ABOUT THE SPEAKER
Hans Rosling - Global health expert; data visionary
In Hans Rosling’s hands, data sings. Global trends in health and economics come to vivid life. And the big picture of global development—with some surprisingly good news—snaps into sharp focus.

Why you should listen

Even the most worldly and well-traveled among us have had their perspectives shifted by Hans Rosling. A professor of global health at Sweden's Karolinska Institute, his work focused on dispelling common myths about the so-called developing world, which (as he pointed out) is no longer worlds away from the West. In fact, most of the Third World is on the same trajectory toward health and prosperity, and many countries are moving twice as fast as the west did.

What set Rosling apart wasn't just his apt observations of broad social and economic trends, but the stunning way he presented them. Guaranteed: You've never seen data presented like this. A presentation that tracks global health and poverty trends should be, in a word: boring. But in Rosling's hands, data sings. Trends come to life. And the big picture — usually hazy at best — snaps into sharp focus.

Rosling's presentations were grounded in solid statistics (often drawn from United Nations and World Bank data), illustrated by the visualization software he developed. The animations transform development statistics into moving bubbles and flowing curves that make global trends clear, intuitive and even playful. During his legendary presentations, Rosling took this one step farther, narrating the animations with a sportscaster's flair.

Rosling developed the breakthrough software behind his visualizations through his nonprofit Gapminder, founded with his son and daughter-in-law. The free software — which can be loaded with any data — was purchased by Google in March 2007. (Rosling met the Google founders at TED.)

Rosling began his wide-ranging career as a physician, spending many years in rural Africa tracking a rare paralytic disease (which he named konzo) and discovering its cause: hunger and badly processed cassava. He co-founded Médecins sans Frontièrs (Doctors without Borders) Sweden, wrote a textbook on global health, and as a professor at the Karolinska Institut in Stockholm initiated key international research collaborations. He's also personally argued with many heads of state, including Fidel Castro.

Hans Rosling passed away in February 2017. He is greatly missed.


More profile about the speaker
Hans Rosling | Speaker | TED.com
TED2006

Hans Rosling: The best stats you've ever seen

Hans Rosling用前所未有的方法詮釋數字統計

Filmed:
14,386,844 views

你肯定沒有看過這樣的數據演示。如解說體育比賽實況一般的生動與緊張,統計大師Hans Rosling將顛覆“發展中國家”這一理念。
- Global health expert; data visionary
In Hans Rosling’s hands, data sings. Global trends in health and economics come to vivid life. And the big picture of global development—with some surprisingly good news—snaps into sharp focus. Full bio

Double-click the English transcript below to play the video.

00:25
About 10 years年份 ago, I took on the task任務 to teach global全球 development發展
0
0
4000
大約10年前,我開始
00:29
to Swedish瑞典 undergraduate大學本科 students學生們. That was after having spent花費
1
4000
4000
給瑞典大學生講授全球發展
00:33
about 20 years年份 together一起 with African非洲人 institutions機構 studying研究 hunger飢餓 in Africa非洲,
2
8000
4000
之前的20年我一直在非洲研究飢餓問題
00:37
so I was sort分類 of expected預期 to know a little about the world世界.
3
12000
4000
所以大家以為我對世界有些了解
00:41
And I started開始 in our medical university大學, Karolinska卡羅林斯卡 Institute研究所,
4
16000
5000
在我們的Karolinska醫學院
00:46
an undergraduate大學本科 course課程 called Global全球 Health健康. But when you get
5
21000
4000
我開設了一門本科生課程“全球健康”
00:50
that opportunity機會, you get a little nervous緊張. I thought, these students學生們
6
25000
3000
剛開課的時候我還有些緊張
00:53
coming未來 to us actually其實 have the highest最高 grade年級 you can get
7
28000
3000
因為來聽課的都是瑞典大學的優等生
00:56
in Swedish瑞典 college學院 systems系統 -- so, I thought, maybe they know everything
8
31000
3000
他們或許早已了解我準備教的內容
00:59
I'm going to teach them about. So I did a pre-test預測試 when they came來了.
9
34000
4000
於是在第一堂課裡,我作了一個小測試
01:03
And one of the questions問題 from which哪一個 I learned學到了 a lot was this one:
10
38000
3000
其中有一道題讓我受益匪淺
01:06
"Which哪一個 country國家 has the highest最高 child兒童 mortality死亡 of these five pairs?"
11
41000
4000
下列5對國家中,哪一個的兒童死亡率高於另一個?
01:10
And I put them together一起, so that in each pair of country國家,
12
45000
4000
我所選擇的配對國家都是
01:14
one has twice兩次 the child兒童 mortality死亡 of the other. And this means手段 that
13
49000
5000
一個的兒童死亡率是另一個的兩倍
01:19
it's much bigger a difference區別 than the uncertainty不確定 of the data數據.
14
54000
5000
數據本身的不確定性可以忽略不計
01:24
I won't慣於 put you at a test測試 here, but it's Turkey火雞,
15
59000
2000
今天我不會拿這來考大家
01:26
which哪一個 is highest最高 there, Poland波蘭, Russia俄國, Pakistan巴基斯坦 and South Africa非洲.
16
61000
5000
土耳其,波蘭,俄羅斯,巴基斯坦和南非
01:31
And these were the results結果 of the Swedish瑞典 students學生們. I did it so I got
17
66000
3000
這是瑞典學生的測驗結果
01:34
the confidence置信度 interval間隔, which哪一個 is pretty漂亮 narrow狹窄, and I got happy快樂,
18
69000
3000
讓我高興的是
01:37
of course課程: a 1.8 right answer回答 out of five possible可能. That means手段 that
19
72000
4000
5道題平均答對的只有1.8題
01:41
there was a place地點 for a professor教授 of international國際 health健康 --
20
76000
3000
我這個教授還有這門課
01:44
(Laughter笑聲) and for my course課程.
21
79000
2000
因此都有了存在的必要
01:46
But one late晚了 night, when I was compiling編譯 the report報告
22
81000
4000
但後來有天深夜,當我寫總結報告的時候
01:50
I really realized實現 my discovery發現. I have shown顯示
23
85000
4000
我突然有了新的發現
01:54
that Swedish瑞典 top最佳 students學生們 know statistically統計學 significantly顯著 less
24
89000
5000
瑞典大學的優等生們對世界的了解
01:59
about the world世界 than the chimpanzees黑猩猩.
25
94000
2000
竟然還不如黑猩猩
02:01
(Laughter笑聲)
26
96000
2000
(笑聲)
02:03
Because the chimpanzee黑猩猩 would score得分了 half right if I gave them
27
98000
4000
因為黑猩猩們至少能蒙對一半
02:07
two bananas香蕉 with Sri斯里蘭卡 Lanka斯里蘭卡 and Turkey火雞. They would be right half of the cases.
28
102000
3000
在兩個選項旁邊各放一根香蕉,就有一半的機率答對。
02:10
But the students學生們 are not there. The problem問題 for me was not ignorance無知;
29
105000
4000
這些優等生們卻做不到。這不是由於知識缺乏
02:14
it was preconceived先入為主 ideas思路.
30
109000
3000
而是他們先入為主的錯誤理念
02:17
I did also an unethical不道德的 study研究 of the professors教授 of the Karolinska卡羅林斯卡 Institute研究所
31
112000
4000
我還把這個測試拿去給卡羅林斯卡學院的教授們做
02:21
(Laughter笑聲)
32
116000
1000
(笑聲)
02:22
-- that hands out the Nobel諾貝爾 Prize in Medicine醫學,
33
117000
2000
他們每年負責頒發諾貝爾醫學獎
02:24
and they are on par平價 with the chimpanzee黑猩猩 there.
34
119000
2000
結果教授們和黑猩猩半斤八兩
02:26
(Laughter笑聲)
35
121000
3000
(笑聲)
02:29
This is where I realized實現 that there was really a need to communicate通信,
36
124000
4000
我意識到很有必要交流一下這個問題
02:33
because the data數據 of what's happening事件 in the world世界
37
128000
3000
因為多數人並不知道
02:36
and the child兒童 health健康 of every一切 country國家 is very well aware知道的.
38
131000
3000
世界各國的兒童健康的改善
02:39
We did this software軟件 which哪一個 displays顯示器 it like this: every一切 bubble泡沫 here is a country國家.
39
134000
5000
我們作了一個軟件,每一個小球代表一個國家
02:44
This country國家 over here is China中國. This is India印度.
40
139000
6000
這個是中國,這個是印度
02:50
The size尺寸 of the bubble泡沫 is the population人口, and on this axis here I put fertility生育能力 rate.
41
145000
6000
小球的尺寸代表該國的人口,X軸是生育率
02:56
Because my students學生們, what they said
42
151000
3000
我曾問過學生們
02:59
when they looked看著 upon the world世界, and I asked them,
43
154000
2000
如果讓你們來審視這個世界
03:01
"What do you really think about the world世界?"
44
156000
2000
你們的真實想法是什麼
03:03
Well, I first discovered發現 that the textbook教科書 was Tintin丁丁, mainly主要.
45
158000
4000
其實這些教科書上都是丁丁歷險記(帶有殖民主義思想的漫畫)的人物
03:07
(Laughter笑聲)
46
162000
1000
(笑聲)
03:08
And they said, "The world世界 is still 'we''我們' and 'them'他們.'
47
163000
3000
學生們回答 世界是由“我們和他們”組成的
03:11
And we is Western西 world世界 and them is Third第三 World世界."
48
166000
3000
“我們”指西方世界 “他們”指第三世界
03:14
"And what do you mean with Western西 world世界?" I said.
49
169000
3000
我又問“什麼是西方世界?”
03:17
"Well, that's long life and small family家庭, and Third第三 World世界 is short life and large family家庭."
50
172000
5000
“西方世界壽命長且家庭小;第三世界壽命短而家庭大。”
03:22
So this is what I could display顯示 here. I put fertility生育能力 rate here: number of children孩子 per woman女人:
51
177000
6000
那麼一起來看。X軸是生育率,每個婦女的育兒數
03:28
one, two, three, four, up to about eight children孩子 per woman女人.
52
183000
4000
從每人1,2,3,4胎,到8胎
03:32
We have very good data數據 since以來 1962 -- 1960 about -- on the size尺寸 of families家庭 in all countries國家.
53
187000
6000
我們有1962年之後的各國家庭大小的可靠數據
03:38
The error錯誤 margin餘量 is narrow狹窄. Here I put life expectancy期待 at birth分娩,
54
193000
3000
數據誤差相當小。 Y軸是平均壽命
03:41
from 30 years年份 in some countries國家 up to about 70 years年份.
55
196000
4000
從30歲到70歲不等
03:45
And 1962, there was really a group of countries國家 here
56
200000
3000
1962年的時候的確有一群國家在上面
03:48
that was industrialized工業化 countries國家, and they had small families家庭 and long lives生活.
57
203000
5000
這些是發達國家,他們家庭小,壽命長
03:53
And these were the developing發展 countries國家:
58
208000
2000
而這些則是發展中國家
03:55
they had large families家庭 and they had relatively相對 short lives生活.
59
210000
3000
他們家庭大,壽命也相對短些
03:58
Now what has happened發生 since以來 1962? We want to see the change更改.
60
213000
4000
從1962年到今天 世界有什麼變化嗎?
04:02
Are the students學生們 right? Is it still two types類型 of countries國家?
61
217000
3000
學生們正確嗎?國家還是分為2類嗎?
04:06
Or have these developing發展 countries國家 got smaller families家庭 and they live生活 here?
62
221000
3000
或者發展中國家的家庭變小 (這些小球)移動到了左邊?
04:09
Or have they got longer lives生活 and live生活 up there?
63
224000
2000
或者發展中國家人們的壽命變長 (這些小球)移動到了上面?
04:11
Let's see. We stopped停止 the world世界 then. This is all U.N. statistics統計
64
226000
3000
我們一起看看,這些數據都來自於聯合國
04:14
that have been available可得到. Here we go. Can you see there?
65
229000
3000
大家看到沒有?
04:17
It's China中國 there, moving移動 against反對 better health健康 there, improving提高 there.
66
232000
3000
這個是中國,他們在往上移動,健康狀況不斷改善
04:20
All the green綠色 Latin拉丁 American美國 countries國家 are moving移動 towards smaller families家庭.
67
235000
3000
這些綠色的拉丁美洲國家 正朝向小家庭的方向移動
04:23
Your yellow黃色 ones那些 here are the Arabic阿拉伯 countries國家,
68
238000
3000
這些黃色的小球是阿拉伯國家
04:26
and they get larger families家庭, but they -- no, longer life, but not larger families家庭.
69
241000
4000
壽命在變長但家庭規模不變
04:30
The Africans非洲人 are the green綠色 down here. They still remain here.
70
245000
3000
非洲國家是下面的綠球,他們一直在下面
04:33
This is India印度. Indonesia's印尼 moving移動 on pretty漂亮 fast快速.
71
248000
3000
這個是印度,印度尼西亞的移動速度非常快
04:36
(Laughter笑聲)
72
251000
1000
(笑聲)
04:37
And in the '80s here, you have Bangladesh孟加拉國 still among其中 the African非洲人 countries國家 there.
73
252000
3000
80年代的時候,孟加拉國仍然和非洲國家在一起
04:40
But now, Bangladesh孟加拉國 -- it's a miracle奇蹟 that happens發生 in the '80s:
74
255000
3000
但是80年代的奇蹟發生在孟加拉國
04:43
the imams伊瑪目 start開始 to promote促進 family家庭 planning規劃.
75
258000
3000
媽媽們開始宣傳和普及計劃生育
04:46
They move移動 up into that corner. And in '90s, we have the terrible可怕 HIVHIV epidemic疫情
76
261000
5000
他們向左上角移動。90年代恐怖的艾滋病流行
04:51
that takes down the life expectancy期待 of the African非洲人 countries國家
77
266000
3000
導致非洲國家的平均壽命縮短
04:54
and all the rest休息 of them move移動 up into the corner,
78
269000
4000
而其他國家都向左上角移動
04:58
where we have long lives生活 and small family家庭, and we have a completely全然 new world世界.
79
273000
4000
大家都有了長壽命和小家庭,而世界也煥然一新了
05:02
(Applause掌聲)
80
277000
13000
(掌聲)
05:15
Let me make a comparison對照 directly between之間 the United聯合的 States狀態 of America美國 and Vietnam越南.
81
290000
5000
現在我們對比一下美國和越南
05:20
1964: America美國 had small families家庭 and long life;
82
295000
5000
1964年的美國家庭小壽命長
05:25
Vietnam越南 had large families家庭 and short lives生活. And this is what happens發生:
83
300000
4000
越南的家庭大而壽命短。這是後來的變化
05:29
the data數據 during the war戰爭 indicate表明 that even with all the death死亡,
84
304000
6000
越戰時期的數據顯示,儘管戰爭造成傷亡
05:35
there was an improvement起色 of life expectancy期待. By the end結束 of the year,
85
310000
3000
越南人的平均壽命仍有提高
05:38
the family家庭 planning規劃 started開始 in Vietnam越南 and they went for smaller families家庭.
86
313000
3000
70年代末期,越南的計劃生育減小了家庭規模
05:41
And the United聯合的 States狀態 up there is getting得到 for longer life,
87
316000
3000
美國人的平均壽命也在延長
05:44
keeping保持 family家庭 size尺寸. And in the '80s now,
88
319000
3000
而家庭規模不變
05:47
they give up communist共產 planning規劃 and they go for market市場 economy經濟,
89
322000
3000
到了90年代,越南由計劃經濟轉為市場經濟
05:50
and it moves移動 faster更快 even than social社會 life. And today今天, we have
90
325000
4000
其經濟發展的速度超過了社會的發展
05:54
in Vietnam越南 the same相同 life expectancy期待 and the same相同 family家庭 size尺寸
91
329000
5000
今天(2003)越南人的平均壽命和家庭規模
05:59
here in Vietnam越南, 2003, as in United聯合的 States狀態, 1974, by the end結束 of the war戰爭.
92
334000
7000
已經和越戰結束時(1974)的美國一樣
06:06
I think we all -- if we don't look in the data數據 --
93
341000
4000
如果沒有看到這些數據的話
06:10
we underestimate低估 the tremendous巨大 change更改 in Asia亞洲, which哪一個 was
94
345000
4000
我們會低估了亞洲的巨大變化
06:14
in social社會 change更改 before we saw the economical經濟 change更改.
95
349000
4000
這些超前於經濟發展的社會變革
06:18
Let's move移動 over to another另一個 way here in which哪一個 we could display顯示
96
353000
5000
下面我們換個視角
06:23
the distribution分配 in the world世界 of the income收入. This is the world世界 distribution分配 of income收入 of people.
97
358000
7000
X軸顯示了全世界的收入分佈
06:30
One dollar美元, 10 dollars美元 or 100 dollars美元 per day.
98
365000
5000
每天收入1美元,10美元和100美元
06:35
There's no gap間隙 between之間 rich豐富 and poor較差的 any longer. This is a myth神話.
99
370000
4000
富與窮之間的鴻溝幾乎消失了,簡直是個奇蹟
06:39
There's a little hump駝峰 here. But there are people all the way.
100
374000
4000
這裡還有一個很小的峰,但總體上是均數分佈的
06:44
And if we look where the income收入 ends結束 up -- the income收入 --
101
379000
4000
我們看看收入的分配情況
06:48
this is 100 percent百分 the world's世界 annual全年 income收入. And the richest首富 20 percent百分,
102
383000
6000
這代表全世界人民每年的全部收入
06:54
they take out of that about 74 percent百分. And the poorest最窮 20 percent百分,
103
389000
7000
最富有的20%那部分人得到了全部收入的74%
07:01
they take about two percent百分. And this shows節目 that the concept概念
104
396000
5000
最貧窮的20%那部分人只得到2%
07:06
of developing發展 countries國家 is extremely非常 doubtful. We think about aid援助, like
105
401000
4000
可見發展中國家的理念極其的不確切
07:10
these people here giving aid援助 to these people here. But in the middle中間,
106
405000
5000
我們總以為最富的人應該給最窮的人提供援助
07:15
we have most the world世界 population人口, and they have now 24 percent百分 of the income收入.
107
410000
4000
其實中間這部分才是世界人口的主體,而他們僅得到全部收入的24%
07:19
We heard聽說 it in other forms形式. And who are these?
108
414000
4000
這是個老問題了,中間這些人是誰?
07:23
Where are the different不同 countries國家? I can show顯示 you Africa非洲.
109
418000
4000
他們在哪些國家?先看非洲
07:27
This is Africa非洲. 10 percent百分 the world世界 population人口, most in poverty貧窮.
110
422000
5000
非洲佔世界人口的十分之一,多數是窮人
07:32
This is OECD經合組織. The rich豐富 country國家. The country國家 club俱樂部 of the U.N.
111
427000
5000
這個代表富裕的經合組織成員國,聯合國俱樂部的會員
07:37
And they are over here on this side. Quite相當 an overlap交疊 between之間 Africa非洲 and OECD經合組織.
112
432000
5000
他們在這邊,很小一部分與非洲重疊
07:42
And this is Latin拉丁 America美國. It has everything on this Earth地球,
113
437000
3000
這是拉丁美洲,他們可以代表全世界
07:45
from the poorest最窮 to the richest首富, in Latin拉丁 America美國.
114
440000
3000
從最貧窮到最富有的人都在那裡
07:48
And on top最佳 of that, we can put East Europe歐洲, we can put East Asia亞洲,
115
443000
5000
再往上是東歐,東亞還有南亞
07:53
and we put South Asia亞洲. And how did it look like if we go back in time,
116
448000
5000
過去是什麼樣子的呢?
07:58
to about 1970? Then there was more of a hump駝峰.
117
453000
5000
如果我們回到1970年,這裡有一個明顯的峰
08:03
And we have most who lived生活 in absolute絕對 poverty貧窮 were Asians亞洲人.
118
458000
4000
這些絕對貧困的人大多數在亞洲
08:07
The problem問題 in the world世界 was the poverty貧窮 in Asia亞洲. And if I now let the world世界 move移動 forward前鋒,
119
462000
7000
那時世界的問題就在於亞洲的貧窮
08:14
you will see that while population人口 increase增加, there are
120
469000
3000
後來隨著人口的增長
08:17
hundreds數以百計 of millions百萬 in Asia亞洲 getting得到 out of poverty貧窮 and some others其他
121
472000
3000
數以億計的亞洲人擺脫了貧困
08:20
getting得到 into poverty貧窮, and this is the pattern模式 we have today今天.
122
475000
3000
另外一些人卻陷入貧窮,這就是今天的世界
08:23
And the best最好 projection投影 from the World世界 Bank銀行 is that this will happen發生,
123
478000
4000
而這是世界銀行對未來最樂觀的預測
08:27
and we will not have a divided分為 world世界. We'll have most people in the middle中間.
124
482000
4000
世界再也不是貧富懸殊的,大多數人擁有中等的收入
08:31
Of course課程 it's a logarithmic對數的 scale規模 here,
125
486000
2000
當然這是指數冪分佈的圖
08:33
but our concept概念 of economy經濟 is growth發展 with percent百分. We look upon it
126
488000
5000
因為經濟的增長是用百分比來衡量的
08:38
as a possibility可能性 of percentile百分 increase增加. If I change更改 this, and I take
127
493000
6000
我們用百分比的變化來評估經濟增長
08:44
GDPGDP per capita人頭 instead代替 of family家庭 income收入, and I turn these
128
499000
4000
下面把X軸改為人均國內生產總值
08:48
individual個人 data數據 into regional區域性 data數據 of gross domestic國內 product產品,
129
503000
6000
個人的數據轉為各大洲的數據
08:54
and I take the regions地區 down here, the size尺寸 of the bubble泡沫 is still the population人口.
130
509000
4000
球的大小代表人口的多少
08:58
And you have the OECD經合組織 there, and you have sub-Saharan撒哈拉以南 Africa非洲 there,
131
513000
3000
這個是經合組織國家,這是撒哈拉以南非洲
09:01
and we take off the Arab阿拉伯 states狀態 there,
132
516000
3000
我們把阿拉伯國家
09:04
coming未來 both from Africa非洲 and from Asia亞洲, and we put them separately分別,
133
519000
4000
從非洲和亞洲單獨分出來
09:08
and we can expand擴大 this axis, and I can give it a new dimension尺寸 here,
134
523000
5000
然後把X軸延伸一下,再加上一個新的維度
09:13
by adding加入 the social社會 values there, child兒童 survival生存.
135
528000
3000
一個有社會價值的參數:兒童生存率
09:16
Now I have money on that axis, and I have the possibility可能性 of children孩子 to survive生存 there.
136
531000
5000
X軸代表經濟,Y軸顯示兒童存活的比率
09:21
In some countries國家, 99.7 percent百分 of children孩子 survive生存 to five years年份 of age年齡;
137
536000
4000
一些國家的99.7%的小孩可以活到5歲以上
09:25
others其他, only 70. And here it seems似乎 there is a gap間隙
138
540000
4000
另一些國家只有70%。很明顯可以看到
09:29
between之間 OECD經合組織, Latin拉丁 America美國, East Europe歐洲, East Asia亞洲,
139
544000
4000
經合組織成員國和拉丁美洲,東歐,東亞
09:33
Arab阿拉伯 states狀態, South Asia亞洲 and sub-Saharan撒哈拉以南 Africa非洲.
140
548000
4000
阿拉伯國家,南亞和非洲撒哈拉以南地區
09:37
The linearity線性 is very strong強大 between之間 child兒童 survival生存 and money.
141
552000
5000
兒童生存率和經濟之間聯繫非常緊密
09:42
But let me split分裂 sub-Saharan撒哈拉以南 Africa非洲. Health健康 is there and better health健康 is up there.
142
557000
8000
下面把撒哈拉以南非洲地區分解成各個國家
09:50
I can go here and I can split分裂 sub-Saharan撒哈拉以南 Africa非洲 into its countries國家.
143
565000
5000
分佈靠上邊的國家擁有更高的健康水平
09:55
And when it burst爆裂, the size尺寸 of its country國家 bubble泡沫 is the size尺寸 of the population人口.
144
570000
5000
撒哈拉以南的非洲各國是如此分佈的,球的尺寸代表該國人口
10:00
Sierra內華達 Leone塞拉利昂 down there. Mauritius毛里求斯 is up there. Mauritius毛里求斯 was the first country國家
145
575000
4000
塞拉里昂在下邊,毛里求斯在上邊
10:04
to get away with trade貿易 barriers障礙, and they could sell their sugar --
146
579000
3000
毛里求斯是第一個消除了貿易壁壘的國家
10:08
they could sell their textiles紡織品 -- on equal等於 terms條款 as the people in Europe歐洲 and North America美國.
147
583000
5000
他們的蔗糖和紡織品的貿易協定與歐洲和北美一樣
10:13
There's a huge巨大 difference區別 between之間 Africa非洲. And Ghana加納 is here in the middle中間.
148
588000
4000
但是非洲內部的差異非常巨大。加納在中部
10:17
In Sierra內華達 Leone塞拉利昂, humanitarian人道主義 aid援助.
149
592000
3000
塞拉里昂需要人道主義援助
10:20
Here in Uganda烏干達, development發展 aid援助. Here, time to invest投資; there,
150
595000
5000
烏干達則需要發展援助,在加納可以進行投資了
10:25
you can go for a holiday假日. It's a tremendous巨大 variation變異
151
600000
3000
毛里求斯則可以去度假。非洲內部的差異之大確實很驚人
10:28
within Africa非洲 which哪一個 we rarely很少 often經常 make -- that it's equal等於 everything.
152
603000
5000
而我們卻總以為非洲國家都差不多
10:33
I can split分裂 South Asia亞洲 here. India's印度 the big bubble泡沫 in the middle中間.
153
608000
4000
下面分解南亞各國,印度是中間的藍色大球
10:37
But a huge巨大 difference區別 between之間 Afghanistan阿富汗 and Sri斯里蘭卡 Lanka斯里蘭卡.
154
612000
4000
而斯里蘭卡和阿富汗有著巨大差異
10:41
I can split分裂 Arab阿拉伯 states狀態. How are they? Same相同 climate氣候, same相同 culture文化,
155
616000
4000
把阿拉伯世界分解來看,儘管是相同的氣候,相同的文化
10:45
same相同 religion宗教 -- huge巨大 difference區別. Even between之間 neighbors鄰居.
156
620000
4000
相同的宗教,卻有巨大的差異
10:49
Yemen也門, civil國內 war戰爭. United聯合的 Arab阿拉伯 Emirate酋長國, money which哪一個 was quite相當 equally一樣 and well used.
157
624000
5000
也門在打內戰,鄰國阿聯酋卻躺在錢堆裡
10:54
Not as the myth神話 is. And that includes包括 all the children孩子 of the foreign國外 workers工人 who are in the country國家.
158
629000
7000
而且(阿聯酋的)兒童健康數據包含了所有的外籍勞工
11:01
Data數據 is often經常 better than you think. Many許多 people say data數據 is bad.
159
636000
4000
大家總說數據不准確數據,其實比我們想像的好很多
11:06
There is an uncertainty不確定 margin餘量, but we can see the difference區別 here:
160
641000
2000
數據是有誤差
11:08
Cambodia柬埔寨, Singapore新加坡. The differences分歧 are much bigger
161
643000
3000
但柬埔寨和新加坡的差距肯定遠大於數據的誤差
11:11
than the weakness弱點 of the data數據. East Europe歐洲:
162
646000
3000
再看東歐
11:14
Soviet蘇聯 economy經濟 for a long time, but they come out after 10 years年份
163
649000
6000
在蘇聯經濟模式下發展了多年,但在過去10年
11:20
very, very differently不同. And there is Latin拉丁 America美國.
164
655000
3000
卻經歷了巨大的變化
11:23
Today今天, we don't have to go to Cuba古巴 to find a healthy健康 country國家 in Latin拉丁 America美國.
165
658000
4000
當今的拉丁美洲,古巴再也不是唯一的健康國家了
11:27
Chile智利 will have a lower降低 child兒童 mortality死亡 than Cuba古巴 within some few少數 years年份 from now.
166
662000
5000
幾年後,智利的兒童死亡率將低於古巴
11:32
And here we have high-income高收入 countries國家 in the OECD經合組織.
167
667000
3000
這些是經合組織成員國
11:35
And we get the whole整個 pattern模式 here of the world世界,
168
670000
4000
這裡顯示的就是我們的世界
11:39
which哪一個 is more or less like this. And if we look at it,
169
674000
5000
大概就是這樣的情形。如果我們回到過去
11:44
how it looks容貌 -- the world世界, in 1960, it starts啟動 to move移動. 1960.
170
679000
6000
看看世界是怎樣的。從1960年開始
11:50
This is Mao Tse-tung謝彤. He brought health健康 to China中國. And then he died死亡.
171
685000
3000
1960年(中國有)毛澤東,他給中國帶來了健康
11:53
And then Deng Xiaoping小平 came來了 and brought money to China中國, and brought them into the mainstream主流 again.
172
688000
5000
他去世後鄧小平給中國帶來了金錢,同時把中國帶回到世界的主流當中
11:58
And we have seen看到 how countries國家 move移動 in different不同 directions方向 like this,
173
693000
4000
其他國家的移動方向也不盡相同
12:02
so it's sort分類 of difficult to get
174
697000
4000
很難找出哪個國家
12:06
an example country國家 which哪一個 shows節目 the pattern模式 of the world世界.
175
701000
5000
能代表全世界的發展模式
12:11
But I would like to bring帶來 you back to about here at 1960.
176
706000
6000
我們回到1960年做個比較
12:17
I would like to compare比較 South Korea韓國, which哪一個 is this one, with Brazil巴西,
177
712000
10000
先選中韓國(左邊的小黃球);巴西(右邊的黃綠色大球)
12:27
which哪一個 is this one. The label標籤 went away for me here. And I would like to compare比較 Uganda烏干達,
178
722000
5000
烏干達(Y軸上面的小紅球)
12:32
which哪一個 is there. And I can run it forward前鋒, like this.
179
727000
5000
隨著時間的推移,我們看到
12:37
And you can see how South Korea韓國 is making製造 a very, very fast快速 advancement進步,
180
732000
9000
韓國的發展速度非常非常快
12:46
whereas Brazil巴西 is much slower比較慢.
181
741000
3000
巴西就慢得多
12:49
And if we move移動 back again, here, and we put on trails步道 on them, like this,
182
744000
6000
我們再回到過去,給每個球畫出運動的軌跡
12:55
you can see again that the speed速度 of development發展
183
750000
4000
可以看到,發展速度的差距非常大
12:59
is very, very different不同, and the countries國家 are moving移動 more or less
184
754000
6000
雖然各國的經濟和健康發展的軌跡大同小異
13:05
in the same相同 rate as money and health健康, but it seems似乎 you can move移動
185
760000
4000
但是健康水平起點較高的國家
13:09
much faster更快 if you are healthy健康 first than if you are wealthy富裕 first.
186
764000
4000
發展速度遠超過經濟水平起點高的
13:14
And to show顯示 that, you can put on the way of United聯合的 Arab阿拉伯 Emirate酋長國.
187
769000
4000
為了說明這一點,我們看看阿聯酋
13:18
They came來了 from here, a mineral礦物 country國家. They cached緩存 all the oil;
188
773000
3000
他們從這裡出發,一個資源型國家
13:21
they got all the money; but health健康 cannot不能 be bought at the supermarket超級市場.
189
776000
4000
他們靠石油大把賺錢,但健康絕不是超市裡的貨物
13:25
You have to invest投資 in health健康. You have to get kids孩子 into schooling教育.
190
780000
4000
需要衛生方面的投資,需要提高兒童的教育水平
13:29
You have to train培養 health健康 staff員工. You have to educate教育 the population人口.
191
784000
3000
需要培訓衛生工作者,還要教育民眾
13:32
And Sheikh謝赫 Sayed賽義德 did that in a fairly相當 good way.
192
787000
3000
Sheikh Sayed 幹的非常漂亮
13:35
In spite儘管 of falling落下 oil prices價格, he brought this country國家 up here.
193
790000
4000
儘管油價下跌了,他仍改善了阿聯酋的健康
13:39
So we've我們已經 got a much more mainstream主流 appearance出現 of the world世界,
194
794000
4000
這裡我們可以看到世界發展的主流
13:43
where all countries國家 tend趨向 to use their money
195
798000
2000
各國對資金的分配和使用
13:45
better than they used in the past過去. Now, this is, more or less,
196
800000
5000
都比過去合理的多
13:50
if you look at the average平均 data數據 of the countries國家 -- they are like this.
197
805000
7000
這里大家看到各國的數據基本上都是平均數
13:57
Now that's dangerous危險, to use average平均 data數據, because there is such這樣 a lot
198
812000
5000
但是用平均數可能會很危險
因為國家內部也存在很大的差異
14:02
of difference區別 within countries國家. So if I go and look here, we can see
199
817000
6000
我們看這裡
14:08
that Uganda烏干達 today今天 is where South Korea韓國 was 1960. If I split分裂 Uganda烏干達,
200
823000
6000
今天的烏干達和1960年的韓國差不多
14:14
there's quite相當 a difference區別 within Uganda烏干達. These are the quintiles昆泰 of Uganda烏干達.
201
829000
5000
如果把烏干達分解開,可以看到內部的明顯差異
14:19
The richest首富 20 percent百分 of Ugandans烏干達 are there.
202
834000
3000
烏干達最富有的20%在右邊
14:22
The poorest最窮 are down there. If I split分裂 South Africa非洲, it's like this.
203
837000
4000
最貧窮的在左下邊。如果把南非分解開
14:26
And if I go down and look at Niger尼日爾, where there was such這樣 a terrible可怕 famine飢荒,
204
841000
5000
尼日在下邊,他們剛遭受一場恐怖的飢荒
14:31
lastly最後, it's like this. The 20 percent百分 poorest最窮 of Niger尼日爾 is out here,
205
846000
5000
最貧窮的20%的尼日人在最左邊
14:36
and the 20 percent百分 richest首富 of South Africa非洲 is there,
206
851000
3000
而最富有的20%的南非人在最右邊
14:39
and yet然而 we tend趨向 to discuss討論 on what solutions解決方案 there should be in Africa非洲.
207
854000
5000
今天我們仍然在討論什麼方案能解決非洲的問題
14:44
Everything in this world世界 exists存在 in Africa非洲. And you can't
208
859000
3000
世界上所有的問題非洲都有
14:47
discuss討論 universal普遍 access訪問 to HIVHIV [medicine醫學] for that quintile五分之一 up here
209
862000
4000
我們不可能討論出一套通用方案,既能解決這些地方的艾滋病問題
14:51
with the same相同 strategy戰略 as down here. The improvement起色 of the world世界
210
866000
4000
同時也適用於這些地方
14:55
must必須 be highly高度 contextualized情境, and it's not relevant相應 to have it
211
870000
5000
世界的發展一定要因地制宜來分析
15:00
on regional區域性 level水平. We must必須 be much more detailed詳細.
212
875000
3000
僅從各大洲的水平上來分析是不夠的
15:03
We find that students學生們 get very excited興奮 when they can use this.
213
878000
4000
當學生們接觸到這個軟件的時候他們都非常興奮
15:07
And even more policy政策 makers製造商 and the corporate企業 sectors行業 would like to see
214
882000
5000
此外,政策制定者,各企業部門都會想知道世界的變化
15:12
how the world世界 is changing改變. Now, why doesn't this take place地點?
215
887000
4000
但為什麼大家仍然不知道(世界的變化)
15:16
Why are we not using運用 the data數據 we have? We have data數據 in the United聯合的 Nations國家,
216
891000
4000
為什麼我們無法使用已知的數據呢
15:20
in the national國民 statistical統計 agencies機構
217
895000
2000
我們的聯合國,國家統計部門
15:22
and in universities高校 and other non-governmental民間 organizations組織.
218
897000
4000
學院還有非政府組織都擁有數據
15:26
Because the data數據 is hidden down in the databases數據庫.
219
901000
2000
但數據被隱藏在底層的數據庫裡
15:28
And the public上市 is there, and the Internet互聯網 is there, but we have still not used it effectively有效.
220
903000
5000
而公眾在上面(太陽),互聯網(地平線)並未得到有效的使用
15:33
All that information信息 we saw changing改變 in the world世界
221
908000
3000
之前我們看到的關於世界變化的信息
15:36
does not include包括 publicly-funded政府資助 statistics統計. There are some web捲筒紙 pages網頁
222
911000
4000
並不包括公眾資助的統計數據
15:40
like this, you know, but they take some nourishment營養 down from the databases數據庫,
223
915000
6000
的確有一些網站依靠數據庫的營養而存在著
15:46
but people put prices價格 on them, stupid passwords密碼 and boring無聊 statistics統計.
224
921000
5000
但這是要收費的,還有愚蠢的密碼和討厭的統計表格
15:51
(Laughter笑聲) (Applause掌聲)
225
926000
3000
(笑聲,掌聲)
15:54
And this won't慣於 work. So what is needed需要? We have the databases數據庫.
226
929000
4000
這個是行不通的。我們需要什麼?
15:58
It's not the new database數據庫 you need. We have wonderful精彩 design設計 tools工具,
227
933000
4000
數據庫是現成的,不需要新的數據庫
16:02
and more and more are added添加 up here. So we started開始
228
937000
3000
我們有很好的視覺軟件,還將有更多的問世
16:05
a nonprofit非營利性 venture冒險 which哪一個 we called -- linking鏈接 data數據 to design設計 --
229
940000
5000
於是我們成立了一個非營利機構
16:10
we call it GapminderGapminder, from the London倫敦 underground地下, where they warn警告 you,
230
945000
3000
我們稱之為“數據與圖樣的聯結” - Gapminder
16:13
"mind心神 the gap間隙." So we thought GapminderGapminder was appropriate適當.
231
948000
3000
靈感來自倫敦地鐵(他們提醒乘客“小心列車與站台間的縫隙”)
16:16
And we started開始 to write software軟件 which哪一個 could link鏈接 the data數據 like this.
232
951000
4000
而且我們製作了一個軟件,把數據和圖樣聯結起來
16:20
And it wasn't that difficult. It took some person years年份, and we have produced生成 animations動畫.
233
955000
6000
這個並不難,需要幾個人花幾年時間
16:26
You can take a data數據 set and put it there.
234
961000
2000
建立數據庫後大家就能看到動畫
16:28
We are liberating解放 U.N. data數據, some few少數 U.N. organization組織.
235
963000
5000
我們正嘗試解放聯合國的數據庫
16:33
Some countries國家 accept接受 that their databases數據庫 can go out on the world世界,
236
968000
4000
少數聯合國機構和幾個國家已經開放了數據庫
16:37
but what we really need is, of course課程, a search搜索 function功能.
237
972000
3000
但我們最需要的是數據搜索引擎
16:40
A search搜索 function功能 where we can copy複製 the data數據 up to a searchable搜索 format格式
238
975000
5000
依靠搜索引擎,我們先把原始數據複製成可搜索的格式
16:45
and get it out in the world世界. And what do we hear when we go around?
239
980000
3000
再把數據發佈到全世界。外界對這個設想的反應如何呢?
16:48
I've doneDONE anthropology人類學 on the main主要 statistical統計 units單位. Everyone大家 says,
240
983000
4000
我嘗試跟幾個大型統計機構交涉
16:53
"It's impossible不可能. This can't be doneDONE. Our information信息 is so peculiar奇特
241
988000
4000
所有人都說,這是不可能的,“這行不通,我們的信息很獨特,
16:57
in detail詳情, so that cannot不能 be searched搜索 as others其他 can be searched搜索.
242
992000
3000
不可能像其它數據那樣檢索的出來
17:00
We cannot不能 give the data數據 free自由 to the students學生們, free自由 to the entrepreneurs企業家 of the world世界."
243
995000
5000
我們也不能免費把數據開放,給全世界的學生們和企業部門使用。 ”
17:05
But this is what we would like to see, isn't it?
244
1000000
3000
但這正是我們期望看到的,不是嗎?
17:08
The publicly-funded政府資助 data數據 is down here.
245
1003000
3000
下邊是公眾資助採集的數據
17:11
And we would like flowers花卉 to grow增長 out on the Net.
246
1006000
3000
我們希望互聯網上長出美麗的花朵
17:14
And one of the crucial關鍵 points is to make them searchable搜索, and then people can use
247
1009000
5000
關鍵的一步,是讓這些數據可被搜索到
17:19
the different不同 design設計 tool工具 to animate活躍 it there.
248
1014000
2000
並藉助軟件實現動畫的演示
17:21
And I have a pretty漂亮 good news新聞 for you. I have a good news新聞 that the present當下,
249
1016000
5000
我有個很好的消息要告訴大家
17:26
new Head of U.N. Statistics統計, he doesn't say it's impossible不可能.
250
1021000
4000
新上任的聯合國統計部門的領導並沒有說這是不可能的
17:30
He only says, "We can't do it."
251
1025000
2000
他只說“我們不能這麼做。”
17:32
(Laughter笑聲)
252
1027000
4000
(笑聲)
17:36
And that's a quite相當 clever聰明 guy, huh?
253
1031000
2000
他很聰明吧
17:38
(Laughter笑聲)
254
1033000
2000
(笑聲)
17:40
So we can see a lot happening事件 in data數據 in the coming未來 years年份.
255
1035000
4000
未來幾年中我們將會看到數據庫的變化
17:44
We will be able能夠 to look at income收入 distributions分佈 in completely全然 new ways方法.
256
1039000
4000
我們會用全新的視角來看收入的分配
17:48
This is the income收入 distribution分配 of China中國, 1970.
257
1043000
5000
這是1970年中國的收入分配
17:54
the income收入 distribution分配 of the United聯合的 States狀態, 1970.
258
1049000
5000
這是1970年美國的收入分配
17:59
Almost幾乎 no overlap交疊. Almost幾乎 no overlap交疊. And what has happened發生?
259
1054000
4000
幾乎沒有重疊,後來呢?
18:03
What has happened發生 is this: that China中國 is growing生長, it's not so equal等於 any longer,
260
1058000
5000
中國在增長,再也不像以前那樣平等了
18:08
and it's appearing出現 here, overlooking俯瞰 the United聯合的 States狀態.
261
1063000
4000
它出現在右邊,俯視著美國
18:12
Almost幾乎 like a ghost, isn't it, huh?
262
1067000
2000
是不是像個鬼一樣
18:14
(Laughter笑聲)
263
1069000
2000
(笑聲)
18:16
It's pretty漂亮 scary害怕. But I think it's very important重要 to have all this information信息.
264
1071000
10000
很嚇人吧,我認為這些信息很重要
18:26
We need really to see it. And instead代替 of looking at this,
265
1081000
6000
大家很有必要看到這些
18:32
I would like to end結束 up by showing展示 the Internet互聯網 users用戶 per 1,000.
266
1087000
5000
另外我最後要給大家展示,每千人中的網民數量
18:37
In this software軟件, we access訪問 about 500 variables變量 from all the countries國家 quite相當 easily容易.
267
1092000
5000
這個軟件能讓我們很容易的看到全球各國的近500個參數
18:42
It takes some time to change更改 for this,
268
1097000
4000
通過點擊坐標軸
18:46
but on the axises軸系, you can quite相當 easily容易 get any variable變量 you would like to have.
269
1101000
5000
你能輕易改變參數的設定
18:51
And the thing would be to get up the databases數據庫 free自由,
270
1106000
5000
我們的初衷是,數據免費下載且易於查找
18:56
to get them searchable搜索, and with a second第二 click點擊, to get them
271
1111000
3000
然後再點一下鼠標,數據就成為圖表的形式
18:59
into the graphic圖像 formats格式, where you can instantly即刻 understand理解 them.
272
1114000
5000
那樣大家就可以立刻看明白這些數據了
19:04
Now, statisticians統計學家 doesn't like it, because they say that this
273
1119000
3000
統計學家們不喜歡這樣子
19:07
will not show顯示 the reality現實; we have to have statistical統計, analytical分析 methods方法.
274
1122000
9000
他們認為這不能準確地反映事實,傳統的統計和分析方法是不能取代的
19:16
But this is hypothesis-generating假設生成.
275
1131000
3000
但數據動畫可以幫助提出假說
19:19
I end結束 now with the world世界. There, the Internet互聯網 is coming未來.
276
1134000
4000
最後我們看一下當今的互聯網世界
19:23
The number of Internet互聯網 users用戶 are going up like this. This is the GDPGDP per capita人頭.
277
1138000
4000
網民數量不斷向上攀升,(X軸是)人均國民生產總值
19:27
And it's a new technology技術 coming未來 in, but then amazingly令人驚訝, how well
278
1142000
5000
互聯網是一項新技術,但令人驚訝的是
19:32
it fits適合 to the economy經濟 of the countries國家. That's why the 100 dollar美元
279
1147000
5000
它的普及和國家的經濟水平極其一致
19:37
computer電腦 will be so important重要. But it's a nice不錯 tendency趨勢.
280
1152000
3000
這也解釋了100美元電腦的重要性,但這是很好的趨勢
19:40
It's as if the world世界 is flattening扁平化 off, isn't it? These countries國家
281
1155000
3000
世界各國的差距將會縮小,不是嗎
19:43
are lifting吊裝 more than the economy經濟 and will be very interesting有趣
282
1158000
3000
這些國家的互聯網普及速度超過了經濟的發展速度
19:46
to follow跟隨 this over the year, as I would like you to be able能夠 to do
283
1161000
4000
我也希望大家都可以自由使用公眾資助採集的數據
19:50
with all the publicly公然 funded資助 data數據. Thank you very much.
284
1165000
2000
非常感謝!
19:53
(Applause掌聲)
285
1168000
3000
www.gapminder.org

▲Back to top

ABOUT THE SPEAKER
Hans Rosling - Global health expert; data visionary
In Hans Rosling’s hands, data sings. Global trends in health and economics come to vivid life. And the big picture of global development—with some surprisingly good news—snaps into sharp focus.

Why you should listen

Even the most worldly and well-traveled among us have had their perspectives shifted by Hans Rosling. A professor of global health at Sweden's Karolinska Institute, his work focused on dispelling common myths about the so-called developing world, which (as he pointed out) is no longer worlds away from the West. In fact, most of the Third World is on the same trajectory toward health and prosperity, and many countries are moving twice as fast as the west did.

What set Rosling apart wasn't just his apt observations of broad social and economic trends, but the stunning way he presented them. Guaranteed: You've never seen data presented like this. A presentation that tracks global health and poverty trends should be, in a word: boring. But in Rosling's hands, data sings. Trends come to life. And the big picture — usually hazy at best — snaps into sharp focus.

Rosling's presentations were grounded in solid statistics (often drawn from United Nations and World Bank data), illustrated by the visualization software he developed. The animations transform development statistics into moving bubbles and flowing curves that make global trends clear, intuitive and even playful. During his legendary presentations, Rosling took this one step farther, narrating the animations with a sportscaster's flair.

Rosling developed the breakthrough software behind his visualizations through his nonprofit Gapminder, founded with his son and daughter-in-law. The free software — which can be loaded with any data — was purchased by Google in March 2007. (Rosling met the Google founders at TED.)

Rosling began his wide-ranging career as a physician, spending many years in rural Africa tracking a rare paralytic disease (which he named konzo) and discovering its cause: hunger and badly processed cassava. He co-founded Médecins sans Frontièrs (Doctors without Borders) Sweden, wrote a textbook on global health, and as a professor at the Karolinska Institut in Stockholm initiated key international research collaborations. He's also personally argued with many heads of state, including Fidel Castro.

Hans Rosling passed away in February 2017. He is greatly missed.


More profile about the speaker
Hans Rosling | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee