ABOUT THE SPEAKER
Hans Rosling - Global health expert; data visionary
In Hans Rosling’s hands, data sings. Global trends in health and economics come to vivid life. And the big picture of global development—with some surprisingly good news—snaps into sharp focus.

Why you should listen

Even the most worldly and well-traveled among us have had their perspectives shifted by Hans Rosling. A professor of global health at Sweden's Karolinska Institute, his work focused on dispelling common myths about the so-called developing world, which (as he pointed out) is no longer worlds away from the West. In fact, most of the Third World is on the same trajectory toward health and prosperity, and many countries are moving twice as fast as the west did.

What set Rosling apart wasn't just his apt observations of broad social and economic trends, but the stunning way he presented them. Guaranteed: You've never seen data presented like this. A presentation that tracks global health and poverty trends should be, in a word: boring. But in Rosling's hands, data sings. Trends come to life. And the big picture — usually hazy at best — snaps into sharp focus.

Rosling's presentations were grounded in solid statistics (often drawn from United Nations and World Bank data), illustrated by the visualization software he developed. The animations transform development statistics into moving bubbles and flowing curves that make global trends clear, intuitive and even playful. During his legendary presentations, Rosling took this one step farther, narrating the animations with a sportscaster's flair.

Rosling developed the breakthrough software behind his visualizations through his nonprofit Gapminder, founded with his son and daughter-in-law. The free software — which can be loaded with any data — was purchased by Google in March 2007. (Rosling met the Google founders at TED.)

Rosling began his wide-ranging career as a physician, spending many years in rural Africa tracking a rare paralytic disease (which he named konzo) and discovering its cause: hunger and badly processed cassava. He co-founded Médecins sans Frontièrs (Doctors without Borders) Sweden, wrote a textbook on global health, and as a professor at the Karolinska Institut in Stockholm initiated key international research collaborations. He's also personally argued with many heads of state, including Fidel Castro.

Hans Rosling passed away in February 2017. He is greatly missed.


More profile about the speaker
Hans Rosling | Speaker | TED.com
TED2006

Hans Rosling: The best stats you've ever seen

汉斯罗斯林用前所未有的好方法诠释数字统计

Filmed:
14,386,844 views

你肯定没有看过这样的数据演示。如解说体育比赛实况一般的生动与紧张,统计大师汉斯罗斯林将颠覆所谓 “发展中国家” 这一理念。
- Global health expert; data visionary
In Hans Rosling’s hands, data sings. Global trends in health and economics come to vivid life. And the big picture of global development—with some surprisingly good news—snaps into sharp focus. Full bio

Double-click the English transcript below to play the video.

00:25
About 10 years年份 ago, I took on the task任务 to teach global全球 development发展
0
0
4000
大约在十年前, 我担当起
00:29
to Swedish瑞典 undergraduate大学本科 students学生们. That was after having spent花费
1
4000
4000
给瑞典大学生讲授全球发展的任务
00:33
about 20 years年份 together一起 with African非洲人 institutions机构 studying研究 hunger饥饿 in Africa非洲,
2
8000
4000
之前的20年我一直在非洲研究饥饿问题
00:37
so I was sort分类 of expected预期 to know a little about the world世界.
3
12000
4000
所以大家以为我对世界有些了解
00:41
And I started开始 in our medical university大学, Karolinska卡罗林斯卡 Institute研究所,
4
16000
5000
在我们的卡罗林斯卡医学院
00:46
an undergraduate大学本科 course课程 called Global全球 Health健康. But when you get
5
21000
4000
我开设了一门本科生课程“全球健康”
00:50
that opportunity机会, you get a little nervous紧张. I thought, these students学生们
6
25000
3000
刚开课的时候我还有些紧张
00:53
coming未来 to us actually其实 have the highest最高 grade年级 you can get
7
28000
3000
因为来听课的都是瑞典大学的优等生
00:56
in Swedish瑞典 college学院 systems系统 -- so, I thought, maybe they know everything
8
31000
3000
他们或许早已了解我准备教的内容
00:59
I'm going to teach them about. So I did a pre-test预测试 when they came来了.
9
34000
4000
于是在第一堂课里,我作了一个小测试
01:03
And one of the questions问题 from which哪一个 I learned学到了 a lot was this one:
10
38000
3000
其中有一道题让我受益匪浅
01:06
"Which哪一个 country国家 has the highest最高 child儿童 mortality死亡 of these five pairs?"
11
41000
4000
下列5对国家中,哪一个的儿童死亡率高于另一个?
01:10
And I put them together一起, so that in each pair of country国家,
12
45000
4000
我所选择的配对国家都是
01:14
one has twice两次 the child儿童 mortality死亡 of the other. And this means手段 that
13
49000
5000
一个的儿童死亡率是另一个的两倍,因为数据差距很大
01:19
it's much bigger a difference区别 than the uncertainty不确定 of the data数据.
14
54000
5000
因此数据本身的不确定性可以忽略不计
01:24
I won't惯于 put you at a test测试 here, but it's Turkey火鸡,
15
59000
2000
今天我不会拿这来考大家
01:26
which哪一个 is highest最高 there, Poland波兰, Russia俄国, Pakistan巴基斯坦 and South Africa非洲.
16
61000
5000
土耳其,波兰,俄罗斯,巴基斯坦和南非
01:31
And these were the results结果 of the Swedish瑞典 students学生们. I did it so I got
17
66000
3000
这是瑞典学生的测验结果
01:34
the confidence置信度 interval间隔, which哪一个 is pretty漂亮 narrow狭窄, and I got happy快乐,
18
69000
3000
让我高兴的是
01:37
of course课程: a 1.8 right answer回答 out of five possible可能. That means手段 that
19
72000
4000
5题中平均答对的只有1.8题
01:41
there was a place地点 for a professor教授 of international国际 health健康 --
20
76000
3000
我这个教授还有这门课
01:44
(Laughter笑声) and for my course课程.
21
79000
2000
因此都有了存在的必要
01:46
But one late晚了 night, when I was compiling编译 the report报告
22
81000
4000
但后来有天深夜,当我写总结报告的时候
01:50
I really realized实现 my discovery发现. I have shown显示
23
85000
4000
我突然有了新的发现
01:54
that Swedish瑞典 top最佳 students学生们 know statistically统计学 significantly显著 less
24
89000
5000
瑞典大学的优等生们对世界的了解
01:59
about the world世界 than the chimpanzees黑猩猩.
25
94000
2000
竟然还不如黑猩猩
02:01
(Laughter笑声)
26
96000
2000
(笑声)
02:03
Because the chimpanzee黑猩猩 would score得分了 half right if I gave them
27
98000
4000
因为黑猩猩们至少能蒙对一半
02:07
two bananas香蕉 with Sri斯里兰卡 Lanka斯里兰卡 and Turkey火鸡. They would be right half of the cases.
28
102000
3000
在两个选项旁边各放一根香蕉,就有一半的几率答对。
02:10
But the students学生们 are not there. The problem问题 for me was not ignorance无知;
29
105000
4000
这些优等生们却做不到。这不是由于知识缺乏
02:14
it was preconceived先入为主 ideas思路.
30
109000
3000
而是他们先入为主的错误理念
02:17
I did also an unethical不道德的 study研究 of the professors教授 of the Karolinska卡罗林斯卡 Institute研究所
31
112000
4000
我还把这个测试拿去 给卡罗林斯卡学院的教授们做
02:21
(Laughter笑声)
32
116000
1000
(笑声)
02:22
-- that hands out the Nobel诺贝尔 Prize in Medicine医学,
33
117000
2000
他们每年负责颁发诺贝尔医学奖
02:24
and they are on par平价 with the chimpanzee黑猩猩 there.
34
119000
2000
结果教授们和黑猩猩半斤八两
02:26
(Laughter笑声)
35
121000
3000
(笑声)
02:29
This is where I realized实现 that there was really a need to communicate通信,
36
124000
4000
我意识到很有必要交流一下这个问题
02:33
because the data数据 of what's happening事件 in the world世界
37
128000
3000
因为多数人并不知道
02:36
and the child儿童 health健康 of every一切 country国家 is very well aware知道的.
38
131000
3000
世界各国的儿童健康的改善
02:39
We did this software软件 which哪一个 displays显示器 it like this: every一切 bubble泡沫 here is a country国家.
39
134000
5000
我们作了一个软件,每一个小球代表一个国家
02:44
This country国家 over here is China中国. This is India印度.
40
139000
6000
这个是中国,这个是印度
02:50
The size尺寸 of the bubble泡沫 is the population人口, and on this axis here I put fertility生育能力 rate.
41
145000
6000
小球的尺寸代表该国的人口,X轴是生育率
02:56
Because my students学生们, what they said
42
151000
3000
我曾问过学生们
02:59
when they looked看着 upon the world世界, and I asked them,
43
154000
2000
如果让你们来审视这个世界
03:01
"What do you really think about the world世界?"
44
156000
2000
你们的真实想法是什么
03:03
Well, I first discovered发现 that the textbook教科书 was Tintin丁丁, mainly主要.
45
158000
4000
其实这些教科书上都是丁丁历险记(带有殖民主义思想的漫画)的人物
03:07
(Laughter笑声)
46
162000
1000
(笑声)
03:08
And they said, "The world世界 is still 'we''我们' and 'them'他们.'
47
163000
3000
学生们回答 世界是由“我们和他们”组成的
03:11
And we is Western西 world世界 and them is Third第三 World世界."
48
166000
3000
“我们”指西方世界 “他们”指第三世界
03:14
"And what do you mean with Western西 world世界?" I said.
49
169000
3000
我又问 “什么是西方世界?”
03:17
"Well, that's long life and small family家庭, and Third第三 World世界 is short life and large family家庭."
50
172000
5000
“西方世界寿命长且家庭小; 第三世界寿命短而家庭大。”
03:22
So this is what I could display显示 here. I put fertility生育能力 rate here: number of children孩子 per woman女人:
51
177000
6000
那么一起来看看 X轴是生育率,每个妇女的育儿数
03:28
one, two, three, four, up to about eight children孩子 per woman女人.
52
183000
4000
从每人1,2,3,4胎,到8胎
03:32
We have very good data数据 since以来 1962 -- 1960 about -- on the size尺寸 of families家庭 in all countries国家.
53
187000
6000
我们有1962年之后的各国家庭大小的可靠数据
03:38
The error错误 margin余量 is narrow狭窄. Here I put life expectancy期待 at birth分娩,
54
193000
3000
数据误差相当小。Y轴是平均寿命
03:41
from 30 years年份 in some countries国家 up to about 70 years年份.
55
196000
4000
从30岁到70岁不等
03:45
And 1962, there was really a group of countries国家 here
56
200000
3000
1962年的时候 的确有一群国家在上面
03:48
that was industrialized工业化 countries国家, and they had small families家庭 and long lives生活.
57
203000
5000
这些是发达国家,他们家庭小,寿命长
03:53
And these were the developing发展 countries国家:
58
208000
2000
而这些则是发展中国家
03:55
they had large families家庭 and they had relatively相对 short lives生活.
59
210000
3000
他们家庭大,寿命也相对短些
03:58
Now what has happened发生 since以来 1962? We want to see the change更改.
60
213000
4000
从1962年到今天 世界有什么变化吗?
04:02
Are the students学生们 right? Is it still two types类型 of countries国家?
61
217000
3000
我们来看看 学生们正确吗?国家还是分为2类吗?
04:06
Or have these developing发展 countries国家 got smaller families家庭 and they live生活 here?
62
221000
3000
或者发展中国家的家庭变小(这些小球)移动到了左边?
04:09
Or have they got longer lives生活 and live生活 up there?
63
224000
2000
或者发展中国家人们的寿命变长(这些小球)移动到了上面?
04:11
Let's see. We stopped停止 the world世界 then. This is all U.N. statistics统计
64
226000
3000
这些数据都来自于联合国
04:14
that have been available可得到. Here we go. Can you see there?
65
229000
3000
大家看到没有?
04:17
It's China中国 there, moving移动 against反对 better health健康 there, improving提高 there.
66
232000
3000
这个是中国,他们在往上移动,健康状况不断改善
04:20
All the green绿色 Latin拉丁 American美国 countries国家 are moving移动 towards smaller families家庭.
67
235000
3000
这些绿色的拉丁美洲国家 正朝向小家庭的方向移动
04:23
Your yellow黄色 ones那些 here are the Arabic阿拉伯 countries国家,
68
238000
3000
这些黄色的小球是阿拉伯国家
04:26
and they get larger families家庭, but they -- no, longer life, but not larger families家庭.
69
241000
4000
寿命在变长但家庭规模不变
04:30
The Africans非洲人 are the green绿色 down here. They still remain here.
70
245000
3000
非洲国家是下面的绿球,他们一直在下面
04:33
This is India印度. Indonesia's印尼 moving移动 on pretty漂亮 fast快速.
71
248000
3000
这个是印度 印度尼西亚的移动速度非常快
04:36
(Laughter笑声)
72
251000
1000
(笑声)
04:37
And in the '80s here, you have Bangladesh孟加拉国 still among其中 the African非洲人 countries国家 there.
73
252000
3000
80年代的时候 孟加拉国仍然和非洲国家在一起
04:40
But now, Bangladesh孟加拉国 -- it's a miracle奇迹 that happens发生 in the '80s:
74
255000
3000
但是80年代的奇迹发生在孟加拉国
04:43
the imams伊玛目 start开始 to promote促进 family家庭 planning规划.
75
258000
3000
妈妈们开始宣传和普及计划生育
04:46
They move移动 up into that corner. And in '90s, we have the terrible可怕 HIVHIV epidemic疫情
76
261000
5000
他们向左上角移动 90年代恐怖的艾滋病流行
04:51
that takes down the life expectancy期待 of the African非洲人 countries国家
77
266000
3000
导致非洲国家的平均寿命缩短
04:54
and all the rest休息 of them move移动 up into the corner,
78
269000
4000
而其他国家都向左上角移动
04:58
where we have long lives生活 and small family家庭, and we have a completely全然 new world世界.
79
273000
4000
大家都有了长寿命和小家庭,而世界也焕然一新了
05:02
(Applause掌声)
80
277000
13000
(掌声)
05:15
Let me make a comparison对照 directly between之间 the United联合的 States状态 of America美国 and Vietnam越南.
81
290000
5000
现在我们对比一下美国和越南
05:20
1964: America美国 had small families家庭 and long life;
82
295000
5000
1964年的美国家庭小寿命长
05:25
Vietnam越南 had large families家庭 and short lives生活. And this is what happens发生:
83
300000
4000
越南的家庭大而寿命短。这是后来的变化
05:29
the data数据 during the war战争 indicate表明 that even with all the death死亡,
84
304000
6000
越战时期的数据显示,尽管战争造成伤亡
05:35
there was an improvement起色 of life expectancy期待. By the end结束 of the year,
85
310000
3000
越南人的平均寿命仍有提高
05:38
the family家庭 planning规划 started开始 in Vietnam越南 and they went for smaller families家庭.
86
313000
3000
70年代末期 越南的计划生育减小了家庭规模
05:41
And the United联合的 States状态 up there is getting得到 for longer life,
87
316000
3000
美国人的平均寿命也在延长
05:44
keeping保持 family家庭 size尺寸. And in the '80s now,
88
319000
3000
而家庭规模不变
05:47
they give up communist共产 planning规划 and they go for market市场 economy经济,
89
322000
3000
到了90年代 越南由计划经济转为市场经济
05:50
and it moves移动 faster更快 even than social社会 life. And today今天, we have
90
325000
4000
其经济发展的速度超过了社会的发展
05:54
in Vietnam越南 the same相同 life expectancy期待 and the same相同 family家庭 size尺寸
91
329000
5000
今天(2003)越南人的平均寿命和家庭规模
05:59
here in Vietnam越南, 2003, as in United联合的 States状态, 1974, by the end结束 of the war战争.
92
334000
7000
已经和越战结束时(1974)的美国一样
06:06
I think we all -- if we don't look in the data数据 --
93
341000
4000
如果没有看到这些数据的话
06:10
we underestimate低估 the tremendous巨大 change更改 in Asia亚洲, which哪一个 was
94
345000
4000
我们会低估了亚洲的巨大变化
06:14
in social社会 change更改 before we saw the economical经济 change更改.
95
349000
4000
这些超前于经济发展的社会变革
06:18
Let's move移动 over to another另一个 way here in which哪一个 we could display显示
96
353000
5000
下面我们换个视角
06:23
the distribution分配 in the world世界 of the income收入. This is the world世界 distribution分配 of income收入 of people.
97
358000
7000
X轴显示了全世界的收入分布
06:30
One dollar美元, 10 dollars美元 or 100 dollars美元 per day.
98
365000
5000
每天收入1美元,10美元和100美元
06:35
There's no gap间隙 between之间 rich丰富 and poor较差的 any longer. This is a myth神话.
99
370000
4000
富与穷之间的鸿沟几乎消失了,简直是个奇迹
06:39
There's a little hump驼峰 here. But there are people all the way.
100
374000
4000
这里还有一个很小的峰,但总体上是均数分布的
06:44
And if we look where the income收入 ends结束 up -- the income收入 --
101
379000
4000
我们看看收入的分配情况
06:48
this is 100 percent百分 the world's世界 annual全年 income收入. And the richest首富 20 percent百分,
102
383000
6000
这代表全世界人民每年的全部收入
06:54
they take out of that about 74 percent百分. And the poorest最穷 20 percent百分,
103
389000
7000
最富有的20%那部分人
得到了全部收入的74%
07:01
they take about two percent百分. And this shows节目 that the concept概念
104
396000
5000
最贫穷的20%那部分人 只得到2%
07:06
of developing发展 countries国家 is extremely非常 doubtful. We think about aid援助, like
105
401000
4000
可见发展中国家的理念 极其的不确切
07:10
these people here giving aid援助 to these people here. But in the middle中间,
106
405000
5000
我们总以为最富的人应该给最穷的人提供援助
07:15
we have most the world世界 population人口, and they have now 24 percent百分 of the income收入.
107
410000
4000
其实中间这部分才是世界人口的主体 而他们仅得到全部收入的24%
07:19
We heard听说 it in other forms形式. And who are these?
108
414000
4000
这是个老问题了,中间这些人是谁?
07:23
Where are the different不同 countries国家? I can show显示 you Africa非洲.
109
418000
4000
他们在哪些国家?先看非洲
07:27
This is Africa非洲. 10 percent百分 the world世界 population人口, most in poverty贫穷.
110
422000
5000
非洲占世界人口的十分之一,多数是穷人
07:32
This is OECD经合组织. The rich丰富 country国家. The country国家 club俱乐部 of the U.N.
111
427000
5000
这个代表富裕的经合组织成员国,联合国俱乐部的会员
07:37
And they are over here on this side. Quite相当 an overlap交叠 between之间 Africa非洲 and OECD经合组织.
112
432000
5000
他们在这边,很小一部分与非洲重叠
07:42
And this is Latin拉丁 America美国. It has everything on this Earth地球,
113
437000
3000
这是拉丁美洲,他们可以代表全世界
07:45
from the poorest最穷 to the richest首富, in Latin拉丁 America美国.
114
440000
3000
从最贫穷到最富有的人都在那里
07:48
And on top最佳 of that, we can put East Europe欧洲, we can put East Asia亚洲,
115
443000
5000
再往上是东欧,东亚还有南亚
07:53
and we put South Asia亚洲. And how did it look like if we go back in time,
116
448000
5000
过去是什么样子的呢?
07:58
to about 1970? Then there was more of a hump驼峰.
117
453000
5000
如果我们回到1970年,这里有一个明显的峰
08:03
And we have most who lived生活 in absolute绝对 poverty贫穷 were Asians亚洲人.
118
458000
4000
这些绝对贫困的人群中 大多数是亚洲人
08:07
The problem问题 in the world世界 was the poverty贫穷 in Asia亚洲. And if I now let the world世界 move移动 forward前锋,
119
462000
7000
那时世界的问题就在于亚洲的贫穷
08:14
you will see that while population人口 increase增加, there are
120
469000
3000
后来随着人口的增长
08:17
hundreds数以百计 of millions百万 in Asia亚洲 getting得到 out of poverty贫穷 and some others其他
121
472000
3000
数以亿计的亚洲人摆脱了贫困
08:20
getting得到 into poverty贫穷, and this is the pattern模式 we have today今天.
122
475000
3000
另外一些人却陷入贫穷,这就是今天的世界
08:23
And the best最好 projection投影 from the World世界 Bank银行 is that this will happen发生,
123
478000
4000
而这是世界银行对未来最乐观的预测
08:27
and we will not have a divided分为 world世界. We'll have most people in the middle中间.
124
482000
4000
世界再也不是贫富悬殊的,大多数人拥有中等的收入
08:31
Of course课程 it's a logarithmic对数的 scale规模 here,
125
486000
2000
当然这是指数幂分布的图
08:33
but our concept概念 of economy经济 is growth发展 with percent百分. We look upon it
126
488000
5000
因为经济的增长是用百分比来衡量的
08:38
as a possibility可能性 of percentile百分 increase增加. If I change更改 this, and I take
127
493000
6000
我们用百分比的变化来评估经济增长
08:44
GDPGDP per capita人头 instead代替 of family家庭 income收入, and I turn these
128
499000
4000
下面把X轴改为人均国内生产总值
08:48
individual个人 data数据 into regional区域性 data数据 of gross domestic国内 product产品,
129
503000
6000
个人的数据转为各大洲的数据
08:54
and I take the regions地区 down here, the size尺寸 of the bubble泡沫 is still the population人口.
130
509000
4000
球的大小代表人口的多少
08:58
And you have the OECD经合组织 there, and you have sub-Saharan撒哈拉以南 Africa非洲 there,
131
513000
3000
这个是经合组织国家,这是撒哈拉以南非洲
09:01
and we take off the Arab阿拉伯 states状态 there,
132
516000
3000
我们把阿拉伯国家
09:04
coming未来 both from Africa非洲 and from Asia亚洲, and we put them separately分别,
133
519000
4000
从非洲和亚洲单独分出来
09:08
and we can expand扩大 this axis, and I can give it a new dimension尺寸 here,
134
523000
5000
然后把X轴延伸一下 再加上一个新的维度
09:13
by adding加入 the social社会 values there, child儿童 survival生存.
135
528000
3000
一个有社会价值的参数 儿童生存率
09:16
Now I have money on that axis, and I have the possibility可能性 of children孩子 to survive生存 there.
136
531000
5000
X轴代表经济 Y轴显示儿童存活的比率
09:21
In some countries国家, 99.7 percent百分 of children孩子 survive生存 to five years年份 of age年龄;
137
536000
4000
一些国家的99.7%的小孩 可以活到5岁以上
09:25
others其他, only 70. And here it seems似乎 there is a gap间隙
138
540000
4000
另一些国家只有70% 很明显可以看到
09:29
between之间 OECD经合组织, Latin拉丁 America美国, East Europe欧洲, East Asia亚洲,
139
544000
4000
经合组织成员国 和拉丁美洲,东欧,东亚
09:33
Arab阿拉伯 states状态, South Asia亚洲 and sub-Saharan撒哈拉以南 Africa非洲.
140
548000
4000
阿拉伯国家,南亚 以及撒哈拉以南非洲地区的差距
09:37
The linearity线性 is very strong强大 between之间 child儿童 survival生存 and money.
141
552000
5000
儿童生存率和经济之间 联系非常紧密
09:42
But let me split分裂 sub-Saharan撒哈拉以南 Africa非洲. Health健康 is there and better health健康 is up there.
142
557000
8000
下面把撒哈拉以南非洲地区 分解成各个国家
09:50
I can go here and I can split分裂 sub-Saharan撒哈拉以南 Africa非洲 into its countries国家.
143
565000
5000
分布靠上边的国家 拥有更高的健康水平
09:55
And when it burst爆裂, the size尺寸 of its country国家 bubble泡沫 is the size尺寸 of the population人口.
144
570000
5000
撒哈拉以南的非洲各国是如此分布的 小球的尺寸代表该国人口
10:00
Sierra内华达 Leone塞拉利昂 down there. Mauritius毛里求斯 is up there. Mauritius毛里求斯 was the first country国家
145
575000
4000
塞拉里昂在下边 毛里求斯在上边
10:04
to get away with trade贸易 barriers障碍, and they could sell their sugar --
146
579000
3000
毛里求斯是第一个消除了贸易壁垒的国家
10:08
they could sell their textiles纺织品 -- on equal等于 terms条款 as the people in Europe欧洲 and North America美国.
147
583000
5000
他们的蔗糖和纺织品的贸易协定 与欧洲和北美一样
10:13
There's a huge巨大 difference区别 between之间 Africa非洲. And Ghana加纳 is here in the middle中间.
148
588000
4000
但是非洲内部的差异非常巨大 加纳在中部
10:17
In Sierra内华达 Leone塞拉利昂, humanitarian人道主义 aid援助.
149
592000
3000
塞拉里昂需要人道主义援助
10:20
Here in Uganda乌干达, development发展 aid援助. Here, time to invest投资; there,
150
595000
5000
乌干达则需要发展援助 在加纳可以进行投资了
10:25
you can go for a holiday假日. It's a tremendous巨大 variation变异
151
600000
3000
毛里求斯则可以去度假 非洲内部的差异之大确实很惊人
10:28
within Africa非洲 which哪一个 we rarely很少 often经常 make -- that it's equal等于 everything.
152
603000
5000
而我们却总以为 非洲国家都差不多
10:33
I can split分裂 South Asia亚洲 here. India's印度 the big bubble泡沫 in the middle中间.
153
608000
4000
下面分解南亚各国 印度是中间的蓝色大球
10:37
But a huge巨大 difference区别 between之间 Afghanistan阿富汗 and Sri斯里兰卡 Lanka斯里兰卡.
154
612000
4000
而斯里兰卡和阿富汗有着巨大差异
10:41
I can split分裂 Arab阿拉伯 states状态. How are they? Same相同 climate气候, same相同 culture文化,
155
616000
4000
把阿拉伯世界分解来看 尽管是相同的气候,相同的文化
10:45
same相同 religion宗教 -- huge巨大 difference区别. Even between之间 neighbors邻居.
156
620000
4000
相同的宗教 却有巨大的差异
10:49
Yemen也门, civil国内 war战争. United联合的 Arab阿拉伯 Emirate酋长国, money which哪一个 was quite相当 equally一样 and well used.
157
624000
5000
也门在打内战 邻国阿联酋却躺在钱堆里
10:54
Not as the myth神话 is. And that includes包括 all the children孩子 of the foreign国外 workers工人 who are in the country国家.
158
629000
7000
而且(阿联酋的)儿童健康数据 包含了所有的外籍劳工
11:01
Data数据 is often经常 better than you think. Many许多 people say data数据 is bad.
159
636000
4000
大家总说数据不准确 数据其实比我们想象的好很多
11:06
There is an uncertainty不确定 margin余量, but we can see the difference区别 here:
160
641000
2000
数据是有误差
11:08
Cambodia柬埔寨, Singapore新加坡. The differences分歧 are much bigger
161
643000
3000
但柬埔寨和新加坡的差距肯定远大于数据的误差
11:11
than the weakness弱点 of the data数据. East Europe欧洲:
162
646000
3000
再看东欧
11:14
Soviet苏联 economy经济 for a long time, but they come out after 10 years年份
163
649000
6000
在苏联经济模式下发展了多年 但在过去10年
11:20
very, very differently不同. And there is Latin拉丁 America美国.
164
655000
3000
却经历了巨大的变化
11:23
Today今天, we don't have to go to Cuba古巴 to find a healthy健康 country国家 in Latin拉丁 America美国.
165
658000
4000
当今的拉丁美洲 古巴再也不是唯一的健康国家了
11:27
Chile智利 will have a lower降低 child儿童 mortality死亡 than Cuba古巴 within some few少数 years年份 from now.
166
662000
5000
几年后智利的儿童死亡率将低于古巴
11:32
And here we have high-income高收入 countries国家 in the OECD经合组织.
167
667000
3000
这些是经合组织成员国
11:35
And we get the whole整个 pattern模式 here of the world世界,
168
670000
4000
这里显示的就是我们的世界
11:39
which哪一个 is more or less like this. And if we look at it,
169
674000
5000
大概就是这样的情形 如果我们回到过去
11:44
how it looks容貌 -- the world世界, in 1960, it starts启动 to move移动. 1960.
170
679000
6000
看看世界是怎样的 从1960年开始
11:50
This is Mao Tse-tung谢彤. He brought health健康 to China中国. And then he died死亡.
171
685000
3000
1960年(中国有)毛泽东 他给中国带来了健康
11:53
And then Deng Xiaoping小平 came来了 and brought money to China中国, and brought them into the mainstream主流 again.
172
688000
5000
他去世后邓小平给中国带来了金钱 同时把中国带回到世界的主流当中
11:58
And we have seen看到 how countries国家 move移动 in different不同 directions方向 like this,
173
693000
4000
其他国家的移动方向也不尽相同
12:02
so it's sort分类 of difficult to get
174
697000
4000
很难找出哪个国家
12:06
an example country国家 which哪一个 shows节目 the pattern模式 of the world世界.
175
701000
5000
能代表全世界的发展模式
12:11
But I would like to bring带来 you back to about here at 1960.
176
706000
6000
我们回到1960年做个比较
12:17
I would like to compare比较 South Korea韩国, which哪一个 is this one, with Brazil巴西,
177
712000
10000
先选中韩国(左边的小黄球)巴西(右边的黄绿色大球)
12:27
which哪一个 is this one. The label标签 went away for me here. And I would like to compare比较 Uganda乌干达,
178
722000
5000
乌干达(Y轴上面的小红球)
12:32
which哪一个 is there. And I can run it forward前锋, like this.
179
727000
5000
随着时间的推移,我们看到
12:37
And you can see how South Korea韩国 is making制造 a very, very fast快速 advancement进步,
180
732000
9000
韩国的发展速度非常非常快
12:46
whereas Brazil巴西 is much slower比较慢.
181
741000
3000
巴西就慢得多
12:49
And if we move移动 back again, here, and we put on trails步道 on them, like this,
182
744000
6000
我们再回到过去 给每个球画出运动的轨迹
12:55
you can see again that the speed速度 of development发展
183
750000
4000
可以看到,发展速度的差距非常大
12:59
is very, very different不同, and the countries国家 are moving移动 more or less
184
754000
6000
虽然各国的经济和健康 发展的轨迹大同小异
13:05
in the same相同 rate as money and health健康, but it seems似乎 you can move移动
185
760000
4000
但是健康水平起点较高的国家
13:09
much faster更快 if you are healthy健康 first than if you are wealthy富裕 first.
186
764000
4000
发展速度远超过经济水平起点高的
13:14
And to show显示 that, you can put on the way of United联合的 Arab阿拉伯 Emirate酋长国.
187
769000
4000
为了说明这一点 我们看看阿联酋
13:18
They came来了 from here, a mineral矿物 country国家. They cached缓存 all the oil;
188
773000
3000
他们从这里出发 一个资源型国家
13:21
they got all the money; but health健康 cannot不能 be bought at the supermarket超级市场.
189
776000
4000
他们靠石油大把赚钱 但健康绝不是超市里的货物
13:25
You have to invest投资 in health健康. You have to get kids孩子 into schooling教育.
190
780000
4000
需要卫生方面的投资 需要提高儿童的教育水平
13:29
You have to train培养 health健康 staff员工. You have to educate教育 the population人口.
191
784000
3000
需要培训卫生工作者 还要教育民众
13:32
And Sheikh谢赫 Sayed赛义德 did that in a fairly相当 good way.
192
787000
3000
Sheikh Sayed 干的非常漂亮
13:35
In spite尽管 of falling落下 oil prices价格, he brought this country国家 up here.
193
790000
4000
尽管油价下跌了 他仍改善了阿联酋的健康
13:39
So we've我们已经 got a much more mainstream主流 appearance出现 of the world世界,
194
794000
4000
这里我们可以看到 世界发展的主流
13:43
where all countries国家 tend趋向 to use their money
195
798000
2000
各国对资金的分配和使用
13:45
better than they used in the past过去. Now, this is, more or less,
196
800000
5000
都比过去合理的多
13:50
if you look at the average平均 data数据 of the countries国家 -- they are like this.
197
805000
7000
这里大家看到各国的数据 基本上都是平均数
13:57
Now that's dangerous危险, to use average平均 data数据, because there is such这样 a lot
198
812000
5000
但是用平均数可能会很危险 因为国家内部也存在很大的差异
14:02
of difference区别 within countries国家. So if I go and look here, we can see
199
817000
6000
我们看这里
14:08
that Uganda乌干达 today今天 is where South Korea韩国 was 1960. If I split分裂 Uganda乌干达,
200
823000
6000
今天的乌干达和1960年的韩国差不多
14:14
there's quite相当 a difference区别 within Uganda乌干达. These are the quintiles昆泰 of Uganda乌干达.
201
829000
5000
如果把乌干达分解开 可以看到内部的明显差异
14:19
The richest首富 20 percent百分 of Ugandans乌干达 are there.
202
834000
3000
乌干达最富有的20%在右边
14:22
The poorest最穷 are down there. If I split分裂 South Africa非洲, it's like this.
203
837000
4000
最贫穷的在左下边 如果把南非分解开
14:26
And if I go down and look at Niger尼日尔, where there was such这样 a terrible可怕 famine饥荒,
204
841000
5000
尼日在下边 他们刚遭受一场恐怖的饥荒
14:31
lastly最后, it's like this. The 20 percent百分 poorest最穷 of Niger尼日尔 is out here,
205
846000
5000
最贫穷的20%的尼日人在最左边
14:36
and the 20 percent百分 richest首富 of South Africa非洲 is there,
206
851000
3000
而最富有的20%的南非人在最右边
14:39
and yet然而 we tend趋向 to discuss讨论 on what solutions解决方案 there should be in Africa非洲.
207
854000
5000
今天我们仍然在讨论 什么方案能解决非洲的问题
14:44
Everything in this world世界 exists存在 in Africa非洲. And you can't
208
859000
3000
世界上所有的问题非洲都有
14:47
discuss讨论 universal普遍 access访问 to HIVHIV [medicine医学] for that quintile五分之一 up here
209
862000
4000
我们不可能讨论出一套通用方案 既能解决这些地方的艾滋病问题
14:51
with the same相同 strategy战略 as down here. The improvement起色 of the world世界
210
866000
4000
同时也适用于这些地方
14:55
must必须 be highly高度 contextualized情境, and it's not relevant相应 to have it
211
870000
5000
世界的发展一定要因地制宜来分析
15:00
on regional区域性 level水平. We must必须 be much more detailed详细.
212
875000
3000
仅从各大洲的水平上来分析是不够的
15:03
We find that students学生们 get very excited兴奋 when they can use this.
213
878000
4000
当学生们接触到这个软件的时候 他们都非常兴奋
15:07
And even more policy政策 makers制造商 and the corporate企业 sectors行业 would like to see
214
882000
5000
此外,政策制定者,各企业部门 都会想知道世界的变化
15:12
how the world世界 is changing改变. Now, why doesn't this take place地点?
215
887000
4000
但为什么大家仍然不知道(世界的变化)
15:16
Why are we not using运用 the data数据 we have? We have data数据 in the United联合的 Nations国家,
216
891000
4000
为什么我们无法使用已知的数据呢
15:20
in the national国民 statistical统计 agencies机构
217
895000
2000
我们的联合国,国家统计部门
15:22
and in universities高校 and other non-governmental民间 organizations组织.
218
897000
4000
学院还有非政府组织都拥有数据
15:26
Because the data数据 is hidden down in the databases数据库.
219
901000
2000
但数据被隐藏在底层的数据库里
15:28
And the public上市 is there, and the Internet互联网 is there, but we have still not used it effectively有效.
220
903000
5000
而公众在上面(太阳)互联网在这里(地平线)并未得到有效的使用
15:33
All that information信息 we saw changing改变 in the world世界
221
908000
3000
之前我们看到的 关于世界变化的信息
15:36
does not include包括 publicly-funded政府资助 statistics统计. There are some web卷筒纸 pages网页
222
911000
4000
并不包括公众资助的统计数据
15:40
like this, you know, but they take some nourishment营养 down from the databases数据库,
223
915000
6000
的确有一些网站依靠数据库的营养而存在着
15:46
but people put prices价格 on them, stupid passwords密码 and boring无聊 statistics统计.
224
921000
5000
但这是要收费的 还有愚蠢的密码和讨厌的统计表格
15:51
(Laughter笑声) (Applause掌声)
225
926000
3000
(笑声,掌声)
15:54
And this won't惯于 work. So what is needed需要? We have the databases数据库.
226
929000
4000
这个是行不通的 我们需要什么?
15:58
It's not the new database数据库 you need. We have wonderful精彩 design设计 tools工具,
227
933000
4000
数据库是现成的 不需要新的数据库
16:02
and more and more are added添加 up here. So we started开始
228
937000
3000
我们有很好的视觉软件 还将有更多的问世
16:05
a nonprofit非营利性 venture冒险 which哪一个 we called -- linking链接 data数据 to design设计 --
229
940000
5000
于是我们成立了一个非营利机构
16:10
we call it GapminderGapminder, from the London伦敦 underground地下, where they warn警告 you,
230
945000
3000
我们称之为“数据与图样的联结” - Gapminder
16:13
"mind心神 the gap间隙." So we thought GapminderGapminder was appropriate适当.
231
948000
3000
灵感来自伦敦地铁(他们提醒乘客“小心列车与站台间的缝隙”)
16:16
And we started开始 to write software软件 which哪一个 could link链接 the data数据 like this.
232
951000
4000
而且我们制作了一个软件 把数据和图样联结起来
16:20
And it wasn't that difficult. It took some person years年份, and we have produced生成 animations动画.
233
955000
6000
这个并不难 需要几个人花几年时间
16:26
You can take a data数据 set and put it there.
234
961000
2000
建立数据库后大家就能看到动画
16:28
We are liberating解放 U.N. data数据, some few少数 U.N. organization组织.
235
963000
5000
我们正尝试解放联合国的数据库
16:33
Some countries国家 accept接受 that their databases数据库 can go out on the world世界,
236
968000
4000
少数联合国机构和几个国家已经开放了数据库
16:37
but what we really need is, of course课程, a search搜索 function功能.
237
972000
3000
但我们最需要的是数据搜索引擎
16:40
A search搜索 function功能 where we can copy复制 the data数据 up to a searchable搜索 format格式
238
975000
5000
依靠搜索引擎 我们先把原始数据复制成可搜索的格式
16:45
and get it out in the world世界. And what do we hear when we go around?
239
980000
3000
再把数据发布到全世界 外界对这个设想的反应如何呢?
16:48
I've doneDONE anthropology人类学 on the main主要 statistical统计 units单位. Everyone大家 says,
240
983000
4000
我尝试跟几个大型统计机构交涉
16:53
"It's impossible不可能. This can't be doneDONE. Our information信息 is so peculiar奇特
241
988000
4000
所有人都说这是不可能的 “这行不通,我们的信息很独特,
16:57
in detail详情, so that cannot不能 be searched搜索 as others其他 can be searched搜索.
242
992000
3000
不可能像其它数据那样检索的出来
17:00
We cannot不能 give the data数据 free自由 to the students学生们, free自由 to the entrepreneurs企业家 of the world世界."
243
995000
5000
我们也不能免费把数据开放 给全世界的学生们和企业部门使用。”
17:05
But this is what we would like to see, isn't it?
244
1000000
3000
但这正是我们期望看到的,不是吗?
17:08
The publicly-funded政府资助 data数据 is down here.
245
1003000
3000
下边是公众资助采集的数据
17:11
And we would like flowers花卉 to grow增长 out on the Net.
246
1006000
3000
我们希望互联网上长出美丽的花朵
17:14
And one of the crucial关键 points is to make them searchable搜索, and then people can use
247
1009000
5000
关键的一步 是让这些数据可被搜索到
17:19
the different不同 design设计 tool工具 to animate活跃 it there.
248
1014000
2000
并借助软件实现动画的演示
17:21
And I have a pretty漂亮 good news新闻 for you. I have a good news新闻 that the present当下,
249
1016000
5000
我有个很好的消息要告诉大家
17:26
new Head of U.N. Statistics统计, he doesn't say it's impossible不可能.
250
1021000
4000
新上任的联合国统计部门的领导 并没有说这是不可能的
17:30
He only says, "We can't do it."
251
1025000
2000
他只说“我们不能这么做。”
17:32
(Laughter笑声)
252
1027000
4000
(笑声)
17:36
And that's a quite相当 clever聪明 guy, huh?
253
1031000
2000
他很聪明吧
17:38
(Laughter笑声)
254
1033000
2000
(笑声)
17:40
So we can see a lot happening事件 in data数据 in the coming未来 years年份.
255
1035000
4000
未来几年中 我们将会看到数据库的变化
17:44
We will be able能够 to look at income收入 distributions分布 in completely全然 new ways方法.
256
1039000
4000
我们会用全新的视角 来看收入的分配
17:48
This is the income收入 distribution分配 of China中国, 1970.
257
1043000
5000
这是1970年中国的收入分配
17:54
the income收入 distribution分配 of the United联合的 States状态, 1970.
258
1049000
5000
这是1970年美国的收入分配
17:59
Almost几乎 no overlap交叠. Almost几乎 no overlap交叠. And what has happened发生?
259
1054000
4000
几乎没有重叠 后来呢?
18:03
What has happened发生 is this: that China中国 is growing生长, it's not so equal等于 any longer,
260
1058000
5000
中国在增长,再也不像以前那样平等了
18:08
and it's appearing出现 here, overlooking俯瞰 the United联合的 States状态.
261
1063000
4000
它出现在右边,俯视着美国
18:12
Almost几乎 like a ghost, isn't it, huh?
262
1067000
2000
是不是像个鬼一样
18:14
(Laughter笑声)
263
1069000
2000
(笑声)
18:16
It's pretty漂亮 scary害怕. But I think it's very important重要 to have all this information信息.
264
1071000
10000
很吓人吧 我认为这些信息很重要
18:26
We need really to see it. And instead代替 of looking at this,
265
1081000
6000
大家很有必要看到这些
18:32
I would like to end结束 up by showing展示 the Internet互联网 users用户 per 1,000.
266
1087000
5000
另外我最后要给大家展示 每千人中的网民数量
18:37
In this software软件, we access访问 about 500 variables变量 from all the countries国家 quite相当 easily容易.
267
1092000
5000
这个软件能让我们很容易的看到 全球各国的近500个参数
18:42
It takes some time to change更改 for this,
268
1097000
4000
通过点击坐标轴
18:46
but on the axises轴系, you can quite相当 easily容易 get any variable变量 you would like to have.
269
1101000
5000
你能轻易改变参数的设定
18:51
And the thing would be to get up the databases数据库 free自由,
270
1106000
5000
我们的初衷是 数据免费下载且易于查找
18:56
to get them searchable搜索, and with a second第二 click点击, to get them
271
1111000
3000
然后再点一下鼠标 数据就成为图表的形式
18:59
into the graphic图像 formats格式, where you can instantly即刻 understand理解 them.
272
1114000
5000
那样大家就可以 立刻看明白这些数据了
19:04
Now, statisticians统计学家 doesn't like it, because they say that this
273
1119000
3000
统计学家们不喜欢这样子
19:07
will not show显示 the reality现实; we have to have statistical统计, analytical分析 methods方法.
274
1122000
9000
他们认为这不能准确地反映事实 传统的统计和分析方法是不能取代的
19:16
But this is hypothesis-generating假设生成.
275
1131000
3000
但数据动画可以帮助提出假说
19:19
I end结束 now with the world世界. There, the Internet互联网 is coming未来.
276
1134000
4000
最后我们看一下当今的互联网世界
19:23
The number of Internet互联网 users用户 are going up like this. This is the GDPGDP per capita人头.
277
1138000
4000
网民数量不断向上攀升(X轴是)人均国民生产总值
19:27
And it's a new technology技术 coming未来 in, but then amazingly令人惊讶, how well
278
1142000
5000
互联网是一项新技术 但令人惊讶的是
19:32
it fits适合 to the economy经济 of the countries国家. That's why the 100 dollar美元
279
1147000
5000
它的普及和国家的经济水平极其一致
19:37
computer电脑 will be so important重要. But it's a nice不错 tendency趋势.
280
1152000
3000
这也解释了100美元电脑的重要性 但这是很好的趋势
19:40
It's as if the world世界 is flattening扁平化 off, isn't it? These countries国家
281
1155000
3000
世界各国的差距将会缩小,不是吗
19:43
are lifting吊装 more than the economy经济 and will be very interesting有趣
282
1158000
3000
这些国家的互联网普及速度 超过了经济的发展速度
19:46
to follow跟随 this over the year, as I would like you to be able能够 to do
283
1161000
4000
我也希望大家都可以 自由使用公众资助采集的数据
19:50
with all the publicly公然 funded资助 data数据. Thank you very much.
284
1165000
2000
非常感谢!
19:53
(Applause掌声)
285
1168000
3000
(掌声)
Reviewed by Jenny Yang

▲Back to top

ABOUT THE SPEAKER
Hans Rosling - Global health expert; data visionary
In Hans Rosling’s hands, data sings. Global trends in health and economics come to vivid life. And the big picture of global development—with some surprisingly good news—snaps into sharp focus.

Why you should listen

Even the most worldly and well-traveled among us have had their perspectives shifted by Hans Rosling. A professor of global health at Sweden's Karolinska Institute, his work focused on dispelling common myths about the so-called developing world, which (as he pointed out) is no longer worlds away from the West. In fact, most of the Third World is on the same trajectory toward health and prosperity, and many countries are moving twice as fast as the west did.

What set Rosling apart wasn't just his apt observations of broad social and economic trends, but the stunning way he presented them. Guaranteed: You've never seen data presented like this. A presentation that tracks global health and poverty trends should be, in a word: boring. But in Rosling's hands, data sings. Trends come to life. And the big picture — usually hazy at best — snaps into sharp focus.

Rosling's presentations were grounded in solid statistics (often drawn from United Nations and World Bank data), illustrated by the visualization software he developed. The animations transform development statistics into moving bubbles and flowing curves that make global trends clear, intuitive and even playful. During his legendary presentations, Rosling took this one step farther, narrating the animations with a sportscaster's flair.

Rosling developed the breakthrough software behind his visualizations through his nonprofit Gapminder, founded with his son and daughter-in-law. The free software — which can be loaded with any data — was purchased by Google in March 2007. (Rosling met the Google founders at TED.)

Rosling began his wide-ranging career as a physician, spending many years in rural Africa tracking a rare paralytic disease (which he named konzo) and discovering its cause: hunger and badly processed cassava. He co-founded Médecins sans Frontièrs (Doctors without Borders) Sweden, wrote a textbook on global health, and as a professor at the Karolinska Institut in Stockholm initiated key international research collaborations. He's also personally argued with many heads of state, including Fidel Castro.

Hans Rosling passed away in February 2017. He is greatly missed.


More profile about the speaker
Hans Rosling | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee