, Karolinska Institute,
4
16000
5000
ഞങ്ങളുടെ കരോളീന്സ്ക ഇന്സ്റ്റിറ്റ്യ്ട്ടിലെ മെഡിക്കല് യൂണിവെഴ്സിറ്റിയിലെ
00:46
an undergraduate course called Global Health. But when you get
5
21000
4000
ബിരുദവിദ്യാറ്ഥികള്ക്കുള്ള ലോക ആരോഗ്യം എന്ന കോഴ്സായിരുന്നു ഇത്.
00:50
that opportunity, you get a little nervous. I thought, these students
6
25000
3000
പക്ഷെ നമുക്കൊരു ചാന്സുകിട്ടുമ്പോള് നാം അല്പം ആകുലരാകുന്നതും.
00:53
coming to us actually have the highest grade you can get
7
28000
3000
ഞങ്ങളുടെയടുത്തുവരുന്ന ഈ കുട്ടികള് സ്വീഡനിലെ കോളേജു വ്യവസ്ഥയില് ഏറ്റവും നല്ല ഗ്രേഡു കിട്ടുന്നവരാണ്-
00:56
in Swedish college systems -- so, I thought, maybe they know everything
8
31000
3000
അതിനാല് ഞാന് വിചാരിച്ചു, വരുന്നതിനു മുന്പേയവര്ക്ക് എല്ലാമറിയുമായിരിക്കുമെന്ന്.
00:59
I'm going to teach them about. So I did a pre-test when they came.
9
34000
4000
അങ്ങിനെ അവര് വന്നപ്പോള് ഞാനൊരു ടെസ്റ്റ് നടത്തി.
01:03
And one of the questions from which I learned a lot was this one:
10
38000
3000
അവയില് ഏറ്റവും കൂടുതല് ഉപയോഗപ്രദമായ ചോദ്യം ഇതായിരുന്നു –
01:06
"Which country has the highest child mortality of these five pairs?"
11
41000
4000
“താഴെകൊടുത്തിരിക്കുന്ന 5 ജോടി രാജ്യങ്ങളില് ഏറ്റവും കൂടുതല് ശൈശവ മരണമുള്ളതെവിടെയാണു?”
01:10
And I put them together, so that in each pair of country,
12
45000
4000
ഞാനവയെ ഒരുക്കിവെച്ചതിപ്രകാരമായിരുന്നു, എല്ലാജോടി രാജ്യങ്ങളിലും
01:14
one has twice the child mortality of the other. And this means that
13
49000
5000
ഒരെണ്ണത്തില് മറ്റേതിന്റെയിരട്ടി ശൈശവ മരണമുണ്ടായിരുന്നു. അതിനാല്, അവതമ്മിലുള്ള
01:19
it's much bigger a difference than the uncertainty of the data.
14
54000
5000
വ്യത്യാസം വളരെ വലുതണ് ഡേറ്റയുടെ അസ്ന്നിഗ്ദത കാര്യമില്ല.
01:24
I won't put you at a test here, but it's Turkey,
15
59000
2000
ഞാന് നിങ്ങളെ ഇവിടെ പരീക്ഷിക്കുന്നില്ല.പക്ഷെ ആ രാജ്യങ്ങള് – ടര്ക്കി,
01:26
which is highest there, Poland, Russia, Pakistan and South Africa.
16
61000
5000
പോളണ്ട്, റഷ്യ, പാക്കിസ്ഥാന്, സൌത്താഫ്രിക്ക, ആയിരുന്നു.
01:31
And these were the results of the Swedish students. I did it so I got
17
66000
3000
ഇതായിരുന്നു സ്വീഡനിലെ കുട്ടികളുടെയുത്തരം. അങ്ങിനെയെനിക്കല്പം ധൈര്യം
01:34
the confidence interval, which is pretty narrow, and I got happy,
18
69000
3000
കിട്ടി, അതുവളരെ കുറവായിരുന്നു, പക്ഷെ ഇപ്പൊ നല്ല സന്തോഷം, 1.8 പേര്
01:37
of course: a 1.8 right answer out of five possible. That means that
19
72000
4000
മാത്രമാണെല്ലോ ശരിയുത്തരം കിട്ടിയവര്. അതായത് അവിടെ ഒരു
01:41
there was a place for a professor of international health --
20
76000
3000
ലോകാരോഗ്യത്തെ പറ്റിപഠിപ്പിക്കുന്ന കോഴ്സിന്റെയും പ്രൊഫസ്റുടെയും ആവശ്യമുണ്ടെന്നു –
01:44
(Laughter) and for my course.
21
79000
2000
(ചിരി) അതും എന്റെ കോഴ്സ്.
01:46
But one late night, when I was compiling the report
22
81000
4000
ഒരു രാത്രിയില് ഒരു റിപ്പോര്ട്ടു തയ്യാറക്കികൊണ്ടിരുന്നപ്പൊള്
01:50
I really realized my discovery. I have shown
23
85000
4000
എനിക്കൊരുകാര്യം കൂടി മനസിലായി. സ്വീഡനിലെ എറ്റവും
01:54
that Swedish top students know statistically significantly less
24
89000
5000
നല്ല് കുട്ടികള്ക്കു, സ്റ്റാറ്റിസ്റ്റിക്കല് രൂപത്തില് നോക്കിയാല് ഒരു
01:59
about the world than the chimpanzees.
25
94000
2000
ചിമ്പാന്സിയുടെ ലോകവിവരം പോലുമില്ല.
02:01
(Laughter)
26
96000
2000
(ചിരി)
02:03
Because the chimpanzee would score half right if I gave them
27
98000
4000
കാരണം ചിമ്പാന്സിക്കു ഞാന് 2 ഏത്തപ്പഴവും ശ്രീലന്കയും ടറ്ക്കിയും കൊടുത്താല്
02:07
two bananas with Sri Lanka and Turkey. They would be right half of the cases.
28
102000
3000
ശരിയുത്തരം തിരഞ്ഞെടുക്കും. അങ്ങിനെയവ്റ്ക്കു പകുതിയെന്കിലും ഉത്തരം ശരിയായി കിട്ടിയേനെ.
02:10
But the students are not there. The problem for me was not ignorance;
29
105000
4000
പക്ഷെ കുട്ടികളവിടെപോലുമില്ല. എന്നെ സംബന്ധിച്ചിടുത്തെ പ്രശ്നം അറിവില്ലയ്മയല്ല,
02:14
it was preconceived ideas.
30
109000
3000
പിന്നെയോ അബദ്ധധാരണകളാണ്.
02:17
I did also an unethical study of the professors of the Karolinska Institute
31
112000
4000
ഞാന് മറ്റാരുമറിയാതെ കരോലിന്സ്കൈ ഇന്സ്റ്റിറ്റ്യൂട്ടിലെ പ്രൊഫസറ്മാര്ക്കിടയിലും ഒരു ന്യായികരിക്കാനാവാത്ത പഠനം നടത്തി
02:21
(Laughter)
32
116000
1000
(ചിരി)
02:22
-- that hands out the Nobel Prize in Medicine,
33
117000
2000
ഇവരാണല്ലൊ വൈദ്യത്തിനുള്ള നൊബല് പ്രൈസ് കൊടുക്കുന്നറ്,
02:24
and they are on par with the chimpanzee there.
34
119000
2000
ഇവരും ചിമ്പന്സിയുടെ തന്നെ ലവലിലായിരുന്നു.
02:26
(Laughter)
35
121000
3000
(ചിരി).
02:29
This is where I realized that there was really a need to communicate,
36
124000
4000
അപ്പോഴാണുഞാന് മനസിലാക്കിയതെ ഇവയെപറ്റി സംസാരിക്കേണ്ടതിന്റെ
02:33
because the data of what's happening in the world
37
128000
3000
യാവശ്യമുണ്ടെന്നു, കാരണം ലോകമെമ്പാടുമുള്ള
02:36
and the child health of every country is very well aware.
38
131000
3000
കുട്ടികളുടെയാരോഗ്യത്തിന്റെ വിവരത്തിനതു പ്രധാനമാണു.
02:39
We did this software which displays it like this: every bubble here is a country.
39
134000
5000
ഞങ്ങളൊരു സോഫ്റ്റ്വയര് തായ്യാറക്കി: അതില് എല്ലാ രാജ്യവും ഒരു കുമിളയാണ്.
02:44
This country over here is China. This is India.
40
139000
6000
അവിടെക്കാണുന്നയാരജ്യം ചൈനയാണു. ഇതു ഇന്ത്യ.
02:50
The size of the bubble is the population, and on this axis here I put fertility rate.
41
145000
6000
കുമിളയുടെ വലിപ്പമവിടത്തെ ജനസംഖ്യയെ കാണിക്കുന്നു. ഈ വശത്തുഞാന് ജനന നിരക്കാണുകാണിക്കുന്നതു.
02:56
Because my students, what they said
42
151000
3000
എന്റെ വിദ്യാര്ദ്ധികള് ലോകത്തെ
02:59
when they looked upon the world, and I asked them,
43
154000
2000
നോക്കുമ്പോള് ഞാനവരോടുചോദിക്കാറുണ്ട്
03:01
"What do you really think about the world?"
44
156000
2000
“എന്താണു നിങ്ങള്ക്കു ലോകത്തെ കുറിച്ചുശരിക്കും ചിന്തിക്കുന്നതു?”
03:03
Well, I first discovered that the textbook was Tintin, mainly.
45
158000
4000
ഞാനാദ്യം മനസിലാക്കി അവരുടെ പാഠപുസ്തകം പ്രധാനമായും ടിന്ടിന് ആയിരുന്നുവെന്നു.
03:07
(Laughter)
46
162000
1000
(ചിരി).
03:08
And they said, "The world is still 'we' and 'them.'
47
163000
3000
അവര് പറഞ്ഞു, “ലോകമെന്നാല് “നാം” പിന്നെ “അവരും”.
03:11
And we is Western world and them is Third World."
48
166000
3000
നാം പാശ്ചാത്യരും അവര് മൂനാം ലോകരും.”
03:14
"And what do you mean with Western world?" I said.
49
169000
3000
“എന്താണു നാം പാശ്ചാത്യരെക്കൊണ്ടു മനസിലാക്കുന്നതു?”
03:17
"Well, that's long life and small family, and Third World is short life and large family."
50
172000
5000
“നീണ്ട ആയുറ് ദൈര്ഖ്യവും, ചെറിയ കുടുംബവും, മൂനാം ലോകത്തു ചെറിയ ആയുറ് ദൈര്ഖ്യവും വലിയ കുടുംബവും."
03:22
So this is what I could display here. I put fertility rate here: number of children per woman:
51
177000
6000
അതാണു ഞാനിവിടെ കാണിക്കുന്നതു. ഇവിടെ ജനനനിരക്കു: വരെ ഒരു സ്ത്രീക്ക്.
03:28
one, two, three, four, up to about eight children per woman.
52
183000
4000
ഒരുസ്ത്രീക്കുണ്റ്റാവുന്ന കുട്ടികളുടെയെണ്ണം, ഒന്നു, രണ്ട്, മൂന്നു, നാലു, എട്ടു കുട്ടികള്.
03:32
We have very good data since 1962 -- 1960 about -- on the size of families in all countries.
53
187000
6000
ഏകദേശം 1960-62 മുതല് നമുക്കു കുടുംബത്തിന്റെ വലുപ്പത്തെകുറിച്ചു നല്ല ഡേറ്റ (കണക്കു) ലഭ്യമാണു.
03:38
The error margin is narrow. Here I put life expectancy at birth,
54
193000
3000
ഇതിലെ തെറ്റുകളുറ്റെ സാധ്യത കുറവാണു. ഇവിടെഞാന് ജനിക്കുമ്പോഴുള്ള
03:41
from 30 years in some countries up to about 70 years.
55
196000
4000
ആയുറ്ദൈര്ഖ്യം കാണിക്കുന്നു, ചില രാജ്യങ്ങളിലതു 30മുതല് 70വരെ പോവുന്നു.
03:45
And 1962, there was really a group of countries here
56
200000
3000
1962 ഇവിടെ ഇങ്ങനെ ചില രാജ്യങ്ങളുണ്ടായിരുന്നു.
03:48
that was industrialized countries, and they had small families and long lives.
57
203000
5000
വ്യവസായവല്ക്കരിക്കപ്പെട്ട, ചെറിയകുടുംബവും നീണ്ട ആയുറ്ദൈര്ഖ്യവുമുള്ളവര്.
03:53
And these were the developing countries:
58
208000
2000
ഇവിടെ വികസ്വര രാജ്യങ്ങളും,
03:55
they had large families and they had relatively short lives.
59
210000
3000
ചെറിയ ആയുറ്ദൈര്ഖ്യവും വലിയ കുടുംബവുമുള്ളവ.
03:58
Now what has happened since 1962? We want to see the change.
60
213000
4000
1962നു ശേഷമെന്തു സംഭവിച്ചു? നമുക്കു മാറ്റം കാണണമായിരുന്നു.
04:02
Are the students right? Is it still two types of countries?
61
217000
3000
കുട്ടികള് പറഞ്ഞതു ശരിയാണോ? ഇപ്പോഴും നമുക്കു രണ്ടു തരത്തിലുള്ള രാജ്യങ്ങളുണ്ടോ?
04:06
Or have these developing countries got smaller families and they live here?
62
221000
3000
അതോയീ വികസ്വര രജ്യങ്ങളിലെ കുടുംബം ചെറുതാവുകയും ആയുസ് കൂടുകയും ചെയ്തോ?
04:09
Or have they got longer lives and live up there?
63
224000
2000
അതൊ അവറ് ആയുസുകൂടുകയും ഇവിടെത്തന്നെ നില്ക്കുകയുമാണോ?
04:11
Let's see. We stopped the world then. This is all U.N. statistics
64
226000
3000
ശ്രദ്ധിക്കുക. നാമന്നു ലോകത്തെ മാറ്റമില്ലാതെനിര്ത്തി. യു.എന്നില് നിന്നും നമുക്കിത്രയും
04:14
that have been available. Here we go. Can you see there?
65
229000
3000
കണക്കു വിവര ങ്ങളെ ലഭ്യമാവുകയുള്ളൂ. ഇനി തുടരാം. ഇതു കാണമെല്ലോ?
04:17
It's China there, moving against better health there, improving there.
66
232000
3000
ചൈനയിതായിവിടെ നന്നായിവരുന്നു, ഇവിടെകൂടുതല് നന്നവുന്നു.
04:20
All the green Latin American countries are moving towards smaller families.
67
235000
3000
ഇവിടെ ആ പച്ച ലാറ്റിനമേരിക്കന് രാജ്യങ്ങളില് ഇതാ ചെറിയകുടുംബങ്ങള് വന്നെത്തുന്നു.
04:23
Your yellow ones here are the Arabic countries,
68
238000
3000
ഈ മഞ്ഞ അറേബ്യന് രാജ്യങ്ങളില് വലിയ കുടുംബങ്ങള്
04:26
and they get larger families, but they -- no, longer life, but not larger families.
69
241000
4000
നില നില്ക്കുന്നു, പക്ഷെ ആരോഗ്യ വ്യവസ്ഥ മെച്ചപ്പെടുന്നു.
04:30
The Africans are the green down here. They still remain here.
70
245000
3000
താഴെയുള്ള പച്ച ആഫ്രിക്കന് രാജ്യങ്ങള് അടിയിലാണു. അവരിപ്പോഴുമവിടെത്തന്നെ തുടരുന്നു.
04:33
This is India. Indonesia's moving on pretty fast.
71
248000
3000
ഇതാണു ഇന്ത്യ. ഇന്തോനേഷ്യഒരു ഭയന്കര തിരക്കിലാണു.
04:36
(Laughter)
72
251000
1000
(ചിരി).
04:37
And in the '80s here, you have Bangladesh still among the African countries there.
73
252000
3000
ഇവിടെ 80കളില് ബംഗ്ളാദേശ് ആഫ്രിക്കന് രാജ്യങ്ങള്ക്കൊപ്പാണു.
04:40
But now, Bangladesh -- it's a miracle that happens in the '80s:
74
255000
3000
പക്ഷെ ഇന്നിതാ ഇവിടെയാണു ബംഗളാദേശ്: അവിടുത്തെ
04:43
the imams start to promote family planning.
75
258000
3000
ഇമാമുകള് കുടുംബാസുത്രണം പ്രോത്സാഹനം ചെയ്യുവാന് തുടങ്ങി.
04:46
They move up into that corner. And in '90s, we have the terrible HIV epidemic
76
261000
5000
അങ്ങിനെ മുകളിലെ മൂലയിലേയ്ക്കു മാറ്റം കിട്ടി. 90കളില് ആഫ്രിക്കയില് എച്. ഐവി.
04:51
that takes down the life expectancy of the African countries
77
266000
3000
ആരംഭിക്കുകയും അഫ്രിക്കയിലെ ആയുറ്ദൈര്ഖ്യം വീണ്ടും താഴുന്നു,
04:54
and all the rest of them move up into the corner,
78
269000
4000
ബാക്കിയുള്ളവറ് മുകളിലേക്കു കയറികൊണ്ടിരിക്കുന്നു, നീണ്ട ആയുര്ദൈര്ഖ്യവും
04:58
where we have long lives and small family, and we have a completely new world.
79
273000
4000
ചെറിയ കുടുംബങ്ങളും, അങ്ങിന്നെ നമുക്കൊരു പുതിയ ലോകം ലഭ്യമായി.
05:02
(Applause)
80
277000
13000
(കൈയ്യടി).
05:15
Let me make a comparison directly between the United States of America and Vietnam.
81
290000
5000
ഇനി നമുക്കു യു.എസ്.എയും വിയറ്റ്നാമും തമ്മിലൊരു തുലനം നടത്താം.
05:20
1964: America had small families and long life;
82
295000
5000
1964: അമേരിക്കയില് ചെറിയകുടുംബവും നീണ്ട ആയുസും.
05:25
Vietnam had large families and short lives. And this is what happens:
83
300000
4000
വിയറ്റ്നാമില് വലിയ കുടുംബവും ചെറിയ ആയുസും.
05:29
the data during the war indicate that even with all the death,
84
304000
6000
ഇനി ഇതാണു സംഭവിക്കുന്നതു: യുദ്ധസമയത്തും നമുക്കുകാണാനവുന്നു,
05:35
there was an improvement of life expectancy. By the end of the year,
85
310000
3000
മരണങ്ങള്ക്കിടയിലും ആയുസു കൂടുന്നു. ഒരു വറ്ഷത്തിനു ശേഷം
05:38
the family planning started in Vietnam and they went for smaller families.
86
313000
3000
വിയറ്റ്നാമില് കുടുംബാസുത്രണം ആരംഭിക്കുന്നു, ചെറിയ കുടുംബങ്ങലള് വരുവാന് തുടങ്ങി.
05:41
And the United States up there is getting for longer life,
87
316000
3000
അവിടെ യു.എസ്. മുകളില് നീണ്ട ജീവിതവും
05:44
keeping family size. And in the '80s now,
88
319000
3000
ചെറിയ കുടുംബവുമായിത്തുടരുന്നു. 80കളില് അവറ്,
05:47
they give up communist planning and they go for market economy,
89
322000
3000
കമ്യൂണിസം ഉപേക്ഷിക്കുകയും കമ്പോളവല്ക്കരണത്തിലേക്കു മാറുകയും
05:50
and it moves faster even than social life. And today, we have
90
325000
4000
സാമൂഹിക ജീവിതം കൂടുതല് നന്നാവുകയും ചെയ്യുന്നു.
05:54
in Vietnam the same life expectancy and the same family size
91
329000
5000
ഇന്നു 2003 വിയറ്റ്നാമിലെ ആയുസും കുടുംബവലിപ്പവും
05:59
here in Vietnam, 2003, as in United States, 1974, by the end of the war.
92
334000
7000
1974 യുദ്ധം കഴിഞ്ഞപ്പോള് യു.എസ്. ആയിരുന്നിടത്തെത്തുകയും ചെയ്തു.
06:06
I think we all -- if we don't look in the data --
93
341000
4000
എനിക്കു തോന്നുന്നു നാമെല്ലാവരും –
06:10
we underestimate the tremendous change in Asia, which was
94
345000
4000
നാം കണക്കുകളില് നോക്കുന്നില്ലെനില് – ഏഷ്യയിലെ മാറ്റങ്ങളെ
06:14
in social change before we saw the economical change.
95
349000
4000
കാണാതെ പോവുന്നു, അവിടെയുള്ള സാമുഹിക മാറ്റം സാമ്പത്തിക മാറ്റത്തില് കാണുന്നതല്ല.
06:18
Let's move over to another way here in which we could display
96
353000
5000
ഇനി നമുക്കു വേറെരീതിയില് – വരുമാനമുപയോഗിച്ചു –
06:23
the distribution in the world of the income. This is the world distribution of income of people.
97
358000
7000
നമുക്കു ലോകത്തിലെ വിതരണ വ്യവസ്ഥയെക്കാണാം. ഇതു ആളുകളുടെ വരുമാനമുപയോഗിച്ചു ലോകത്തിന്റെവിതരണം.
06:30
One dollar, 10 dollars or 100 dollars per day.
98
365000
5000
1 ഡോളറ്, 10 ഡോളറ്, അതോ 100ഡോളറോ എന്നു.
06:35
There's no gap between rich and poor any longer. This is a myth.
99
370000
4000
പാവങ്ങളും പണക്കാരും തമ്മില് ഇവിടെ വലിയ വ്യത്യാസമില്ല. ഇതൊരു വലിയ മിഥ്യയാണ്.
06:39
There's a little hump here. But there are people all the way.
100
374000
4000
ഇവിടെയൊരു ചെറിയ മുഴയുണ്ട്. ഇവിടെയെല്ലാം ആളുകളുണ്ട്.
06:44
And if we look where the income ends up -- the income --
101
379000
4000
നാം വരുമാനമെല്ലാം എവിടെയെത്തുന്നുവെന്നു നോക്കിയാല് – വരുമാനം –
06:48
this is 100 percent the world's annual income. And the richest 20 percent,
102
383000
6000
ഇതാണു ലോകത്തിന്റെ 100 ശതമാനം വാറ്ഷിക വരുമാനം. ഈ 20 ശതമാനം
06:54
they take out of that about 74 percent. And the poorest 20 percent,
103
389000
7000
വരുമാനത്തിന്റെ 74 ശതമാനം കൈക്കലാക്കുന്നു. ഏറ്റവും പാവപ്പെട്ടയീ 20 ശതമാനത്തിന്നു
07:01
they take about two percent. And this shows that the concept
104
396000
5000
ആകെ 2 ശതമാനം. ഇങ്ങനെ നോക്കിയാല് വികസ്വര രാജ്യമെന്ന
07:06
of developing countries is extremely doubtful. We think about aid, like
105
401000
4000
ആശയം വളരെ സംശയാസ്പദമാവുന്നു. നാം വിചാരിക്കുന്നു ഇവെടെയുള്ളയീ
07:10
these people here giving aid to these people here. But in the middle,
106
405000
5000
ആളുകള് ഇവറ്ക്കു സഹായങ്ങള് ചെയ്യുന്നുവെന്നു. പക്ഷെയിവിടെ മധ്യത്തില്
07:15
we have most the world population, and they have now 24 percent of the income.
107
410000
4000
നമുക്കു ലോകത്തിലെ ഭൂരിഭാഗം ജനങ്ങളുമുണ്ട് അവര് 24ശതമാനം വരുമാന്മുണ്ട്.
07:19
We heard it in other forms. And who are these?
108
414000
4000
നാമിതിനേകുറിച്ചു പല തവണ കേട്ടിട്ടുണ്ട്. ഇവരാരാണ്?
07:23
Where are the different countries? I can show you Africa.
109
418000
4000
ഇവയിലെ രാജ്യങ്ങളേതൊക്കെ? എനിക്കാഫ്രിക്കയെ കാണിക്കാനാവും.
07:27
This is Africa. 10 percent the world population, most in poverty.
110
422000
5000
ഇതാണു ആഫ്രിക്ക. ലോകത്തിലെ 10% ജനസംഖ്യ, മിക്കവരും പട്ടിണിയില്.
07:32
This is OECD. The rich country. The country club of the U.N.
111
427000
5000
ഇതാണു ഒ.ഇ.സി.ഡി. പണക്കരായ രാജ്യങ്ങള്. യു.എന്നിന്റെ ഒരു ക്ലബുമാത്രം.
07:37
And they are over here on this side. Quite an overlap between Africa and OECD.
112
432000
5000
ഇവരിവിടെ മുകളിലുണ്ട്. ഇവിടെ അഫ്രിക്കയ്ക്കും ഒ.ഇ.സി.ഡി. ഇടയിലുള്ളവര്.
07:42
And this is Latin America. It has everything on this Earth,
113
437000
3000
ഇതാണു ലാറ്റിനമേരിക്ക. ഇവിടെയെല്ലാവരുമുണ്ട്,
07:45
from the poorest to the richest, in Latin America.
114
440000
3000
ധനികരും ദരിദ്രരും, ലാറ്റിനമേരിക്കയില്.
07:48
And on top of that, we can put East Europe, we can put East Asia,
115
443000
5000
അതിനുമുകളില് നമുക്കു കിഴക്കന് യൂറോപ്പും കിഴക്കന് എഷ്യയും,
07:53
and we put South Asia. And how did it look like if we go back in time,
116
448000
5000
ദക്ഷിണേഷ്യയുടെ ഒരുഭാഗവുമിവിടെ വയ്ക്കാം. നാമിതു കുറച്ചു വറ്ഷങ്ങള് മുമ്പത്തേയ്ക്കു നീട്ടിയാലിതെങ്ങിനെയിരിക്കും,
07:58
to about 1970? Then there was more of a hump.
117
453000
5000
ഉദാ 1970ല്? അന്നി കുനിപ്പു കുറേക്കൂടി കൂടൂതലായിരുന്നു.
08:03
And we have most who lived in absolute poverty were Asians.
118
458000
4000
അന്നു ദാരിദ്രയത്തില് ജീവിക്കുന്നവരധികവും ഏഷ്യക്കാരായിരുന്നു.
08:07
The problem in the world was the poverty in Asia. And if I now let the world move forward,
119
462000
7000
അന്നു ലോകം മുഴുവനുമുള്ള പ്രശ്നം ഏഷ്യയിലെ പട്ടിണിയായിരുന്നു. ഇനി നമുക്കു ലോകത്തെ മുമ്പോട്ടു നീക്കാം
08:14
you will see that while population increase, there are
120
469000
3000
ജനസംഖ്യകൂടുന്നതനുസരിച്ച് ഒരു വലിയ വിഭാഗം
08:17
hundreds of millions in Asia getting out of poverty and some others
121
472000
3000
പട്ടിണിക്കു പുറത്തുവരുമ്പോള് മറ്റൊരുവിഭാഗം
08:20
getting into poverty, and this is the pattern we have today.
122
475000
3000
അതില് പ്രവേശിക്കുന്നു, ഈ രീതിയിപ്പോഴും തുടര്ന്നു വരുന്നു.
08:23
And the best projection from the World Bank is that this will happen,
123
478000
4000
ലോകബാന്കിന്റെ തന്നെ ഏറ്റവും നല്ല പ്രവചനമനുസരിച്ചു ഇതു സംഭവിക്കും,
08:27
and we will not have a divided world. We'll have most people in the middle.
124
482000
4000
നമുക്കിടയില് വിഭാജിതലോകമുണ്ടാകില്ല. മധ്യഭാഗത്തു കൂടുതലാളുകള് ഉണ്ടാവും.
08:31
Of course it's a logarithmic scale here,
125
486000
2000
ഇതു തീര്ച്ചയായും ഒരു ലോഗരിതമിക് കണക്കാണ്
08:33
but our concept of economy is growth with percent. We look upon it
126
488000
5000
നമ്മുടെ കാഴ്ചപാടിലെ സാമ്പത്തിക ആശയം ആനുപാതികമായ വളര്ച്ചയാണ്.
08:38
as a possibility of percentile increase. If I change this, and I take
127
493000
6000
നാമുമതിനെ ആനുപാതികമായ വളര്ച്ചയാണ്. ഞാനതിനെ
08:44
GDP per capita instead of family income, and I turn these
128
499000
4000
കുടംബത്തിന്റെ വരുമാനത്തില് നിന്നും വ്യക്തിയുടെ ജിഡിപ്പിയാക്കി
08:48
individual data into regional data of gross domestic product,
129
503000
6000
മറ്റുകയും, ഓരോ പ്രത്യേക കണക്കും ഓരോ പ്രദേശത്തിന്റെയും ജിഡിപ്പി ആക്കുകയും,
08:54
and I take the regions down here, the size of the bubble is still the population.
130
509000
4000
ഈ പ്രദേശങ്ങളെയെല്ലാം ഇവിടെ മൂലയ്ക്കു വക്കുകയും, ചെയ്യുന്നു, ഓരോകുമിളകളും ഇപ്പോഴും ജനസംഖ്യയെത്തന്നെ കാണിക്കുന്നു.
08:58
And you have the OECD there, and you have sub-Saharan Africa there,
131
513000
3000
ഇവിടെ ഒ.ഇ.സി.ഡി, അതു ആഫ്രിക്കയിലെ സഹാറാ പ്രദേശങ്ങള്,
09:01
and we take off the Arab states there,
132
516000
3000
അറബ് രാഷ്ട്രങ്ങള് അവിടെ,
09:04
coming both from Africa and from Asia, and we put them separately,
133
519000
4000
അഫ്രിക്കയും ഏഷ്യയും വേറെ വേറെ വയ്ക്കാം,
09:08
and we can expand this axis, and I can give it a new dimension here,
134
523000
5000
ഈ അക്ഷാംശം അല്പം കൂടിവലുതാക്കാം, ഇനി ഒരു പുതിയ അളവുകോലുകള് കൂടി കൂട്ടിചേര്ക്കാം,
09:13
by adding the social values there, child survival.
135
528000
3000
സാമൂഹിക ബോധം ഇവിടെയും, ശൈശവ മരണം ഇവിടെയും.
09:16
Now I have money on that axis, and I have the possibility of children to survive there.
136
531000
5000
ഈ അക്ഷാംശത്തിലിപ്പോള് പണവും, ശൈശവ മരണം ഇവിടെയും.
09:21
In some countries, 99.7 percent of children survive to five years of age;
137
536000
4000
ചില രാജ്യങ്ങളില് 99.7 ശതമാനം കുട്ടികളും 5 വയസു കടക്കുന്നു,
09:25
others, only 70. And here it seems there is a gap
138
540000
4000
പക്ഷെ ഇവിടെ വെറും 70% മാത്രം. ഇവിടെ നമുക്ക്
09:29
between OECD, Latin America, East Europe, East Asia,
139
544000
4000
ഒ.ഇ.സി.ഡി, ലാറ്റിനമേരിക്ക, കിഴക്കന് യൂറോപ്പ്, കിഴക്കന് ഏഷ്യ,
09:33
Arab states, South Asia and sub-Saharan Africa.
140
548000
4000
ഏഷ്യ, അറബ് രാജ്യങ്ങള് ദക്ഷിണ ഏഷ്യ പിന്നെ സഹാറന് ആഫ്രിക്ക.
09:37
The linearity is very strong between child survival and money.
141
552000
5000
ശൈശവ മരണവും പണവും തമ്മിലുള്ള ബന്ധം വളരെ വലുതാണു.
09:42
But let me split sub-Saharan Africa. Health is there and better health is up there.
142
557000
8000
പക്ഷെ ഇനി ഞാന് സഹാറയിലെ ആഫ്രിക്കയെ ചിതറിക്കട്ടെ. ആരോഗ്യം ഇവിടെയും, നല്ല ആരോഗ്യം അവിടെ മുകളിലും.
09:50
I can go here and I can split sub-Saharan Africa into its countries.
143
565000
5000
എനിക്കിവിടെ വന്നു സഹാറയിലെ ആഫ്രിക്കയിലെ രാഷ്ട്രങ്ങളെ ചിന്നിക്കാം.
09:55
And when it burst, the size of its country bubble is the size of the population.
144
570000
5000
ഇവപൊട്ടീതെറിക്കുമ്പോഴും കുമിളയുടെ വലിപ്പം രാജ്യങ്ങളുടെ ജനസംഖ്യാനുപാതം തന്നെ.
10:00
Sierra Leone down there. Mauritius is up there. Mauritius was the first country
145
575000
4000
സിയെറ ലിയോണ് ഇവിടെ താഴെ. മൌറേഷ്യസ് അവിടെ മുകളിലും. മൌറേഷ്യസ് ആദ്യമായി
10:04
to get away with trade barriers, and they could sell their sugar --
146
579000
3000
കച്ചവട വിലക്കുകള് ഇല്ലാതാക്കിയ രാജ്യമാണ്, അങ്ങിനെയവറ്ക്കു അവരുടെ പന്ചസാരവില്ക്കുവാനായി.
10:08
they could sell their textiles -- on equal terms as the people in Europe and North America.
147
583000
5000
അവര്ക്കവരുടെ തുണിത്തരങ്ങള് യൂറോപ്പിന്റെയും വടക്കനമേരിക്കയുടെയും നിരക്കില് തന്നെ വിറ്റഴിക്കുവാനായി.
10:13
There's a huge difference between Africa. And Ghana is here in the middle.
148
588000
4000
അഫ്രിക്കയില് പരസ്പരം വളരെയധികം വ്യത്യാസങ്ങളുണ്ട്. ഘാന ഇവിടെ നടുക്കാണു.
10:17
In Sierra Leone, humanitarian aid.
149
592000
3000
സിയാറ ലിയോണില് കാരുണ്യപ്രവറ്ത്തനങ്ങള്.
10:20
Here in Uganda, development aid. Here, time to invest; there,
150
595000
5000
യുഗാണ്ടയില് വികസന സഹയം. ഇവിടെ സമയം ചിലവഴിക്കു,
10:25
you can go for a holiday. It's a tremendous variation
151
600000
3000
അവിടെ അവധിക്കുപോകൂ. നാം പലപ്പോഴും ഈ
10:28
within Africa which we rarely often make -- that it's equal everything.
152
603000
5000
വ്യത്യാസങ്ങള് മറക്കുന്നു – എല്ലാം ഒന്നായി കാണുന്നു.
10:33
I can split South Asia here. India's the big bubble in the middle.
153
608000
4000
ഇവിടെ ഞാന് ദക്ഷിണ ഏഷ്യയെ ചിതറിക്കാം. ഈ വലിയ കുമിള ഇന്ത്യയാണ്.
10:37
But a huge difference between Afghanistan and Sri Lanka.
154
612000
4000
പക്ഷെ ശ്രീലങ്കയും അഫ്ഗാനിസ്ഥാനും തമ്മില് വലിയ വ്യത്യാസങ്ങളുണ്ട്.
10:41
I can split Arab states. How are they? Same climate, same culture,
155
616000
4000
ഞാന് അറബ് രാജ്യങ്ങളെ ചിന്നിക്കാം. എങ്ങിനെയാണവര്? ഒരേ കാലാവസ്ഥ, ഒരേ സംസ്കാരം,
10:45
same religion -- huge difference. Even between neighbors.
156
620000
4000
ഒരേ മതം. വലിയ വ്യത്യാസങ്ങള്. അയല്കാറ് തമ്മില് പോലും.
10:49
Yemen, civil war. United Arab Emirate, money which was quite equally and well used.
157
624000
5000
യെമനില് ആഭ്യന്തര യുദ്ധം. യു.എ.ഇ പണം ഏല്ലാവര്ക്കുമായി നന്നായി ചിലവഴിച്ചതിനു തെളിവ്.
10:54
Not as the myth is. And that includes all the children of the foreign workers who are in the country.
158
629000
7000
ഒരു കഥപോലെയല്ല. ആ രാജ്യത്തു വന്നിരിക്കുന്ന വിദേശികളുടെ മക്കളും അതിലുള്പ്പെടുന്നു.
11:01
Data is often better than you think. Many people say data is bad.
159
636000
4000
കണക്കുകള് നിങ്ങള് വിചാരിക്കുന്നതിലും നല്ലതാണു. പലരും പറയാറുണ്ട് കണക്കുകള് മോശമാണെന്നു.
11:06
There is an uncertainty margin, but we can see the difference here:
160
641000
2000
ഇവയില് പ്രതീക്ഷിക്കാനാവാത്ത മാറ്ജിനുകളുണ്ട്, പക്ഷെ നമുക്കിവിടെ വ്യത്യാസം കാണാനാവും:
11:08
Cambodia, Singapore. The differences are much bigger
161
643000
3000
കമ്പോടിയയും സിംഗപൂരും. കണക്കുകളിലെ കുഴപ്പങ്ങളെക്കാള്
11:11
than the weakness of the data. East Europe:
162
646000
3000
വ്യത്യാസങ്ങള് വ്യക്തമാണ്. കിഴക്കന് യൂറോപ്പും:
11:14
Soviet economy for a long time, but they come out after 10 years
163
649000
6000
വളരെ കാലത്തേയ്ക്കു റഷ്യന് സാമ്പത്തിക അവസ്ഥയും, പക്ഷെ 10 വര്ഷങ്ങള്ക്കു ശേഷം അവര് വളരെ
11:20
very, very differently. And there is Latin America.
164
655000
3000
വ്യത്യസ്തമായ രീതിയിലാണു തിരിച്ചു വരുന്നതു. ഇവിടെ ലാനിനമേരിക്ക.
11:23
Today, we don't have to go to Cuba to find a healthy country in Latin America.
165
658000
4000
നമുക്കിന്നു ക്യൂബയില് മാത്രമല്ല ലാറ്റിനമേരിക്കയിലെ നല്ല ആരോഗ്യം കാണാനവുന്നത്.
11:27
Chile will have a lower child mortality than Cuba within some few years from now.
166
662000
5000
ചിലിയില് ഏതാനം വര്ഷങ്ങള്ക്കകം ക്യൂബയെക്കാള് താഴ്ന്ന ശൈശവമരണങ്ങള് നടക്കും.
11:32
And here we have high-income countries in the OECD.
167
667000
3000
അവിടെ ധാരാളം പണമുള്ള ഒ.ഇ.സി.ഡി. രാജ്യങ്ങള്.
11:35
And we get the whole pattern here of the world,
168
670000
4000
ഇങ്ങനെ ചില മാതൃകകള് നമുക്കു ലോകമെമ്പാടും കാണാനാവും,
11:39
which is more or less like this. And if we look at it,
169
674000
5000
അവയെല്ലാം ഏകദേശമിതുപോലെയാണ്. 1960കളിലെ
11:44
how it looks -- the world, in 1960, it starts to move. 1960.
170
679000
6000
ലോകമെങ്ങിനെയെന്നറിയാന് നമുക്കാവും. അന്നു അതു നീങ്ങുവാന് തുടങ്ങി. 1960
11:50
This is Mao Tse-tung. He brought health to China. And then he died.
171
685000
3000
ഇതു മാവൊത് സെ തൂങ്ങ്. അയാല് ചൈനയിലാരോഗ്യം കൊണ്ടുവന്നു. പിന്നെ മരിച്ചു.
11:53
And then Deng Xiaoping came and brought money to China, and brought them into the mainstream again.
172
688000
5000
പിന്നെ ഡെങ്ങ് സിയോപിംഗ് വന്നു, പണവും കൊണ്ടുവന്നു, ചൈനയെ മുഘ്യധാരയിലുമെത്തിച്ചു.
11:58
And we have seen how countries move in different directions like this,
173
693000
4000
ഇങ്ങനെ ഓരോരജ്യങ്ങളും പല വശങ്ങളിലേക്കു നീങ്ങിക്കൊണ്ടിര്ക്കുന്നു,
12:02
so it's sort of difficult to get
174
697000
4000
അതിനാല് ഒരൊറ്റ
12:06
an example country which shows the pattern of the world.
175
701000
5000
ഉദാഹരനത്തിലൂടെ ലോകത്തിലെ വളര്ച്ചയുറ്റെ മാതൃകകള് മനസിലാക്കാനവില്ല.
12:11
But I would like to bring you back to about here at 1960.
176
706000
6000
ഞാന് നിങ്ങളേ വീണ്ടും 1960 തിരിച്ചു കൊണ്ടു വരുന്നു.
12:17
I would like to compare South Korea, which is this one, with Brazil,
177
712000
10000
നമുക്കിനി ദക്ഷിണ കൊറിയയേയും, ഇതു, ബ്രസീലിനെയും ഇതു തുലനം ചെയ്യാം.
12:27
which is this one. The label went away for me here. And I would like to compare Uganda,
178
722000
5000
ഇവിടെയെനിക്കു ലേബലുകളില്ലാതായി. ഇനി ഞാന് ഉഗാണ്ടയെ തുലനം ചെയ്യാം,
12:32
which is there. And I can run it forward, like this.
179
727000
5000
അതിവിടെയാണ്. എനിക്കിനിയിതിനെ മുമ്പോട്ടോടിക്കാം.
12:37
And you can see how South Korea is making a very, very fast advancement,
180
732000
9000
ഇവിടെ നമുക്കു ദക്ഷിണ കൊറിയ വളരെ വേഗത്തില് വികസിതമാവുന്നതു കാണാം
12:46
whereas Brazil is much slower.
181
741000
3000
ബ്രസീല് വളരെ പതുക്കയും
12:49
And if we move back again, here, and we put on trails on them, like this,
182
744000
6000
നാം വീണ്ടും പിന്നിലേക്കു വരുകയാണെന്കില്, അവയുടെ വരവിന്റെ വഴികളന്വേഷിക്കുക
12:55
you can see again that the speed of development
183
750000
4000
യാണെന്കില്, നമുക്കിവിടുത്തെ വേഗതകാണുവാനാവും,
12:59
is very, very different, and the countries are moving more or less
184
754000
6000
വളരെ വളരെ വ്യത്യസ്ഥമായവ, ധനത്തിന്റെയും ആരോഗ്യത്തിന്റെയും നിലവാരം
13:05
in the same rate as money and health, but it seems you can move
185
760000
4000
ഏകദേശമൊക്കെ ഒരേ രീതിയില് മുന്നോട്ടുപോവുന്നു, പക്ഷെ ഒരുകാര്യം തോന്നുന്നു, പലപ്പോഴും
13:09
much faster if you are healthy first than if you are wealthy first.
186
764000
4000
നാം കൂടുതല് ആരോഗ്യമുള്ളവരാകണമെങ്കിൽ വേഗത മെച്ചപ്പെട്ട സാമ്പത്തിക സ്ഥിതിയുള്ളപ്പോഴുള്ളതിന് നേക്കാള് നല്ലതാണ്
13:14
And to show that, you can put on the way of United Arab Emirate.
187
769000
4000
അതിനുദാഹരണമായി നമുക്കു യു.എ.ഇയുടെ വഴികാണാം.
13:18
They came from here, a mineral country. They cached all the oil;
188
773000
3000
അവര് ഇവിടെനിന്നും തുടങ്ങി, ഒരു എണ്ണരാജ്യം. അവർ എണ്ണയിലൂടേ ധാരാളം പണം നേടി
13:21
they got all the money; but health cannot be bought at the supermarket.
189
776000
4000
പക്ഷെ, ആരോഗ്യം സൂപ്പര് മാര്ക്കെറ്റില് വാങ്ങാനവില്ലല്ലൊ.
13:25
You have to invest in health. You have to get kids into schooling.
190
780000
4000
നമുക്ക് ആരോഗ്യത്തില് നിക്ഷേപിക്കേണ്ടതായി വരുന്നു. കുട്ടികളെ സ്കൂളില് വിടണം.
13:29
You have to train health staff. You have to educate the population.
191
784000
3000
ആരോഗ്യത്തൊഴിലാളികളെ പരിശീലിപ്പിക്കണം. നിങ്ങളുടെ ജനത്തെ പഠിപ്പിക്കണം.
13:32
And Sheikh Sayed did that in a fairly good way.
192
787000
3000
ഇതെല്ലാം ഷെയിക് സയ്യദ് മോശമല്ലാത്ത രീതിയില് ചെയ്തു.
13:35
In spite of falling oil prices, he brought this country up here.
193
790000
4000
എണ്ണവില കുറഞ്ഞുകൊണ്ടിരുന്നാലും അയാള് സ്വന്തം രാജ്യത്തെ ഇവിടെയെത്തിച്ചു.
13:39
So we've got a much more mainstream appearance of the world,
194
794000
4000
അങ്ങിനെ പൊതുവായിനോക്കിയാല് ലോകമെമ്പാടും മിക്കവാറും രാജ്യങ്ങളും
13:43
where all countries tend to use their money
195
798000
2000
തങ്ങളുടെ പണം നന്നായി ഉപയോഗിക്കുന്നു.
13:45
better than they used in the past. Now, this is, more or less,
196
800000
5000
ഇവിടെ നമ്മുക്ക് മധ്യത്തില് നില്ക്കുന്ന
13:50
if you look at the average data of the countries -- they are like this.
197
805000
7000
രാജ്യങ്ങളുടെ അവസ്ഥകാണാം. അവ ഇതു പൊലെയാണ്.
13:57
Now that's dangerous, to use average data, because there is such a lot
198
812000
5000
അവറേജ് കണക്കുകള് ഉപയോഗിക്കുന്നതൊരും തെറ്റായ രീതിയാവാം, കാരണം
14:02
of difference within countries. So if I go and look here, we can see
199
817000
6000
ഈ രാജ്യങ്ങള് തമ്മില് വളരെയധികം വ്യത്യാസങ്ങളുണ്ട്. ഇന്നു ഞാനിവിടെ നിന്നു നോക്കുമ്പോള്
14:08
that Uganda today is where South Korea was 1960. If I split Uganda,
200
823000
6000
ഉഗാണ്ട ഇപ്പോള് ദക്ഷിണ കൊറിയ 1960ല് ആയിരുന്നിടത്താണ്. ഉഗാണ്ടയിലെ
14:14
there's quite a difference within Uganda. These are the quintiles of Uganda.
201
829000
5000
ഉഗാണ്ടയെ ചിന്നിക്കുമ്പോള് വ്യത്യാസങ്ങള് കാണാം.
14:19
The richest 20 percent of Ugandans are there.
202
834000
3000
ധനികരായ 20 ശതമാനം ആളുകള് ഇവിടെയാണ്.
14:22
The poorest are down there. If I split South Africa, it's like this.
203
837000
4000
പാവങ്ങള് ഇവിടെ താഴെയും. ദക്ഷിണ ആഫ്രിക്കയെ ചിന്നിപ്പിച്ചാലിതുപോലിരിക്കും.
14:26
And if I go down and look at Niger, where there was such a terrible famine,
204
841000
5000
നാം താഴോട്ടുപോയി നൈജറില്, അടുത്തകാലത്ത് വളരെ പട്ടിണിമരണങ്ങള് നടന്ന
14:31
lastly, it's like this. The 20 percent poorest of Niger is out here,
205
846000
5000
ഇവിടെ നോക്കിയാലിതുപോലെയും. ഏറ്റവും പാവപ്പെട്ട 20 ശതമാനമിവിടെ.
14:36
and the 20 percent richest of South Africa is there,
206
851000
3000
സൌത്താഫ്രിക്കയിലെ ഏറ്റവും ധനികരായ 20ശതമാനമിവിടെയും,
14:39
and yet we tend to discuss on what solutions there should be in Africa.
207
854000
5000
എന്നിരുന്നാലും നാം പലപ്പോഴും അഫ്രിക്കയിലെ പ്രശ്നങ്ങളെ ലളിത വല്ക്കരിച്ചുകാണുന്നു.
14:44
Everything in this world exists in Africa. And you can't
208
859000
3000
ലോകത്തിലുള്ളതെല്ലാം ആഫ്രിക്കയിലും മുണ്ട്. അതിനാല്
14:47
discuss universal access to HIV [medicine] for that quintile up here
209
862000
4000
എച്ച്.ഐ.വി ക്കുള്ള (മരുന്നി)ന്റെ ലഭ്യത ഏല്ലാവര്ക്കും ലഭ്യമാക്കണമെന്ന പ്രസ്ഥാവന മുകളിലും
14:51
with the same strategy as down here. The improvement of the world
210
866000
4000
താഴെയുമുള്ള രണ്ടു തട്ടുകാർക്കും ഒരേരീതിയിലാവാനാവില്ല. ലോകത്തെ മെച്ചമാക്കാനുള്ള വഴികള്
14:55
must be highly contextualized, and it's not relevant to have it
211
870000
5000
ഓരോ പരിതസ്ഥിതിക്കും അനുകൂലമാവണം, അവ ഒരു റീജിയണല്
15:00
on regional level. We must be much more detailed.
212
875000
3000
തലത്തിലാവാനാവില്ല. നാം വളരെയധികം കാര്യങ്ങള് ശ്രദ്ധിക്കേണ്ടതുണ്ട്.
15:03
We find that students get very excited when they can use this.
213
878000
4000
പലപ്പോഴും ഇവയെ കുറിച്ചു കുട്ടികള് വളരെ ഉത്സാഹത്തോടെ നോക്കാറുണ്ട്.
15:07
And even more policy makers and the corporate sectors would like to see
214
882000
5000
നിയമങ്ങളുണ്ടാക്കുന്നവരും കച്ചവടക്കമ്പനി മുതലാളികളു മെല്ലാം ലോകത്തിലുള്ള
15:12
how the world is changing. Now, why doesn't this take place?
215
887000
4000
ഇത്തരം മാറ്റങ്ങളറിയാന് തല്പരരാണ്. എന്നാല് എന്തുകൊണ്ടിതു നടക്കുന്നില്ല?
15:16
Why are we not using the data we have? We have data in the United Nations,
216
891000
4000
നാമെന്തുകൊണ്ടാണു നമുക്കു ലഭ്യമായ വിവരങ്ങളുപയോഗിക്കാത്തത്? നമുക്കിത്തരം കണക്കുകള് യു.എന്നിലും,
15:20
in the national statistical agencies
217
895000
2000
രാഷ്ട്രങ്ങളുടെ സ്റ്റാറ്റിസ്റ്റിക്കല് വിഭാഗങ്ങളിലും,
15:22
and in universities and other non-governmental organizations.
218
897000
4000
സറ്വകലാശാലകളിലും, ഗവണ്മെന്റ്റിതര സംഘടനക്ളുടെ പക്കലും ലഭ്യമാണ്.
15:26
Because the data is hidden down in the databases.
219
901000
2000
ഈ ഡേറ്റ (കണക്കുകളെല്ലം) ഡേറ്റാബേസുകളില് ഒളിഞ്ഞിരിക്കുകയാണ്.
15:28
And the public is there, and the Internet is there, but we have still not used it effectively.
220
903000
5000
ഇവിടെ പൊതുജനവും, ഇന്റര്നെറ്റുമെല്ലാമുണ്ടെന്കിലും നാമിപ്പോഴുമവയെ ശരിയായിഉപയോഗിക്കുവാന് തുടങ്ങിയിട്ടില്ല.
15:33
All that information we saw changing in the world
221
908000
3000
നാമിതുവരെ കണ്ട ലോകത്തിലെ മാറ്റങ്ങളേകുറിച്ചുള്ള വിവരങ്ങളില്
15:36
does not include publicly-funded statistics. There are some web pages
222
911000
4000
പബ്ലിക്ക് ഫണ്ടിലൂടെയുള്ള സ്റ്റാറ്റിസ്റ്റിക്സില്ല. ഇങ്ങനെ ചില വെബ് പേജുകളുണ്ട്,
15:40
like this, you know, but they take some nourishment down from the databases,
223
915000
6000
അവ പലസ്ഥലങ്ങളിലുള്ള ഡേറ്റാബേസുകളില്നിന്നു പലതും ചോറ്ത്തിയെടുക്കുന്നു,
15:46
but people put prices on them, stupid passwords and boring statistics.
224
921000
5000
പലരുമതില്നിന്നും പണംകൊയ്യുന്നു, മണ്ടന് പാസ് വേര്ഡുകളാവശ്യപ്പെടുന്നു, പിന്നെ രസംകൊല്ലി സ്റ്റാറ്റിസ്റ്റിക്സും.
15:51
(Laughter) (Applause)
225
926000
3000
(ചിരി) (കൈയ്യടി).
15:54
And this won't work. So what is needed? We have the databases.
226
929000
4000
ഇതുരക്ഷ്പെടില്ല. അപ്പോള് എന്തുചെയ്യും? നമുക്കു ഡേറ്റാബേസുകളുണ്ട്.
15:58
It's not the new database you need. We have wonderful design tools,
227
933000
4000
നമുക്കു പുതിയ ഡേറ്റാബേസുകളുടെയല്ല ആവശ്യം. നമുക്കു മനോഹരമായ ഡിസൈന് റ്റൂളുകളും ലഭ്യമാണ്,
16:02
and more and more are added up here. So we started
228
937000
3000
അവകൂടുതല് കൂടുതലുണ്ടായി ഇവിടെ ചേര്ന്നുക്കൊണ്ടിരിക്കുന്നു. അങ്ങിനെ ഞങ്ങളൊരു
16:05
a nonprofit venture which we called -- linking data to design --
229
940000
5000
ലാഭേതര സംഘടനയ്ണ്ടാക്കി – ഡേറ്റയും ഡിസൈനും കൂട്ടിചേറ്ക്കാനവുന്നവ –
16:10
we call it Gapminder, from the London underground, where they warn you,
230
945000
3000
അതാണ് ഗ്യാപ്പ് മൈന്ഡര്. ഇത് ലണ്ടന് അണ്ടര് ഗ്രൌണ്ട് മെട്രോയില് നിന്നും കടമെടുത്തതാണ്, അവിടെ പറയാറുണ്ടെല്ലൊ,
16:13
"mind the gap." So we thought Gapminder was appropriate.
231
948000
3000
`ഗ്യപ്പുകളേ ശ്രദ്ധിക്കുവിനെന്ന്”. അതിനാല് ഞങ്ങള് വിചാരിച്ചു, ഗ്യപ്പ് മൈന്ഡര് യോജിക്കുമെന്നു.
16:16
And we started to write software which could link the data like this.
232
951000
4000
അങ്ങിനെ ഞങ്ങളൊരു സോഫ്റ്റ് വെയരുണ്ടാക്കന് തുടങ്ങി, അവ ഡേറ്റയെ ഇങ്ങിനെ ബന്ധിപ്പിക്കും.
16:20
And it wasn't that difficult. It took some person years, and we have produced animations.
233
955000
6000
അതുവലിയ ബുദ്ധിമുട്ടുള്ള കാര്യമൊന്നുമല്ലായിരുന്നു. കുറേ മനുഷ്യജീവിതം ചിലവാക്കി, പിന്നെ ആനിമേഷനുകളും ഉണ്ടാക്കി.
16:26
You can take a data set and put it there.
234
961000
2000
നിങ്ങൾക്ക് ഏതു രീതിയിലുമുള്ള ഡേറ്റാസെറ്റുകളുമിവിടെയിടാം.
16:28
We are liberating U.N. data, some few U.N. organization.
235
963000
5000
ഞങ്ങളങ്ങിനെ കുറേ യു.എന്. ഡേറ്റകളേ രക്ഷിച്ചു, ചില യു.എന് സംഘടനകളേയും.
16:33
Some countries accept that their databases can go out on the world,
236
968000
4000
ചില രാജ്യങ്ങള് തങ്ങളുടെ ഡേറ്റാബേസുകള് ലോകമെമ്പാടും ലഭ്യമാക്കന് തയ്യാറാണ്,
16:37
but what we really need is, of course, a search function.
237
972000
3000
പക്ഷെ നമുക്കവിടെ അനിവാര്യമായത് സെർച്ച് ചെയാനുള്ള ഒരു ഉപകരണമാണ്.
16:40
A search function where we can copy the data up to a searchable format
238
975000
5000
സേറ്ച്ചു ചെയ്യുന്ന ഉപകരണം ലഭ്യമായ ഡേറ്റ സേര്ച്ച് ചെയ്യാവുന്നരീതിയില്
16:45
and get it out in the world. And what do we hear when we go around?
239
980000
3000
ലോകത്തിലെത്തിക്കണം. ഞങ്ങള് പലയിടങ്ങളിലും പോവുമ്പോള് കേള്ക്കുന്നതെന്താണെന്നോ?
16:48
I've done anthropology on the main statistical units. Everyone says,
240
983000
4000
ഞാന് സ്റ്റാറ്റിസ്റ്റിക്കല് സംഘങ്ങളുടെയൊരു അന്ത്രോപ്പൊളജിക്കല് പഠനം നടത്തി. എല്ലാവരും പറയുന്നു
16:53
"It's impossible. This can't be done. Our information is so peculiar
241
988000
4000
“അതു സാധ്യമല്ല. അതു ചെയ്യാനാവില്ല. ഞങ്ങളുടെ ഡേറ്റയില് ചില പ്രത്യേകതകളുണ്ട്,
16:57
in detail, so that cannot be searched as others can be searched.
242
992000
3000
അതു മറ്റുള്ളവയെപോലെ സേറ്ച്ചു ചെയ്യുവാനാവില്ല.
17:00
We cannot give the data free to the students, free to the entrepreneurs of the world."
243
995000
5000
ഞങ്ങള്ക്കു കുട്ടികള്ക്കും ലോക മുതലാളികള്ക്കും പണമില്ലതെ ഡേറ്റ നല്കാനാവില്ല”.
17:05
But this is what we would like to see, isn't it?
244
1000000
3000
പക്ഷെ നാമിതാണു കാണാനാഗ്രഹിക്കുന്നതല്ലെ?
17:08
The publicly-funded data is down here.
245
1003000
3000
പൊതുമുതല് മുടക്കി ശേഖരിച്ച ഡേറ്റ ഇവിടെയുണ്ട്.
17:11
And we would like flowers to grow out on the Net.
246
1006000
3000
ഞങ്ങള് നെറ്റില് പൂക്കള് വിടരണമെന്നുമാഗ്രഹിക്കുന്നു.
17:14
And one of the crucial points is to make them searchable, and then people can use
247
1009000
5000
പ്രധാന കാര്യമെന്തെന്നാൽ അവ സേറ്ച്ചബിളാവുകയും, ആനിമേഷന്
17:19
the different design tool to animate it there.
248
1014000
2000
റ്റൂളുകളുപയോഗിച്ചു സുന്ദരമാകുകയും ചെയ്യാം.
17:21
And I have a pretty good news for you. I have a good news that the present,
249
1016000
5000
എനിക്കു നിങ്ങളോടൊരു നല്ല കാര്യം പറയാനുണ്ട്. എന്താണെന്നു വച്ചാല്
17:26
new Head of U.N. Statistics, he doesn't say it's impossible.
250
1021000
4000
യു.എന് സ്റ്റാറ്റിസ്റ്റിക്കല് വിഭാഗത്തിന്റെ മേധാവി ഇതു സാധ്യമല്ലെന്നു പറയാറില്ല.
17:30
He only says, "We can't do it."
251
1025000
2000
പക്ഷെ അയാള് പറയുന്നത്, “ഇതു ഞങ്ങളേക്കൊണ്ടാവില്ല” എന്നാണ്.
17:32
(Laughter)
252
1027000
4000
(ചിരി)
17:36
And that's a quite clever guy, huh?
253
1031000
2000
അവനു നല്ല ബുദ്ധിയുണ്ട് അല്ലേ?
17:38
(Laughter)
254
1033000
2000
(ചിരി)
17:40
So we can see a lot happening in data in the coming years.
255
1035000
4000
എന്തായാലും അടുത്ത വര്ഷങ്ങളിൽ നമുക്കു കൂടുതല് ഡേറ്റകളുടെ ഉപയോഗംകാണും.
17:44
We will be able to look at income distributions in completely new ways.
256
1039000
4000
നമുക്കു വരുമാനവിതരണത്തെ പുതിയ രീതിയില് കാഴ്ചവെയ്ക്കാനാവും.
17:48
This is the income distribution of China, 1970.
257
1043000
5000
1970ല് ചൈനയിലെ വരുമാന വിതരണം ഈ രീതിയിലായിരുന്നു.
17:54
the income distribution of the United States, 1970.
258
1049000
5000
70ലെ യുണൈറ്റഡ് സ്റ്റേറ്റ്സില് ഇതുപോലെയും.
17:59
Almost no overlap. Almost no overlap. And what has happened?
259
1054000
4000
രണ്ടും തമ്മില് ഒരു വിധത്തിലുമുള്ള ഒവര് ലാപ്പുകളില്ല. എന്താണിവിടെ സംഭവിക്കുന്നത്?
18:03
What has happened is this: that China is growing, it's not so equal any longer,
260
1058000
5000
സംഭവിക്കുന്നതിതാണ്: ചൈന വളരുന്നു, ഇപ്പോഴിവിടെ സമാനതകളില്ല, അതിവിടം മുതലാണ് തുടങ്ങുന്നതു,
18:08
and it's appearing here, overlooking the United States.
261
1063000
4000
ഇപ്പോളതു യുണൈറ്റഡ് സ്റ്റേറ്റ്സിനെ മറികടക്കുമെന്നു തോന്നുന്നു.
18:12
Almost like a ghost, isn't it, huh?
262
1067000
2000
ഒരു ഭൂതം പോലെ അല്ലേ?
18:14
(Laughter)
263
1069000
2000
(ചിരി)
18:16
It's pretty scary. But I think it's very important to have all this information.
264
1071000
10000
ഇതൊരു ഭീകരാവസ്ഥയാണ്. പക്ഷേയെനിക്കു തോന്നുന്നത് ഇത്തരത്തിലുള്ള എല്ലാ വിവരങ്ങളും നമുക്കാവശ്യമാണ്.
18:26
We need really to see it. And instead of looking at this,
265
1081000
6000
നമുക്കതു കാണേണ്ടതുണ്ട്. ഇവിടെ നോക്കുന്നതിനു പകരം, നമുക്കിനി
18:32
I would like to end up by showing the Internet users per 1,000.
266
1087000
5000
ഇന്റെര്നെറ്റിന്റെ 1000ത്തിനൊരാളെന്ന കണക്കിലുള്ള ഉപഭോക്താക്കളെകുറിച്ചു കാണാം.
18:37
In this software, we access about 500 variables from all the countries quite easily.
267
1092000
5000
ഈ സോഫ്റ്റ് വെയറുപയോഗിച്ചു നമുക്കു എല്ലാരാജ്യങ്ങളില് നിന്നുമുള്ള 500ഓളം കാര്യങ്ങളെ അടുക്കിവയ്ക്കാനവും.
18:42
It takes some time to change for this,
268
1097000
4000
ഇവയില് നിന്നും മാറ്റമുണ്ടാവന് അല്പസമയമെടുത്തേക്കാം,
18:46
but on the axises, you can quite easily get any variable you would like to have.
269
1101000
5000
ഈഅക്ഷാംശത്തില് പക്ഷെ നമുക്കാവശ്യമായ വേരിയബിളുകളെ (കാര്യങ്ങളെ) അടുക്കാം.
18:51
And the thing would be to get up the databases free,
270
1106000
5000
ഇതിന്റെ പ്രത്യേകതയെന്തെന്നാല്, ഈ ഡേറ്റാബേസുകള്, സ്വതന്ത്രമായി ലഭ്യമാണ്.
18:56
to get them searchable, and with a second click, to get them
271
1111000
3000
മാത്രമല്ല അവ സേര്ച്ചു ചെയ്യാനാവുന്നതുമാണ്, രണ്ടാമത്തെഒരു ക്ലിക്കിലിവിടെ
18:59
into the graphic formats, where you can instantly understand them.
272
1114000
5000
നമുക്ക് ഗ്രാഫിക്ക് രൂപത്തില് പെട്ടന്നു മനസില്ലവുന്ന രീതിയില് ലഭ്യമാണ്,
19:04
Now, statisticians doesn't like it, because they say that this
273
1119000
3000
സ്റ്റാറ്റിഷ്യനുകള്ക്കിതു ഇഷ്ടമാവില്ല, അവര് പറയും ഇത് വസ്തുതകളെ ശരിയായ
19:07
will not show the reality; we have to have statistical, analytical methods.
274
1122000
9000
രീതിയില് കാണിക്കുന്നില്ല; നമുക്ക് സ്റ്റാറ്റിസ്റ്റിക്കലായുള്ള അനലറ്റിക്കല് രീതികളാവശ്യമാണ്.
19:16
But this is hypothesis-generating.
275
1131000
3000
പക്ഷെ ഇവവെറും ഊഹങ്ങള് (ഹൈപ്പൊതെസിസ്) മാത്രമാണ്.
19:19
I end now with the world. There, the Internet is coming.
276
1134000
4000
ഞാന് ലോകത്തോടെ അവസാനിപ്പിക്കാം. അതാ അവിടെ ഇന്റെറ്നെറ്റു വരുന്നു.
19:23
The number of Internet users are going up like this. This is the GDP per capita.
277
1138000
4000
ഇന്റര്നെറ്റിന്റെ ഉപഭോക്താക്കളിങ്ങനെ വളര്ന്നുകൊണ്ടിരിക്കുന്നു. ഇതാണ് വ്യക്തിയാധാരമായുള്ള ജ്.ഡി.പി.
19:27
And it's a new technology coming in, but then amazingly, how well
278
1142000
5000
ഇതാണ് പുതിയ ടെക്നോളജികളുടെ വരവ്, വളരെ അപ്രതീക്ഷിതമായി, ഇവയെങ്ങിനെ രാജ്യങ്ങളുടെ
19:32
it fits to the economy of the countries. That's why the 100 dollar
279
1147000
5000
സാമ്പത്തിക സ്ഥിതിയുമായി യോജിച്ചു നീങ്ങുന്നു. അതിനാലാണ് 100 ഡോളറിന്റെ കമ്പ്യൂട്ടറുകള
19:37
computer will be so important. But it's a nice tendency.
280
1152000
3000
പ്രാധാന്യമാകുന്നതു. ഇതൊരു നല്ല കാര്യമാണ്. ഒരുപക്ഷേ തോന്നാം.
19:40
It's as if the world is flattening off, isn't it? These countries
281
1155000
3000
ലോകം കൂടുതല് പരന്നതായികൊണ്ടിരിക്കുന്നുവെന്നു, ആവോ? ഈ രാജ്യങ്ങള് തങ്ങളുടെ സാമ്പത്തിക
19:43
are lifting more than the economy and will be very interesting
282
1158000
3000
സ്ഥിതിയേക്കാള് ഭേദമായിക്കൊണ്ടിരിക്കുന്നു, വരും വര്ഷങ്ങളിലിവയെ ശ്രദ്ധിക്കേണ്ടിയിരിക്കുന്നു,
19:46
to follow this over the year, as I would like you to be able to do
283
1161000
4000
ഞാന് പ്രതീക്ഷിക്കുന്നു നിങ്ങള്ക്കിതെലാം പൊതുവായിലഭ്യമായ ധനത്തിലൂടെ ചെയ്യാനാവുമെന്ന്.
19:50
with all the publicly funded data. Thank you very much.
284
1165000
2000
നന്ദി, നമസ്കാരം.
19:53
(Applause)
285
1168000
3000
(കൈയ്യടി)

▲Back to top

ABOUT THE SPEAKER
Hans Rosling - Global health expert; data visionary
In Hans Rosling’s hands, data sings. Global trends in health and economics come to vivid life. And the big picture of global development—with some surprisingly good news—snaps into sharp focus.

Why you should listen

Even the most worldly and well-traveled among us have had their perspectives shifted by Hans Rosling. A professor of global health at Sweden's Karolinska Institute, his work focused on dispelling common myths about the so-called developing world, which (as he pointed out) is no longer worlds away from the West. In fact, most of the Third World is on the same trajectory toward health and prosperity, and many countries are moving twice as fast as the west did.

What set Rosling apart wasn't just his apt observations of broad social and economic trends, but the stunning way he presented them. Guaranteed: You've never seen data presented like this. A presentation that tracks global health and poverty trends should be, in a word: boring. But in Rosling's hands, data sings. Trends come to life. And the big picture — usually hazy at best — snaps into sharp focus.

Rosling's presentations were grounded in solid statistics (often drawn from United Nations and World Bank data), illustrated by the visualization software he developed. The animations transform development statistics into moving bubbles and flowing curves that make global trends clear, intuitive and even playful. During his legendary presentations, Rosling took this one step farther, narrating the animations with a sportscaster's flair.

Rosling developed the breakthrough software behind his visualizations through his nonprofit Gapminder, founded with his son and daughter-in-law. The free software — which can be loaded with any data — was purchased by Google in March 2007. (Rosling met the Google founders at TED.)

Rosling began his wide-ranging career as a physician, spending many years in rural Africa tracking a rare paralytic disease (which he named konzo) and discovering its cause: hunger and badly processed cassava. He co-founded Médecins sans Frontièrs (Doctors without Borders) Sweden, wrote a textbook on global health, and as a professor at the Karolinska Institut in Stockholm initiated key international research collaborations. He's also personally argued with many heads of state, including Fidel Castro.

Hans Rosling passed away in February 2017. He is greatly missed.


More profile about the speaker
Hans Rosling | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee