ABOUT THE SPEAKER
Hans Rosling - Global health expert; data visionary
In Hans Rosling’s hands, data sings. Global trends in health and economics come to vivid life. And the big picture of global development—with some surprisingly good news—snaps into sharp focus.

Why you should listen

Even the most worldly and well-traveled among us have had their perspectives shifted by Hans Rosling. A professor of global health at Sweden's Karolinska Institute, his work focused on dispelling common myths about the so-called developing world, which (as he pointed out) is no longer worlds away from the West. In fact, most of the Third World is on the same trajectory toward health and prosperity, and many countries are moving twice as fast as the west did.

What set Rosling apart wasn't just his apt observations of broad social and economic trends, but the stunning way he presented them. Guaranteed: You've never seen data presented like this. A presentation that tracks global health and poverty trends should be, in a word: boring. But in Rosling's hands, data sings. Trends come to life. And the big picture — usually hazy at best — snaps into sharp focus.

Rosling's presentations were grounded in solid statistics (often drawn from United Nations and World Bank data), illustrated by the visualization software he developed. The animations transform development statistics into moving bubbles and flowing curves that make global trends clear, intuitive and even playful. During his legendary presentations, Rosling took this one step farther, narrating the animations with a sportscaster's flair.

Rosling developed the breakthrough software behind his visualizations through his nonprofit Gapminder, founded with his son and daughter-in-law. The free software — which can be loaded with any data — was purchased by Google in March 2007. (Rosling met the Google founders at TED.)

Rosling began his wide-ranging career as a physician, spending many years in rural Africa tracking a rare paralytic disease (which he named konzo) and discovering its cause: hunger and badly processed cassava. He co-founded Médecins sans Frontièrs (Doctors without Borders) Sweden, wrote a textbook on global health, and as a professor at the Karolinska Institut in Stockholm initiated key international research collaborations. He's also personally argued with many heads of state, including Fidel Castro.

Hans Rosling passed away in February 2017. He is greatly missed.


More profile about the speaker
Hans Rosling | Speaker | TED.com
TED2006

Hans Rosling: The best stats you've ever seen

Hans Rosling aonyesha takwimu bora kuliko zote ulizoziona

Filmed:
14,386,844 views

Hujapata kuona takwimu zikielelezwa namna hii. Kwa ufundi na umahiri wa kuhadhiri, gwiji wa takwimu Hans Rosling anachambua mtazamo potofu uitwao "nchi zinazoendelea."
- Global health expert; data visionary
In Hans Rosling’s hands, data sings. Global trends in health and economics come to vivid life. And the big picture of global development—with some surprisingly good news—snaps into sharp focus. Full bio

Double-click the English transcript below to play the video.

00:25
About 10 yearsmiaka agoiliyopita, I tookalichukua on the taskkazi to teachkufundisha globalkimataifa developmentmaendeleo
0
0
4000
Takriban miaka 10 iliyopita, nilianza kazi ya kufundisha maendeleo ya ulimwengu
00:29
to SwedishKiswidi undergraduateshahada ya kwanza studentswanafunzi. That was after havingkuwa na spentalitumia
1
4000
4000
kwa wanafunzi wa Kiswidishi wa shahada ya kwanza. Hii ilikuwa baada ya
00:33
about 20 yearsmiaka togetherpamoja with AfricanAfrika institutionstaasisi studyingkusoma hungernjaa in AfricaAfrika,
2
8000
4000
takriban miaka 20 ya kufanya kazi pamoja na taasisi mbalimbali za Afrika nikitafiti kuhusu njaa
00:37
so I was sortfanya of expectedinatarajiwa to know a little about the worldulimwengu.
3
12000
4000
katika Afrika, kwa hiyo nilikuwa natarajiwa niwe najua zaidi kuhusu dunia.
00:41
And I startedilianza in our medicalmatibabu universitychuo kikuu, KarolinskaKarolinska InstituteChuo,
4
16000
5000
Na nilianzia kwenye chuo chetu cha utabibu, Taasisi ya Karolinska,
00:46
an undergraduateshahada ya kwanza coursebila shaka calledaitwaye GlobalKimataifa HealthAfya. But when you get
5
21000
4000
kozi ya shahada ya kwanza iliyoitwa Afya ya Ulimwengu. Lakini ukipata
00:50
that opportunitynafasi, you get a little nervoushofu. I thought, these studentswanafunzi
6
25000
3000
fursa hiyo, unapata mshawasha kidogo. Nilifikiri wanafunzi hawa
00:53
comingkuja to us actuallykwa kweli have the highestjuu gradedaraja you can get
7
28000
3000
kuja kwetu ni lazima wana maksi za juu unazoweza kupata
00:56
in SwedishKiswidi collegechuo systemsmifumo -- so, I thought, maybe they know everything
8
31000
3000
kwenye mfumo wa vyuo vya Sweden -- kwahiyo labda wanajua kila kitu
00:59
I'm going to teachkufundisha them about. So I did a pre-testjaribio kabla when they camealikuja.
9
34000
4000
kuhusu nitakachowafundisha. Kwa hiyo niliwapa mtihani mara tu walipokuja.
01:03
And one of the questionsmaswali from whichambayo I learnedkujifunza a lot was this one:
10
38000
3000
Na moja wapo kati ya maswali ambayo nilijifunza mengi ni hili hapa:
01:06
"WhichAmbayo countrynchi has the highestjuu childmtoto mortalityvifo of these fivetano pairsjozi?"
11
41000
4000
"Ni nchi gani kati ya hizi tano ina kiwango kikubwa cha vifo vya watoto kati ya jozi hizi tano?"
01:10
And I put them togetherpamoja, so that in eachkila mmoja pairjozi of countrynchi,
12
45000
4000
Na niliziweka pamoja, ili katika kila kundi la nchi,
01:14
one has twicemara mbili the childmtoto mortalityvifo of the other. And this meansina maana that
13
49000
5000
moja ina kiwango kikubwa cha vifo vya watoto zaidi ya nyingine. Na hii inamaanisha kwamba
01:19
it's much biggerkubwa zaidi a differencetofauti than the uncertaintykutokuwa na uhakika of the datadata.
14
54000
5000
kuna tofauti kubwa sana kuliko uhakika wa takwimu.
01:24
I won'thaitakuwa put you at a testmtihani here, but it's TurkeyUturuki,
15
59000
2000
Sitawapa mtihani hapa, lakini ni Uturuki,
01:26
whichambayo is highestjuu there, PolandPolandi, RussiaUrusi, PakistanPakistan and SouthKusini AfricaAfrika.
16
61000
5000
ambayo ina kiwango kikubwa pale, Poland, Urusi, Pakistani na Afrika Kusini.
01:31
And these were the resultsmatokeo of the SwedishKiswidi studentswanafunzi. I did it so I got
17
66000
3000
Na haya ndiyo majibu ya wanafunzi wa Kiswidishi. Nilifanya hivyo na nilipata
01:34
the confidencekujiamini intervalnafasi, whichambayo is prettynzuri narrownyembamba, and I got happyfuraha,
18
69000
3000
kiwango cha imani, ambacho kilikuwa kidogo, na nilifurahi,
01:37
of coursebila shaka: a 1.8 right answerjibu out of fivetano possibleinawezekana. That meansina maana that
19
72000
4000
kwa hakika: 1.8 ya jibu sahihi kati ya matano inawezekana. Hii ina maana kwamba
01:41
there was a placemahali for a professorprofesa of internationalkimataifa healthafya --
20
76000
3000
kulikuwa kuna nafasi ya Profesa wa afya ya ulimwengu --
01:44
(LaughterKicheko) and for my coursebila shaka.
21
79000
2000
(Kicheko) na kwa kozi yangu.
01:46
But one latekuchelewa night, when I was compilingkutayarisha the reportripoti
22
81000
4000
Lakini usiku mmoja, wakati nilipokuwa natayarisha ripoti
01:50
I really realizedgundua my discoveryugunduzi. I have shownimeonyeshwa
23
85000
4000
Niligundua uvumbuzi wangu. Nimeonyesha
01:54
that SwedishKiswidi topjuu studentswanafunzi know statisticallytakwimu significantlykwa kiasi kikubwa lesschini
24
89000
5000
kuwa wanafunzi Waswidishi wenye alama za juu wanajua kidogo sana kuhusu takwimu
01:59
about the worldulimwengu than the chimpanzeeschimpanzi.
25
94000
2000
za ulimwengu kuliko hata sokwe.
02:01
(LaughterKicheko)
26
96000
2000
(Kicheko)
02:03
Because the chimpanzeechimpanzee would scorealama halfnusu right if I gavealitoa them
27
98000
4000
Kwasababu sokwe wangepata nusu iwapo ningewapa
02:07
two bananasndizi with SriSri LankaLanka and TurkeyUturuki. They would be right halfnusu of the caseskesi.
28
102000
3000
ndizi mbili zenye Sri Lanka na Uturuki. Wangekuwa sahihi kwa nusu yake.
02:10
But the studentswanafunzi are not there. The problemtatizo for me was not ignoranceujinga;
29
105000
4000
Lakini wanafunzi hawapo huko. Tatizo langu halikuwa kutokujua kwao:
02:14
it was preconceivedkuiharibu misukumo ideasmawazo.
30
109000
3000
ilikuwa ni mawazo waliyojijengea.
02:17
I did alsopia an unethicalwasiofuata maadili studykujifunza of the professorsprofesa of the KarolinskaKarolinska InstituteChuo
31
112000
4000
Pia nilifanya utafiti kinyume na maadili kwa maprofesa wa taasisi ya Karolinska
02:21
(LaughterKicheko)
32
116000
1000
(Kicheko)
02:22
-- that handsmikono out the NobelTuzo PrizeTuzo in MedicineDawa,
33
117000
2000
-- ambao wanatoa tuzo ya Nobel katika utabibu,
02:24
and they are on parhususan with the chimpanzeechimpanzee there.
34
119000
2000
na wao wako sawa tu na sokwe.
02:26
(LaughterKicheko)
35
121000
3000
(Kicheko)
02:29
This is where I realizedgundua that there was really a need to communicatekuwasiliana,
36
124000
4000
Hapa ndipo nilipogundua kwamba kuna haja ya kuwasiliana,
02:33
because the datadata of what's happeningkinachotokea in the worldulimwengu
37
128000
3000
kwasababu ya takwimu za kinachotokea duniani
02:36
and the childmtoto healthafya of everykila countrynchi is very well awarekufahamu.
38
131000
3000
na afya ya mtoto katika kila nchi inajulikana.
02:39
We did this softwareprogramu whichambayo displaysmaonyesho it like this: everykila bubbleBubble here is a countrynchi.
39
134000
5000
Tulitengeneza hii programu ya kompyuta ambayo inayoonyesha kama hivi: kila kiputo hapa ni nchi.
02:44
This countrynchi over here is ChinaChina. This is IndiaIndia.
40
139000
6000
Hii nchi hapa ni China. Hii ni India.
02:50
The sizeukubwa of the bubbleBubble is the populationidadi ya watu, and on this axismhimili here I put fertilityuzazi ratekiwango.
41
145000
6000
Ukubwa wa kiputo ni idadi ya watu, na katika mhimili huu nimeweka kiwango cha uzazi.
02:56
Because my studentswanafunzi, what they said
42
151000
3000
Kwasababu wanafunzi wangu, walichosema
02:59
when they lookedilionekana uponjuu the worldulimwengu, and I askedaliuliza them,
43
154000
2000
wakati walipoangalia dunia, na nilipowauliza,
03:01
"What do you really think about the worldulimwengu?"
44
156000
2000
"Nini mnafikiri kuhusu dunia?"
03:03
Well, I first discoveredaligundua that the textbookKitabu cha maandishi was TintinTintin, mainlyhasa.
45
158000
4000
Naam, kwanza niligundua kuwa kitabu cha kiada kilikuwa Tintin, angalau.
03:07
(LaughterKicheko)
46
162000
1000
(Kicheko)
03:08
And they said, "The worldulimwengu is still 'we''sisi' and 'them' wao.'
47
163000
3000
Na walisema, "Dunia bado ni 'sisi' na 'wao.'
03:11
And we is WesternMagharibi worldulimwengu and them is ThirdTatu WorldUlimwengu."
48
166000
3000
Na sisi ni dunia ya Magharibi na wao ni Dunia ya Tatu."
03:14
"And what do you mean with WesternMagharibi worldulimwengu?" I said.
49
169000
3000
"Na una maana gani kwa kusema dunia ya magharibi?" Niliuliza.
03:17
"Well, that's long life and smallndogo familyfamilia, and ThirdTatu WorldUlimwengu is shortmfupi life and largekubwa familyfamilia."
50
172000
5000
"Naam, haya ni maisha marefu na familia ndogo, na dunia ya tatu ni maisha mafupi na familia kubwa."
03:22
So this is what I could displaykuonyesha here. I put fertilityuzazi ratekiwango here: numbernambari of childrenwatoto perkwa kila womanmwanamke:
51
177000
6000
Kwa hiyo hii ndio ninayoweza kuonyesha hapa. Niliweka kiwango cha uzazi hapa: idadi ya watoto kwa mwanamke,
03:28
one, two, threetatu, fournne, up to about eightnane childrenwatoto perkwa kila womanmwanamke.
52
183000
4000
moja, mbili, tatu, nne, mpaka watoto nane kwa mwanamke mmoja.
03:32
We have very good datadata sincetangu 1962 -- 1960 about -- on the sizeukubwa of familiesfamilia in all countriesnchi.
53
187000
6000
Tuna takwimu nzuri sana toka mwaka 1962 -- 1960 kuhusu -- ukubwa wa familia katika nchi zote.
03:38
The errorkosa marginPambizo is narrownyembamba. Here I put life expectancymatarajio at birthkuzaliwa,
54
193000
3000
Kiwango cha makosa ni kidogo sana. Hapa naweka umri wa kuishi wakati wa kuzaliwa,
03:41
from 30 yearsmiaka in some countriesnchi up to about 70 yearsmiaka.
55
196000
4000
kuanzia miaka 30 katika nchi nyingine mpaka karibu miaka 70.
03:45
And 1962, there was really a groupkikundi of countriesnchi here
56
200000
3000
Na mwaka 1962 kulikuwa na kundi kubwa la nchi hapa,
03:48
that was industrializedviwanda countriesnchi, and they had smallndogo familiesfamilia and long livesanaishi.
57
203000
5000
ambazo zilikuwa nchi zenye viwanda, na walikuwa na familia ndogo na maisha marefu.
03:53
And these were the developingkuendeleza countriesnchi:
58
208000
2000
Na hizi zilikuwa nchi zinazoendelea:
03:55
they had largekubwa familiesfamilia and they had relativelykiasi shortmfupi livesanaishi.
59
210000
3000
walikuwa na familia kubwa na walikuwa na maisha mafupi.
03:58
Now what has happenedkilichotokea sincetangu 1962? We want to see the changemabadiliko.
60
213000
4000
Sasa nini kimetokea toka mwaka 1962? Tunataka kuona mabadiliko.
04:02
Are the studentswanafunzi right? Is it still two typesaina of countriesnchi?
61
217000
3000
Je wanafunzi wako sahihi? Bado ni aina mbili za nchi?
04:06
Or have these developingkuendeleza countriesnchi got smallerndogo familiesfamilia and they livekuishi here?
62
221000
3000
Au hizi nchi zilizoendelea zina familia ndogo na wanaishi hapa?
04:09
Or have they got longertena livesanaishi and livekuishi up there?
63
224000
2000
Au wana maisha marefu na wanaishi hapo juu?
04:11
Let's see. We stoppedkusimamishwa the worldulimwengu then. This is all U.N. statisticstakwimu
64
226000
3000
Hebu tuone. Tulisimamisha dunia wakati ule. Hizi zote ni takwimu za Umoja wa Mataifa
04:14
that have been availableinapatikana. Here we go. Can you see there?
65
229000
3000
ambazo zinapatikana. Hebu tuone. Unaweza kuona kule?
04:17
It's ChinaChina there, movingkusonga againstdhidi better healthafya there, improvingkuboresha there.
66
232000
3000
Ni China kule, ikiendelea dhidi ya afya bora hapa, inaboreka kule.
04:20
All the greenkijani LatinKilatini AmericanMarekani countriesnchi are movingkusonga towardskuelekea smallerndogo familiesfamilia.
67
235000
3000
Nchi zote za kijani za Amerika ya Kusini zimeanza kuelekea kuwa na familia ndogo.
04:23
Your yellownjano oneswale here are the ArabicKiarabu countriesnchi,
68
238000
3000
Hizi za njano hapa ni nchi za Kiarabu,
04:26
and they get largerkubwa familiesfamilia, but they -- no, longertena life, but not largerkubwa familiesfamilia.
69
241000
4000
na wana familia kubwa, lakini wao -- hawana maisha marefu, lakini si familia kubwa.
04:30
The AfricansWaafrika are the greenkijani down here. They still remainkubaki here.
70
245000
3000
Waafrika ni kijani hapa chini. Bado wamebaki hapa.
04:33
This is IndiaIndia. Indonesia'sYa Indonesia movingkusonga on prettynzuri fastharaka.
71
248000
3000
Hii ni India. Indonesia inaenda kwa kasi sana.
04:36
(LaughterKicheko)
72
251000
1000
(Kicheko)
04:37
And in the '80s here, you have BangladeshBangladesh still amongmiongoni mwa the AfricanAfrika countriesnchi there.
73
252000
3000
Na miaka ya 80 hapa, kuna Bangladesh bado iko miongoni mwa nchi za Afrika kule.
04:40
But now, BangladeshBangladesh -- it's a miraclemuujiza that happenshutokea in the '80s:
74
255000
3000
Lakini sasa, Bangladesh -- ni miujiza iliyotokea miaka ya 80:
04:43
the imamsMaimamu startkuanza to promotekukuza familyfamilia planningkupanga.
75
258000
3000
Maimamu walianza kuhamasisha uzazi wa mpango.
04:46
They movehoja up into that cornerkona. And in '90s, we have the terriblembaya HIVVVU epidemicjanga
76
261000
5000
Walisogea juu kwenye ile kona. Na katika miaka ya 90, tulikuwa na janga la Ukimwi
04:51
that takes down the life expectancymatarajio of the AfricanAfrika countriesnchi
77
266000
3000
ambalo lilishusha umri wa kuishi wa nchi za Afrika
04:54
and all the restpumzika of them movehoja up into the cornerkona,
78
269000
4000
na nyingine zote zilipanda kwenye ile kona,
04:58
where we have long livesanaishi and smallndogo familyfamilia, and we have a completelykabisa newmpya worldulimwengu.
79
273000
4000
ambako tuna maisha marefu na familia ndogo, na tuna ulimwengu mpya kabisa.
05:02
(ApplauseMakofi)
80
277000
13000
(Makofi)
05:15
Let me make a comparisonkulinganisha directlymoja kwa moja betweenkati the UnitedMuungano StatesMarekani of AmericaAmerika and VietnamVietnam.
81
290000
5000
Ngoja nifananishe kati ya Marekani na Vietnam.
05:20
1964: AmericaAmerika had smallndogo familiesfamilia and long life;
82
295000
5000
1964: Marekani ilikuwa na familia ndogo na maisha marefu;
05:25
VietnamVietnam had largekubwa familiesfamilia and shortmfupi livesanaishi. And this is what happenshutokea:
83
300000
4000
Vietnam ilikuwa na familia kubwa na maisha mafupi. Na hiki ndicho kilichotokea:
05:29
the datadata duringwakati the warvita indicateonyesha that even with all the deathkifo,
84
304000
6000
takwimu wakati wa vita zilionyesha kuwa pamoja na vifo vyote,
05:35
there was an improvementkuboresha of life expectancymatarajio. By the endmwisho of the yearmwaka,
85
310000
3000
kulikuwa kuna mabadiliko katika umri wa kuishi. Mwisho wa mwaka,
05:38
the familyfamilia planningkupanga startedilianza in VietnamVietnam and they wentakaenda for smallerndogo familiesfamilia.
86
313000
3000
uzazi wa mpango ulianza Vietnam na waliamua kuwa na familia ndogo.
05:41
And the UnitedMuungano StatesMarekani up there is gettingkupata for longertena life,
87
316000
3000
Na Marekani pale juu wanakuwa na maisha marefu,
05:44
keepingkuweka familyfamilia sizeukubwa. And in the '80s now,
88
319000
3000
wanabaki na ukubwa wa familia. Na miaka ya 80 sasa,
05:47
they give up communistkikomunisti planningkupanga and they go for marketsoko economyuchumi,
89
322000
3000
waliacha mpango wa kikomunisti na wakaingia kwenye uchumi wa soko huria,
05:50
and it moveshuenda fasterharaka even than socialkijamii life. And todayleo, we have
90
325000
4000
na inaenda haraka hata zaidi ya maisha ya jamii. Na leo,
05:54
in VietnamVietnam the samesawa life expectancymatarajio and the samesawa familyfamilia sizeukubwa
91
329000
5000
Vietnam ina umri wa kuishi na ukubwa wa familia sawa
05:59
here in VietnamVietnam, 2003, as in UnitedMuungano StatesMarekani, 1974, by the endmwisho of the warvita.
92
334000
7000
hapa Vietnam, 2003, kama ilivyokuwa Marekani, 1974, mwishoni mwa vita.
06:06
I think we all -- if we don't look in the datadata --
93
341000
4000
Nafikiri sote -- kama hatutaangalia vielelezo --
06:10
we underestimateusipendeze the tremendouskubwa changemabadiliko in AsiaAsia, whichambayo was
94
345000
4000
tutapuuza mabadiliko makubwa huko Asia, ambayo yalikuwa
06:14
in socialkijamii changemabadiliko before we saw the economicalkiuchumi changemabadiliko.
95
349000
4000
mabadiliko ya kijamii kabla hatujaona mabadiliko ya kiuchumi.
06:18
Let's movehoja over to anothermwingine way here in whichambayo we could displaykuonyesha
96
353000
5000
Hebu tuendelee kwingine hapa ambako tunaweza kuonyesha
06:23
the distributionusambazaji in the worldulimwengu of the incomemapato. This is the worldulimwengu distributionusambazaji of incomemapato of people.
97
358000
7000
mgawanyo wa kipato duniani. Hii ni mgao wa kipato cha watu.
06:30
One dollardola, 10 dollarsdola or 100 dollarsdola perkwa kila day.
98
365000
5000
Dola moja, dola 10 au dola 100 kwa siku.
06:35
There's no gappengo betweenkati richtajiri and poormaskini any longertena. This is a mythhadithi.
99
370000
4000
Hakuna pengo tena kati ya matajiri na maskini. Hii ni hali ya kufikirika
06:39
There's a little humpvurugu here. But there are people all the way.
100
374000
4000
Kuna kituta kidogo hapa. Lakini kuna watu kila sehemu.
06:44
And if we look where the incomemapato endshuisha up -- the incomemapato --
101
379000
4000
Na tukiangalia kipato kinapoishia -- kipato hicho --
06:48
this is 100 percentasilimia the world'sulimwengu annualkila mwaka incomemapato. And the richesttajiri 20 percentasilimia,
102
383000
6000
hii ni asilimia 100 ya kipato cha dunia kwa mwaka. Na asilimia 20 ya matajiri wakubwa kabisa,
06:54
they take out of that about 74 percentasilimia. And the poorestmaskini zaidi 20 percentasilimia,
103
389000
7000
wanachukua karibu asilimia 74. Na asilimia 20 ya masikini zaidi,
07:01
they take about two percentasilimia. And this showsinaonyesha that the conceptdhana
104
396000
5000
wanachukua karibu asilimia mbili. Na hii inaonyesha kwamba dhana
07:06
of developingkuendeleza countriesnchi is extremelysana doubtfulmashaka. We think about aidmisaada, like
105
401000
4000
ya nchi zinazoendelea ni ya mashaka. Tunafikiria kuhusu misaada, kama
07:10
these people here givingkutoa aidmisaada to these people here. But in the middlekatikati,
106
405000
5000
watu hawa wanatoa misaada kwa watu wale pale. Lakini katikati,
07:15
we have mostwengi the worldulimwengu populationidadi ya watu, and they have now 24 percentasilimia of the incomemapato.
107
410000
4000
tuna idadi kubwa ya watu duniani, wenye asilimia 24 ya kipato.
07:19
We heardkusikia it in other formsfomu. And who are these?
108
414000
4000
Tuliyasikia haya kwa namna nyingine. Na hawa ni akina nani?
07:23
Where are the differenttofauti countriesnchi? I can showonyesha you AfricaAfrika.
109
418000
4000
Nchi mbalimbali ziko wapi? Naweza kukuonyesha Afrika.
07:27
This is AfricaAfrika. 10 percentasilimia the worldulimwengu populationidadi ya watu, mostwengi in povertyumasikini.
110
422000
5000
Hii ni Afrika. Asilimia 10 ya idadi ya watu duniani, wengi wao wako kwenye umaskini.
07:32
This is OECDOECD. The richtajiri countrynchi. The countrynchi clubklabu of the U.N.
111
427000
5000
Hii ni OECD. Nchi tajiri. Nchi za kundi la Umoja wa Mataifa.
07:37
And they are over here on this sideupande. QuiteKabisa an overlaphuingiliana betweenkati AfricaAfrika and OECDOECD.
112
432000
5000
Na wapo huku upande huu. Kuna mwingiliano kati ya Afrika na OECD
07:42
And this is LatinKilatini AmericaAmerika. It has everything on this EarthDunia,
113
437000
3000
Hii hapa ni Amerika Kusini. Ni kila kitu katika dunia hii,
07:45
from the poorestmaskini zaidi to the richesttajiri, in LatinKilatini AmericaAmerika.
114
440000
3000
kuanzia maskini zaidi mpaka matajiri, huko Amerika Kusini.
07:48
And on topjuu of that, we can put EastMashariki EuropeEurope, we can put EastMashariki AsiaAsia,
115
443000
5000
Zaidi ya hayo, tunaweza kuiweka Ulaya Mashariki, Asia Mashariki,
07:53
and we put SouthKusini AsiaAsia. And how did it look like if we go back in time,
116
448000
5000
na Asia Kusini. Na ingekuwaje iwapo tungerejea nyuma,
07:58
to about 1970? Then there was more of a humpvurugu.
117
453000
5000
mpaka mwaka 1970? Wakati huo kulikuwa na nundu kubwa zaidi.
08:03
And we have mostwengi who livedaliishi in absolutekabisa povertyumasikini were AsiansWaasia.
118
458000
4000
Na waliokuwa kwenye umaskini mkubwa zaidi ni Waasia.
08:07
The problemtatizo in the worldulimwengu was the povertyumasikini in AsiaAsia. And if I now let the worldulimwengu movehoja forwardmbele,
119
462000
7000
Tatizo la dunia lilikuwa umaskini huko Asia. Na sasa kama nitaicha dunia isogee mbele,
08:14
you will see that while populationidadi ya watu increaseOngeza, there are
120
469000
3000
utaona kwamba wakati idadi ya watu inaongezeka, kuna
08:17
hundredsmamia of millionsmamilioni in AsiaAsia gettingkupata out of povertyumasikini and some otherswengine
121
472000
3000
mamia ya milioni huko Asia wanajikwamua kutoka umaskini na wengine
08:20
gettingkupata into povertyumasikini, and this is the patternmfano we have todayleo.
122
475000
3000
wanaingia katika umaskini, na hii ndiyo hali tuliyonayo leo hii.
08:23
And the bestbora projectionmakadirio from the WorldUlimwengu BankBenki is that this will happenkutokea,
123
478000
4000
Na makadirio mazuri kutoka Benki ya Dunia, ni kwamba haya yatatokea,
08:27
and we will not have a dividedimegawanyika worldulimwengu. We'llSisi tutaweza have mostwengi people in the middlekatikati.
124
482000
4000
na hatutakuwa na dunia iliyogawanyika. Tutakuwa na watu wengi katikati.
08:31
Of coursebila shaka it's a logarithmiclogarithmic scalekiwango here,
125
486000
2000
Naam, hiki ni kipimo cha logarithm,
08:33
but our conceptdhana of economyuchumi is growthukuaji with percentasilimia. We look uponjuu it
126
488000
5000
lakini dhana yetu ya uchumi ni kukua kwa asilimia. Tunaiangalia
08:38
as a possibilityuwezekano of percentilepercentile increaseOngeza. If I changemabadiliko this, and I take
127
493000
6000
kama ni uwezekano wa kuongezeka kwa asilimia. Kama nitabadili hii, na kuchukua
08:44
GDPPATO LA TAIFA perkwa kila capitacapita insteadbadala yake of familyfamilia incomemapato, and I turnkugeuka these
128
499000
4000
GDP kwa taifa badala ya kipato cha familia, na ninabadili hivi
08:48
individualmtu binafsi datadata into regionalkikanda datadata of grossjumla domesticndani productbidhaa,
129
503000
6000
takwimu moja moja kwenye takwimu za kanda za GDP,
08:54
and I take the regionsmikoa down here, the sizeukubwa of the bubbleBubble is still the populationidadi ya watu.
130
509000
4000
na ninazileta kanda hapa chini, ukubwa wa kiputo bado ni idadi ya watu.
08:58
And you have the OECDOECD there, and you have sub-SaharanSahara AfricaAfrika there,
131
513000
3000
Na una OECD pale, na una Afrika Kusini mwa Jangwa la Sahara hapo,
09:01
and we take off the ArabNchi za Kiarabu statesinasema there,
132
516000
3000
na tunatoa nchi za Kiarabu pale,
09:04
comingkuja bothwote wawili from AfricaAfrika and from AsiaAsia, and we put them separatelytofauti,
133
519000
4000
zinatoka Afrika na Asia, na tunaziweka tofauti,
09:08
and we can expandkupanua this axismhimili, and I can give it a newmpya dimensionmwelekeo here,
134
523000
5000
na tunaweza kuukuza muhimili huu, na ninaipa vipimo vipya hapa,
09:13
by addingkuongeza the socialkijamii valuesmaadili there, childmtoto survivalkuishi.
135
528000
3000
kwa kuongeza thamani ya ustawi wa jamii pale, uwezekano wa kusalimika mtoto.
09:16
Now I have moneyfedha on that axismhimili, and I have the possibilityuwezekano of childrenwatoto to survivekuishi there.
136
531000
5000
Sasa nimeweka pesa pale kwenye mhimili, na nina uwezekano wa watoto kusalimika pale.
09:21
In some countriesnchi, 99.7 percentasilimia of childrenwatoto survivekuishi to fivetano yearsmiaka of ageumri;
137
536000
4000
Katika baadhi ya nchi, asilimia 99.7 ya watoto wanaishi mpaka miaka mitano;
09:25
otherswengine, only 70. And here it seemsinaonekana there is a gappengo
138
540000
4000
wengine, mika 70 tu. Na hapa inaonekana kuna pengo
09:29
betweenkati OECDOECD, LatinKilatini AmericaAmerika, EastMashariki EuropeEurope, EastMashariki AsiaAsia,
139
544000
4000
kati ya OECD, Amerika Kusini, Ulaya Mashariki, Asia Mashariki,
09:33
ArabNchi za Kiarabu statesinasema, SouthKusini AsiaAsia and sub-SaharanSahara AfricaAfrika.
140
548000
4000
Nchi za kiarabu, Asia Kusini na Afrika Kusini mwa jangwa la Sahara.
09:37
The linearitylinearity is very strongnguvu betweenkati childmtoto survivalkuishi and moneyfedha.
141
552000
5000
Uwiano baina ya maisha ya watoto na pesa ni wa karibu sana.
09:42
But let me splitkupasuliwa sub-SaharanSahara AfricaAfrika. HealthAfya is there and better healthafya is up there.
142
557000
8000
Lakini hebu niigawanye Afrika Kusini mwa jangwa la Sahara. Afya iko hapa na afya bora iko kule.
09:50
I can go here and I can splitkupasuliwa sub-SaharanSahara AfricaAfrika into its countriesnchi.
143
565000
5000
Ninaweza kwenda hapa na kuigawa Afrika Kusini mwa jangwa la Sahara katika nchi tofauti.
09:55
And when it burstkupasuka, the sizeukubwa of its countrynchi bubbleBubble is the sizeukubwa of the populationidadi ya watu.
144
570000
5000
Na ikipasuka, ukubwa wa puto la nchi ni sawa na idadi ya watu.
10:00
SierraSierra LeoneLeone down there. MauritiusMauritius is up there. MauritiusMauritius was the first countrynchi
145
575000
4000
Hapa chini ni Siera Leone. Mauritus iko pale juu. Mauritius ilikuwa nchi ya kwanza
10:04
to get away with tradebiashara barriersvikwazo, and they could sellkuuza theirwao sugarsukari --
146
579000
3000
kuondokana na vikwazo vya biashara, na waliweza kuuza sukari yao.
10:08
they could sellkuuza theirwao textilesnguo -- on equalsawa termsmaneno as the people in EuropeEurope and NorthKaskazini AmericaAmerika.
147
583000
5000
Waliweza kuuza nguo kwa taratibu sawa na watu wa Ulaya na Amerika Kaskazini.
10:13
There's a hugekubwa differencetofauti betweenkati AfricaAfrika. And GhanaGhana is here in the middlekatikati.
148
588000
4000
Kuna tofauti kubwa sana ndani ya Afrika. Na Ghana iko hapa katikati.
10:17
In SierraSierra LeoneLeone, humanitariankibinadamu aidmisaada.
149
592000
3000
Huko Siera Leone, misaada ya kibinadamu.
10:20
Here in UgandaUganda, developmentmaendeleo aidmisaada. Here, time to investwekeza; there,
150
595000
5000
Hapa Uganda, misaada ya maendeleo. Hapa, muda wa kuwekeza, kule,
10:25
you can go for a holidaySikukuu. It's a tremendouskubwa variationtofauti
151
600000
3000
unaweza kwenda kwa mapumziko. Ni tofauti kubwa sana
10:28
withinndani AfricaAfrika whichambayo we rarelymara chache oftenmara nyingi make -- that it's equalsawa everything.
152
603000
5000
katika Afrika ambayo mara nyingi tunaitambua -- kuwa iko sawa kwa kila kitu.
10:33
I can splitkupasuliwa SouthKusini AsiaAsia here. India'sYa India the bigkubwa bubbleBubble in the middlekatikati.
153
608000
4000
Naweza kuigawa Asia Kusini hapa. India ni kiputo kikubwa cha katikati.
10:37
But a hugekubwa differencetofauti betweenkati AfghanistanAfghanistani and SriSri LankaLanka.
154
612000
4000
Lakini kuna tofauti kubwa kati ya Afghanistani na Sri Lanka.
10:41
I can splitkupasuliwa ArabNchi za Kiarabu statesinasema. How are they? SameSawa climatehali ya hewa, samesawa cultureutamaduni,
155
616000
4000
Naweza kugawa nchi za Kiarabu. Wakoje? Hali ya hewa sawa, utamaduni sawa,
10:45
samesawa religiondini -- hugekubwa differencetofauti. Even betweenkati neighborsmajirani.
156
620000
4000
dini sawa. Tofauti kubwa. Hata kati ya majirani.
10:49
YemenYemeni, civilkiraia warvita. UnitedMuungano ArabNchi za Kiarabu EmirateJamhuri, moneyfedha whichambayo was quitekabisa equallysawa and well used.
157
624000
5000
Yemen, vita vya wao kwa wao. Umoja wa Falme za Kiarabu, pesa ya kutosha ni sawa na ikatumiwa vizuri.
10:54
Not as the mythhadithi is. And that includesinajumuisha all the childrenwatoto of the foreignkigeni workerswafanyakazi who are in the countrynchi.
158
629000
7000
Sio kama tunavyofikiria. Na hii inajumuisha watoto wa raia wa kigeni ambao wapo nchini.
11:01
DataData is oftenmara nyingi better than you think. ManyWengi people say datadata is badmbaya.
159
636000
4000
Takwimu ni bora zaidi ya unavyofikiria. Watu wengi wanasema takwimu ni mbaya.
11:06
There is an uncertaintykutokuwa na uhakika marginPambizo, but we can see the differencetofauti here:
160
641000
2000
Kuna nafasi ya mashaka, lakini tunaweza kuona tofauti hapa:
11:08
CambodiaKambodia, SingaporeSingapori. The differencestofauti are much biggerkubwa zaidi
161
643000
3000
Cambodia, Singapore. Tofauti ni kubwa
11:11
than the weaknessudhaifu of the datadata. EastMashariki EuropeEurope:
162
646000
3000
zaidi ya udhaifu wa takwimu. Ulaya Mashariki:
11:14
SovietUrusi economyuchumi for a long time, but they come out after 10 yearsmiaka
163
649000
6000
Uchumi wa Kisovieti muda mrefu, lakini waliweza kujikwamua baada ya miaka kumi
11:20
very, very differentlytofauti. And there is LatinKilatini AmericaAmerika.
164
655000
3000
kwa utofauti sana. Na kuna Amerika Kusini.
11:23
TodayLeo, we don't have to go to CubaKuba to find a healthyafya countrynchi in LatinKilatini AmericaAmerika.
165
658000
4000
Leo, hatuna haja ya kwenda Cuba kutafuta nchi yenye afya bora Amerika Kusini.
11:27
ChileChile will have a lowerchini childmtoto mortalityvifo than CubaKuba withinndani some fewwachache yearsmiaka from now.
166
662000
5000
Chile itakuwa na idadi ndogo ya vifo vya watoto zaidi ya Cuba miaka michache ijayo kuanzia sasa.
11:32
And here we have high-incomekipato cha juu countriesnchi in the OECDOECD.
167
667000
3000
Na hapa tuna nchi zenye kipato kikubwa katika OECD.
11:35
And we get the wholeyote patternmfano here of the worldulimwengu,
168
670000
4000
Na hapa tunapata mwelekeo wote wa ulimwengu,
11:39
whichambayo is more or lesschini like this. And if we look at it,
169
674000
5000
ambao ni karibu ni sawa na hali hii. Na tukiiangalia,
11:44
how it looksinaonekana -- the worldulimwengu, in 1960, it startskuanza to movehoja. 1960.
170
679000
6000
inavyoonekana -- dunia, mwaka 1960, inaanza kusogea. 1960.
11:50
This is MaoMao Tse-tungTse-Tung. He broughtkuletwa healthafya to ChinaChina. And then he diedalikufa.
171
685000
3000
Huyu ni Mao Tse-tung. Alileta afya China. Halafu akafariki.
11:53
And then DengDeng XiaopingXiaoping camealikuja and broughtkuletwa moneyfedha to ChinaChina, and broughtkuletwa them into the mainstreamkawaida again.
172
688000
5000
Halafu akaja Deng Xiaoping na akaleta pesa kwa China, na kuwapandisha chati tena.
11:58
And we have seenkuonekana how countriesnchi movehoja in differenttofauti directionsmaelekezo like this,
173
693000
4000
Na tumeona jinsi nchi zinavyosogea katika mwenendo tofauti kama hivi,
12:02
so it's sortfanya of difficultvigumu to get
174
697000
4000
kwa hiyo inakuwa vigumu kupata
12:06
an examplemfano countrynchi whichambayo showsinaonyesha the patternmfano of the worldulimwengu.
175
701000
5000
mfano wa nchi ambayo inaonyesha mwelekeo wa ulimwengu.
12:11
But I would like to bringkuleta you back to about here at 1960.
176
706000
6000
Ningependa kuwarudisha nyuma mpaka karibu na mwaka 1960.
12:17
I would like to comparekulinganisha SouthKusini KoreaKorea, whichambayo is this one, with BrazilBrazili,
177
712000
10000
Ningependa kulinganisha Korea Kusini ambayo ni hii hapa, na Brazil,
12:27
whichambayo is this one. The labellebo wentakaenda away for me here. And I would like to comparekulinganisha UgandaUganda,
178
722000
5000
ambayo ni hii hapa. Kibandiko kimetoka hapa. Na ningependa kufananisha Uganda,
12:32
whichambayo is there. And I can runkukimbia it forwardmbele, like this.
179
727000
5000
ambayo iko kule. Na ninaweza kuileta mbele, kama hivi.
12:37
And you can see how SouthKusini KoreaKorea is makingkufanya a very, very fastharaka advancementmaendeleo,
180
732000
9000
Na unaweza kuona jinsi Korea Kusini wanavyosonga mbele kwa kasi sana,
12:46
whereaswakati BrazilBrazili is much slowerpolepole.
181
741000
3000
wakati Brazil inakwenda polepole.
12:49
And if we movehoja back again, here, and we put on trailsnjia on them, like this,
182
744000
6000
Na kama tukirudi nyuma tena, hapa, na tukiweka alama juu yao, kama hivi,
12:55
you can see again that the speedkasi of developmentmaendeleo
183
750000
4000
unaweza kuona tena kuwa kasi ya maendeleo
12:59
is very, very differenttofauti, and the countriesnchi are movingkusonga more or lesschini
184
754000
6000
ni tofauti sana, na nchi zinasogea sana au kidogo
13:05
in the samesawa ratekiwango as moneyfedha and healthafya, but it seemsinaonekana you can movehoja
185
760000
4000
katika kiwango sawa na kukua kwa pesa na afya, lakini inaonekana unaweza kusogea
13:09
much fasterharaka if you are healthyafya first than if you are wealthytajiri first.
186
764000
4000
haraka sana iwapo una afya kwanza kuliko ukiwa na pesa kwanza.
13:14
And to showonyesha that, you can put on the way of UnitedMuungano ArabNchi za Kiarabu EmirateJamhuri.
187
769000
4000
na kuonyesha hii, unaweza kuweka Umoja wa Falme za Kiarabu.
13:18
They camealikuja from here, a mineralmadini countrynchi. They cachedhifadhiwa muda all the oilmafuta;
188
773000
3000
Walitokea hapa, nchi ya madini. Walivuna mafuta yote,
13:21
they got all the moneyfedha; but healthafya cannothaiwezi be boughtkununuliwa at the supermarketmaduka makubwa.
189
776000
4000
walipata pesa zote, lakini afya haiwezi kununuliwa dukani.
13:25
You have to investwekeza in healthafya. You have to get kidswatoto into schoolingshule.
190
780000
4000
Inabidi uwekeze kwenye afya. Inabidi uwapeleke watoto shule.
13:29
You have to traintreni healthafya staffwafanyakazi. You have to educatekuelimisha the populationidadi ya watu.
191
784000
3000
Inabidi kuwafunza wafanyakazi wa afya. Inabidi kuwaelimisha watu.
13:32
And SheikhSheikh SayedSayed did that in a fairlyhaki good way.
192
787000
3000
Na Sheikh Sayed alifanya hivyo kwa namna nzuri.
13:35
In spitekinyume chake of fallingkuanguka oilmafuta pricesbei, he broughtkuletwa this countrynchi up here.
193
790000
4000
Pamoja na kuanguka kwa bei ya mafuta, aliipandisha nchi yake hapa juu.
13:39
So we'vetumekuwa got a much more mainstreamkawaida appearancemuonekano of the worldulimwengu,
194
794000
4000
Kwa hiyo tumepata muelekeo wa ulimwengu,
13:43
where all countriesnchi tendtamaa to use theirwao moneyfedha
195
798000
2000
ambapo nchi zote zinatabia ya kutumia pesa zao
13:45
better than they used in the pastzilizopita. Now, this is, more or lesschini,
196
800000
5000
vizuri zaidi ya walivyokuwa wakitumia huko nyuma. Naam, hivi ndivyo, zaidi au pungufu kidogo,
13:50
if you look at the averagewastani datadata of the countriesnchi -- they are like this.
197
805000
7000
ukiangalia wastani wa takwimu za nchi. Ziko kama hivi.
13:57
Now that's dangeroushatari, to use averagewastani datadata, because there is suchvile a lot
198
812000
5000
Sasa hii ni hatari, kutumia wastani wa takwimu, kwasababu kuna
14:02
of differencetofauti withinndani countriesnchi. So if I go and look here, we can see
199
817000
6000
tofauti kubwa kati ya nchi. Kwa hiyo nikienda kuangalia hapa, tunaona
14:08
that UgandaUganda todayleo is where SouthKusini KoreaKorea was 1960. If I splitkupasuliwa UgandaUganda,
200
823000
6000
kuwa Uganda ya leo ni mahali ambapo Korea ya Kusnini ilikuwa mwaka 1960. Na kama nikiigawa Uganda,
14:14
there's quitekabisa a differencetofauti withinndani UgandaUganda. These are the quintilesquintiles of UgandaUganda.
201
829000
5000
kuna tofauti ndani ya Uganda. Hii ni moja ya tano ya takwimu ndani ya Uganda.
14:19
The richesttajiri 20 percentasilimia of UgandansWaganda are there.
202
834000
3000
Asilimia 20 ya matajiri zaidi wa Uganda wako pale.
14:22
The poorestmaskini zaidi are down there. If I splitkupasuliwa SouthKusini AfricaAfrika, it's like this.
203
837000
4000
Masikini zaidi wako hapa chini. Iwapo nikiigawa Afrika Kusini, iko kama hivi.
14:26
And if I go down and look at NigerNiger, where there was suchvile a terriblembaya faminenjaa,
204
841000
5000
Na iwapo nikiangalia Niger, ambako kulikuwa na ukame mbaya sana,
14:31
lastlymwisho, it's like this. The 20 percentasilimia poorestmaskini zaidi of NigerNiger is out here,
205
846000
5000
mwishoni, iko kama hivi. Asilimia 20 ya masikini zaidi huko Niger wako hapa,
14:36
and the 20 percentasilimia richesttajiri of SouthKusini AfricaAfrika is there,
206
851000
3000
na asilimia 20 ya matajiri zaidi wa Afrika Kusini wako kule,
14:39
and yetbado we tendtamaa to discusskujadili on what solutionsufumbuzi there should be in AfricaAfrika.
207
854000
5000
na bado tunatabia ya kuzungumzia kuhusu utatuzi upi unafaa kwa matatizo ya Afrika.
14:44
Everything in this worldulimwengu existsipo in AfricaAfrika. And you can't
208
859000
3000
Kila kitu kilichopo hapa duniani kinapatikana Afrika. Na hamuwezi
14:47
discusskujadili universalzima accessupatikanaji to HIVVVU [medicinedawa] for that quintilemiongoni up here
209
862000
4000
kuongelea upatikanaji wa dawa za VVU [madawa] kwa moja ya tano hapa juu
14:51
with the samesawa strategymkakati as down here. The improvementkuboresha of the worldulimwengu
210
866000
4000
kwa mkakati sawa kama hapa chini. Maendeleo ya ulimwengu
14:55
mustlazima be highlysana contextualizedkuandaa, and it's not relevanthusika to have it
211
870000
5000
ni lazima yawekwe kwa makundi tofauti, na si lazima kuwa nayo
15:00
on regionalkikanda levelngazi. We mustlazima be much more detailedkina.
212
875000
3000
katika ngazi ya kanda. Ni lazima tuingie ndani zaidi.
15:03
We find that studentswanafunzi get very excitedmsisimko when they can use this.
213
878000
4000
Tumetambua kuwa wanafunzi wanapatwa na mshawasha wakiweza kutumia hii.
15:07
And even more policysera makerswatengeneza and the corporateushirika sectorssekta would like to see
214
882000
5000
Na wapanga sera na sekta binafsi zingependa kuona
15:12
how the worldulimwengu is changingkubadilisha. Now, why doesn't this take placemahali?
215
887000
4000
namna gani dunia inabadilika. Sasa, kwanini hii haitokei?
15:16
Why are we not usingkutumia the datadata we have? We have datadata in the UnitedMuungano NationsMataifa,
216
891000
4000
Kwanini hatutumii takwimu tulizonazo? Tuna takwimu katika Umoja wa Mataifa,
15:20
in the nationalkitaifa statisticaltakwimu agenciesmashirika
217
895000
2000
na katika taasisi za takwimu za nchi
15:22
and in universitiesvyuo vikuu and other non-governmentalyasiyo ya kiserikali organizationsmashirika.
218
897000
4000
na katika vyuo vikuu na mashirika yasiyo ya kiserikali.
15:26
Because the datadata is hiddensiri down in the databaseshazina data.
219
901000
2000
Kwasababu takwimu zimefichwa kwenye masijala.
15:28
And the publicumma is there, and the InternetTovuti is there, but we have still not used it effectivelykwa ufanisi.
220
903000
5000
Na umma uko pale, na mtandao wa Intaneti uko, lakini bado hatujautumia ipasavyo.
15:33
All that informationhabari we saw changingkubadilisha in the worldulimwengu
221
908000
3000
Taarifa zote tunazoziona zikibadilika duniani
15:36
does not includejumuisha publicly-fundedunaofadhiliwa hadharani statisticstakwimu. There are some webmtandao pageskurasa
222
911000
4000
hazihusishi takwimu zinazogharimiwa na umma. Kuna baadhi ya kurasa za tovuti
15:40
like this, you know, but they take some nourishmentmalisho ya down from the databaseshazina data,
223
915000
6000
mfano hii, kama ujuavyo, lakini zinachukua kutoka kwenye masijala ya takwimu,
15:46
but people put pricesbei on them, stupidwajinga passwordsnywila and boringboring statisticstakwimu.
224
921000
5000
lakini watu wanaziwekea bei, funguo za siri na takwimu za kuchosha.
15:51
(LaughterKicheko) (ApplauseMakofi)
225
926000
3000
(Kicheko). (Makofi).
15:54
And this won'thaitakuwa work. So what is neededinahitajika? We have the databaseshazina data.
226
929000
4000
Na hii haitatusaidia. Sasa nini kinatakiwa? Tuna masijala za takwimu.
15:58
It's not the newmpya databasedatabase you need. We have wonderfulajabu designkubuni toolszana,
227
933000
4000
Si masijala mpya ya takwimu unayoihitaji. Tuna vifaa vizuri vya ubunifu,
16:02
and more and more are addedaliongeza up here. So we startedilianza
228
937000
3000
na vingi vinaongezewa hapa. Kwa hiyo tulianzisha
16:05
a nonprofitmashirika yasiyo ya faida venturemradi whichambayo we calledaitwaye -- linkingkuunganisha datadata to designkubuni --
229
940000
5000
shirika lisilo la kibiashara ambalo tukaliita -- kuunganisha takwimu kwa ubunifu --
16:10
we call it GapminderGapminder, from the LondonLondon undergroundchini ya ardhi, where they warnonyesha you,
230
945000
3000
tunaiita Gapminder, kutoka London chini ya ardhi, ambako wanakuonya,
16:13
"mindakili the gappengo." So we thought GapminderGapminder was appropriatesahihi.
231
948000
3000
"angalia upenyo" Kwa hiyo tulifikiri Gapminder ilikuwa ni sahihi.
16:16
And we startedilianza to writeandika softwareprogramu whichambayo could linkkiungo the datadata like this.
232
951000
4000
Na tulianza kuandika programu ya kompyuta ambayo ingeweza kuunganisha takwimu kama hivi.
16:20
And it wasn'thaikuwa that difficultvigumu. It tookalichukua some personmtu yearsmiaka, and we have producedzinazozalishwa animationsmichoro.
233
955000
6000
Na haikuwa vigumu sana. Iliwachukua watu wengine miaka kadhaa, na tumetengeneza vielelezo.
16:26
You can take a datadata setkuweka and put it there.
234
961000
2000
Unaweza kuchukua seti ya takwimu na kuiweka hapa.
16:28
We are liberatingkutolewa U.N. datadata, some fewwachache U.N. organizationshirika.
235
963000
5000
Tunakomboa takwimu za Umoja wa Mataifa, mashirika machache ya Umoja wa Mataifa.
16:33
Some countriesnchi acceptkukubali that theirwao databaseshazina data can go out on the worldulimwengu,
236
968000
4000
Nchi nyingine zinakubali takwimu zao ziwe wazi duniani,
16:37
but what we really need is, of coursebila shaka, a searchtafuta functionkazi.
237
972000
3000
lakini tunachohitaji zaidi ni, kwa hakika, namna ya kuzichambua.
16:40
A searchtafuta functionkazi where we can copynakala the datadata up to a searchableOrodha na yanaweza kutafutwa formatformat
238
975000
5000
Programu ya kutafuta ambayo itakuwezesha kunakili takwimu katika muundo wa kutafutika
16:45
and get it out in the worldulimwengu. And what do we hearkusikia when we go around?
239
980000
3000
na kuiweka wazi duniani. Na nini tunasikia tuzungukapo?
16:48
I've donekufanyika anthropologyanthropolojia on the mainKuu statisticaltakwimu unitsvitengo. EveryoneKila mtu saysanasema,
240
983000
4000
Nimefanya anthopolojia katika sehemu kubwa za takwimu. Kila mtu anasema,
16:53
"It's impossiblehaiwezekani. This can't be donekufanyika. Our informationhabari is so peculiarpekee
241
988000
4000
"Haiwezekani. Hii haiwezi kufanyika. Taarifa zetu ni za ovyoovyo
16:57
in detailmaelezo zaidi, so that cannothaiwezi be searchedilifutwa as otherswengine can be searchedilifutwa.
242
992000
3000
kwa ndani, na kwahiyo haziwezi kupangiliwa zitafutike kama nyingine zinavyoweza kutafutwa.
17:00
We cannothaiwezi give the datadata freebure to the studentswanafunzi, freebure to the entrepreneurswajasiriamali of the worldulimwengu."
243
995000
5000
Hatuwezi kutoa takwimu bure kwa wanafunzi, bure kwa wajasiliamali wa dunia."
17:05
But this is what we would like to see, isn't it?
244
1000000
3000
Lakini hivi ndivyo tungependa tuone, au sio?
17:08
The publicly-fundedunaofadhiliwa hadharani datadata is down here.
245
1003000
3000
Takwimu zilizogharimiwa na umma zipo hapa chini.
17:11
And we would like flowersmaua to growkukua out on the NetWavu.
246
1006000
3000
Na tungependa maua yaote nje kwenye mtandao.
17:14
And one of the crucialmuhimu pointspointi is to make them searchableOrodha na yanaweza kutafutwa, and then people can use
247
1009000
5000
Na jambo la muhimu zaidi ni kuzipangilia ili ziweze kutafutika, na watu waweze kuzitumia
17:19
the differenttofauti designkubuni toolchombo to animateHuisha it there.
248
1014000
2000
vifaa tofauti vya ubunifu kueleleza pale.
17:21
And I have a prettynzuri good newshabari for you. I have a good newshabari that the presentsasa,
249
1016000
5000
Nina habari nzuri kwenu. Nina habari nzuri kwamba,
17:26
newmpya HeadKichwa of U.N. StatisticsTakwimu, he doesn't say it's impossiblehaiwezekani.
250
1021000
4000
Mkuu wa Kitengo cha Takwimu cha Umoja wa Mataifa, hasemi haiwezekani.
17:30
He only saysanasema, "We can't do it."
251
1025000
2000
Anasema, "Hatuwezi kufanya."
17:32
(LaughterKicheko)
252
1027000
4000
(Kicheko)
17:36
And that's a quitekabisa cleverwajanja guy, huh?
253
1031000
2000
Huyu ni mtu mwenye akili, eeeh?
17:38
(LaughterKicheko)
254
1033000
2000
(Kicheko)
17:40
So we can see a lot happeningkinachotokea in datadata in the comingkuja yearsmiaka.
255
1035000
4000
Kwa hiyo tunaona mambo mengi yakitokea kwenye takwimu katika miaka ijayo.
17:44
We will be ableinaweza to look at incomemapato distributionsusambazaji in completelykabisa newmpya waysnjia.
256
1039000
4000
Tutaweza kuangalia mgawanyo wa kipato katika namna mpya kabisa.
17:48
This is the incomemapato distributionusambazaji of ChinaChina, 1970.
257
1043000
5000
Huu ni mgao wa kipato huko China, 1970,
17:54
the incomemapato distributionusambazaji of the UnitedMuungano StatesMarekani, 1970.
258
1049000
5000
mgao wa kipato wa Marekani, 1970.
17:59
AlmostKaribu no overlaphuingiliana. AlmostKaribu no overlaphuingiliana. And what has happenedkilichotokea?
259
1054000
4000
Karibu hakuna mwingiliano, karibu hakuna mwingiliano. Na nini kimetokea?
18:03
What has happenedkilichotokea is this: that ChinaChina is growingkukua, it's not so equalsawa any longertena,
260
1058000
5000
Kilichotokea ni hiki: China inakua, haiko sawa tena,
18:08
and it's appearingkuonekana here, overlookingunaoelekea the UnitedMuungano StatesMarekani.
261
1063000
4000
na inatokea hapa, ikiingalia Marekani.
18:12
AlmostKaribu like a ghostRoho, isn't it, huh?
262
1067000
2000
Kama vile mzuka, au sio, eeeh?
18:14
(LaughterKicheko)
263
1069000
2000
(Kicheko)
18:16
It's prettynzuri scaryinatisha. But I think it's very importantmuhimu to have all this informationhabari.
264
1071000
10000
Inatisha. Lakini nadhani ni muhimu sana kuwa na taarifa hizi.
18:26
We need really to see it. And insteadbadala yake of looking at this,
265
1081000
6000
Tunahitaji sana kuziona. Badala ya kuangalia hii,
18:32
I would like to endmwisho up by showingkuonesha the InternetTovuti userswatumiaji perkwa kila 1,000.
266
1087000
5000
ningependa kumalizia kwa kuwaonyesha watumiaji wa mtandao kwa kila 1,000.
18:37
In this softwareprogramu, we accessupatikanaji about 500 variablesvigezo from all the countriesnchi quitekabisa easilykwa urahisi.
267
1092000
5000
Katika programu hii ya kompyuta, tunaweza kupata karibu alama 500 kutoka katika nchi zote kwa urahisi.
18:42
It takes some time to changemabadiliko for this,
268
1097000
4000
Inachukua muda kubadilika kwa hii,
18:46
but on the axisesaxises, you can quitekabisa easilykwa urahisi get any variablekutofautiana you would like to have.
269
1101000
5000
lakini katika mihimili, unaweza kupata alama yeyote utakayopenda kupata.
18:51
And the thing would be to get up the databaseshazina data freebure,
270
1106000
5000
Na kitu kizuri itakuwa ni kuziweka masijala za takwimu bure,
18:56
to get them searchableOrodha na yanaweza kutafutwa, and with a secondpili clickbonyeza, to get them
271
1111000
3000
kuweza kuzifanya ziweze kutafutika, na kuzipata kwa kubonyeza kwa nukta moja
18:59
into the graphicMchoro formatsUmbizo, where you can instantlymara moja understandkuelewa them.
272
1114000
5000
kwenye mfumo wa michoro majira ya nukta, ambapo utazielewa kwa urahisi.
19:04
Now, statisticianswasomi doesn't like it, because they say that this
273
1119000
3000
Naam, wanatakwimu hawazipendi, kwasababu wanasema kuwa hii
19:07
will not showonyesha the realityukweli; we have to have statisticaltakwimu, analyticaluchambuzi methodsnjia.
274
1122000
9000
haitaonyesha hali halisi; inabidi tuwe na mbinu za kuchambua takwimu.
19:16
But this is hypothesis-generatinginayozalisha na nadharia.
275
1131000
3000
Lakini hii inajenga nadharia.
19:19
I endmwisho now with the worldulimwengu. There, the InternetTovuti is comingkuja.
276
1134000
4000
Ninamalizia sasa na dunia. Pale, mtandao wa intaneti unakuja.
19:23
The numbernambari of InternetTovuti userswatumiaji are going up like this. This is the GDPPATO LA TAIFA perkwa kila capitacapita.
277
1138000
4000
Idadi ya wanaotumia mtandao inaongezeka kama hivi. Hii ni GDP per capita
19:27
And it's a newmpya technologyteknolojia comingkuja in, but then amazinglykushangaza, how well
278
1142000
5000
Na ni teknolojia mpya inayokuja, lakini cha kushangaza, ni namna ambavyo
19:32
it fitsinafaa to the economyuchumi of the countriesnchi. That's why the 100 dollardola
279
1147000
5000
inashabihiana na hali ya uchumi wa nchi. Ndio maana
19:37
computerkompyuta will be so importantmuhimu. But it's a nicenzuri tendencytabia.
280
1152000
3000
kompyuta ya dola 100 itakuwa ya muhimu sana. Lakini ni muelekeo mzuri.
19:40
It's as if the worldulimwengu is flatteningkupuuza off, isn't it? These countriesnchi
281
1155000
3000
Ni kama vile dunia inakuwa bapa. Au sio? Nchi hizi
19:43
are liftingkuinua more than the economyuchumi and will be very interestingkuvutia
282
1158000
3000
zinanyanyuka zaidi ya uchumi na itakuwa ni ya kufurahisha
19:46
to followFuata this over the yearmwaka, as I would like you to be ableinaweza to do
283
1161000
4000
kufuatilia hii kwa miaka ijayo, na kama ambavyo ningependa muweze kufanya
19:50
with all the publiclyhadharani fundedunafadhiliwa datadata. Thank you very much.
284
1165000
2000
kwa kutumia takwimu zilizogharamiwa na umma. Asanteni sana.
19:53
(ApplauseMakofi)
285
1168000
3000
(Makofi)

▲Back to top

ABOUT THE SPEAKER
Hans Rosling - Global health expert; data visionary
In Hans Rosling’s hands, data sings. Global trends in health and economics come to vivid life. And the big picture of global development—with some surprisingly good news—snaps into sharp focus.

Why you should listen

Even the most worldly and well-traveled among us have had their perspectives shifted by Hans Rosling. A professor of global health at Sweden's Karolinska Institute, his work focused on dispelling common myths about the so-called developing world, which (as he pointed out) is no longer worlds away from the West. In fact, most of the Third World is on the same trajectory toward health and prosperity, and many countries are moving twice as fast as the west did.

What set Rosling apart wasn't just his apt observations of broad social and economic trends, but the stunning way he presented them. Guaranteed: You've never seen data presented like this. A presentation that tracks global health and poverty trends should be, in a word: boring. But in Rosling's hands, data sings. Trends come to life. And the big picture — usually hazy at best — snaps into sharp focus.

Rosling's presentations were grounded in solid statistics (often drawn from United Nations and World Bank data), illustrated by the visualization software he developed. The animations transform development statistics into moving bubbles and flowing curves that make global trends clear, intuitive and even playful. During his legendary presentations, Rosling took this one step farther, narrating the animations with a sportscaster's flair.

Rosling developed the breakthrough software behind his visualizations through his nonprofit Gapminder, founded with his son and daughter-in-law. The free software — which can be loaded with any data — was purchased by Google in March 2007. (Rosling met the Google founders at TED.)

Rosling began his wide-ranging career as a physician, spending many years in rural Africa tracking a rare paralytic disease (which he named konzo) and discovering its cause: hunger and badly processed cassava. He co-founded Médecins sans Frontièrs (Doctors without Borders) Sweden, wrote a textbook on global health, and as a professor at the Karolinska Institut in Stockholm initiated key international research collaborations. He's also personally argued with many heads of state, including Fidel Castro.

Hans Rosling passed away in February 2017. He is greatly missed.


More profile about the speaker
Hans Rosling | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee