ABOUT THE SPEAKER
Paul Rothemund - DNA origamist
Paul Rothemund folds DNA into shapes and patterns. Which is a simple enough thing to say, but the process he has developed has vast implications for computing and manufacturing -- allowing us to create things we can now only dream of.

Why you should listen

Paul Rothemund won a MacArthur grant this year for a fairly mystifying study area: "folding DNA." It brings up the question: Why fold DNA? The answer is -- because the power to manipulate DNA in this way could change the way we make things at a very basic level.

Rothemund's work combines the study of self-assembly (watch the TEDTalks from Neil Gershenfeld and Saul Griffith for more on this) with the research being done in DNA nanotechnology -- and points the way toward self-assembling devices at microscale, making computer memory, for instance, smaller, faster and maybe even cheaper.

More profile about the speaker
Paul Rothemund | Speaker | TED.com
TED2008

Paul Rothemund: DNA folding, in detail

Paul Rothemund detaliaza plierea ADN-ului

Filmed:
752,456 views

In 2007 Paul Rothemund a prezentat la TED un scurt rezumat al expertizei sale, impaturirea catenelor ADN. Acum el detaliaza imensul potential al acestui domeniu -- crearea de calculatoare minuscule care se auto-asambleaza.
- DNA origamist
Paul Rothemund folds DNA into shapes and patterns. Which is a simple enough thing to say, but the process he has developed has vast implications for computing and manufacturing -- allowing us to create things we can now only dream of. Full bio

Double-click the English transcript below to play the video.

00:12
So, people argueargumenta vigorouslyviguros about the definitiondefiniție of life.
0
0
3000
Oamenii au pareri foarte diferite asupra definitiei vietii.
00:15
They askcere if it should have reproductionreproducere in it, or metabolismmetabolism, or evolutionevoluţie.
1
3000
5000
Se intreaba daca ar trebui sa includa reproductie, metabolism, sau evolutie.
00:20
And I don't know the answerRăspuns to that, so I'm not going to tell you.
2
8000
2000
Eu nu stiu raspunsul, deci nu vi-l pot spune.
00:22
I will say that life involvesimplică computationcalcul.
3
10000
3000
Sustin insa ca viata presupune calcule.
00:25
So this is a computercomputer programprogram.
4
13000
2000
Acesta este un program de calculator.
00:27
BootedCizme up in a cellcelulă, the programprogram would executea executa,
5
15000
3000
Implementat intr-o celula, programul s-ar executa
00:30
and it could resultrezultat in this personpersoană;
6
18000
3000
si ar putea produce aceasta persoana,
00:33
or with a smallmic changeSchimbare, it could resultrezultat in this personpersoană;
7
21000
3000
ori cu o mica schimbare ar putea rezulta in aceasta persoana --
00:36
or anothero alta smallmic changeSchimbare, this personpersoană;
8
24000
2000
sau cu o alta mica modificare --- aceasta persoana,
00:38
or with a largermai mare changeSchimbare, this dogcâine,
9
26000
3000
cu o modificare mai mare, acest caine
00:41
or this treecopac, or this whalebalenă.
10
29000
2000
sau acest copac, ori aceasta balena.
00:43
So now, if you take this metaphormetaforă
11
31000
2000
Daca iei in serios aceasta metafora
00:45
[of] genomegenomului as programprogram seriouslySerios,
12
33000
2000
de a privi genomul ca pe un program,
00:47
you have to considerconsidera that ChrisChris AndersonAnderson
13
35000
2000
trebuie sa admiti ca Chris Anderson
00:49
is a computer-fabricatedfabricate de calculator artifactartefact, as is JimJim WatsonWatson,
14
37000
3000
e un artefact fabricat de computer, la fel si Jim Watson,
00:52
CraigCraig VenterVenter, as are all of us.
15
40000
3000
Craig Venter, si noi toti.
00:55
And in convincingconvingător yourselftu that this metaphormetaforă is trueAdevărat,
16
43000
2000
Si ca sa va convingeti ca aceasta metafora este adevarata,
00:57
there are lots of similaritiessimilarități betweenîntre geneticgenetic programsprograme
17
45000
2000
considerati numeroasele similaritati
00:59
and computercomputer programsprograme that could help to convinceconvinge you.
18
47000
3000
intre programele genetice si cele de calculator.
01:02
But one, to me, that's mostcel mai compellingconvingătoare
19
50000
2000
Pentru mine cea mai convingatoare
01:04
is the peculiarciudat sensitivitysensibilitate to smallmic changesschimbări
20
52000
3000
e sensibilitatea specifica la variaţii minore
01:07
that can make largemare changesschimbări in biologicalbiologic developmentdezvoltare -- the outputproducție.
21
55000
3000
care atrag schimbari majore in dezvoltarea biologica finala.
01:10
A smallmic mutationmutaţie can take a two-wingdouă aripi flya zbura
22
58000
2000
O mutatie minora poate transforma o musca cu doua aripi
01:12
and make it a four-wingpatru aripi flya zbura.
23
60000
1000
intr-una cu patru aripi.
01:13
Or it could take a flya zbura and put legspicioare where its antennaeantene should be.
24
61000
4000
Ori ar putea pune picioruse in locul antenelor.
01:17
Or if you're familiarfamiliar with "The PrincessPrintesa BrideMireasa,"
25
65000
2000
Sau daca ti-e cunoscuta povestea "The Princess Bride"
01:19
it could createcrea a six-fingeredşase degete man.
26
67000
2000
ar putea crea un om cu sase degete.
01:21
Now, a hallmarkHallmark of computercomputer programsprograme
27
69000
2000
Ei bine, o caracteristica a programelor de calculator
01:23
is just this kinddrăguț of sensitivitysensibilitate to smallmic changesschimbări.
28
71000
3000
este chiar acest tip de sensibilitate la variatii mici.
01:26
If your bankbancă account'scont pe one dollardolar, and you flipflip- a singlesingur bitpic,
29
74000
2000
Daca ai intr-un cont bancar $1 si modifici un singur bit
01:28
you could endSfârşit up with a thousandmie dollarsdolari.
30
76000
2000
te poti trezi cu $1.000.
01:30
So these smallmic changesschimbări are things that I think
31
78000
3000
Deci, faptul ca mutatii minore
01:33
that -- they indicateindica to us that a complicatedcomplicat computationcalcul
32
81000
2000
produc modificari amplificate
01:35
in developmentdezvoltare is underlyingcare stau la baza these amplifiedamplificat, largemare changesschimbări.
33
83000
4000
indica prezenta unui proces complex de procesare.
01:39
So now, all of this indicatesindică that there are molecularmolecular programsprograme underlyingcare stau la baza biologybiologie,
34
87000
6000
Toate acestea demonstreaza ca exista programe moleculare la baza biologiei
01:45
and it showsspectacole the powerputere of molecularmolecular programsprograme -- biologybiologie does.
35
93000
4000
a caror putere ne-o demonstreaza biologia.
01:49
And what I want to do is writescrie molecularmolecular programsprograme,
36
97000
2000
Si ce vreau eu sa fac e sa scriu programe moleculare
01:51
potentiallypotenţial to buildconstrui technologytehnologie.
37
99000
2000
cu potential in dezvoltarea de tehnologie.
01:53
And there are a lot of people doing this,
38
101000
1000
Exista o multime de oameni care fac acest lucru,
01:54
a lot of syntheticsintetic biologistsbiologi doing this, like CraigCraig VenterVenter.
39
102000
3000
o multime de biologi de sinteza cum e Craig Venter,
01:57
And they concentrateconcentra on usingutilizând cellscelulele.
40
105000
2000
care insa se concentreaza pe utilizarea intregii celule.
01:59
They're cell-orientedorientate pe mobil.
41
107000
2000
Ei se focalizeaza pe celula in intregime.
02:01
So my friendsprieteni, molecularmolecular programmersprogramatori, and I
42
109000
2000
Dar eu si prietenii mei, programatori moleculari,
02:03
have a sortfel of biomolecule-centricbiomolecule-centrice approachabordare.
43
111000
2000
avem o abordare cu pornire de la bio-molecule.
02:05
We're interestedinteresat in usingutilizând DNAADN-UL, RNAARN and proteinproteină,
44
113000
3000
Suntem interesati in utilizarea de ADN, ARN si proteine
02:08
and buildingclădire newnou languageslimbi for buildingclădire things from the bottomfund up,
45
116000
3000
si in implementarea de noi limbi de programare
02:11
usingutilizând biomoleculesbiomolecule,
46
119000
1000
pentru construirea de jos in sus, folosind bio-molecule,
02:12
potentiallypotenţial havingavând nothing to do with biologybiologie.
47
120000
3000
cu posibilitatea de a nu avea nimic de-a face cu biologia.
02:15
So, these are all the machinesmaşini in a cellcelulă.
48
123000
4000
Acestea sunt toate mecanismele dintr-o celula.
02:19
There's a cameraaparat foto.
49
127000
2000
Exista un aparat de fotografiat.
02:21
There's the solarsolar panelspanouri of the cellcelulă,
50
129000
1000
Exista panourile solare ale celulei,
02:22
some switchesîntrerupătoare that turnviraj your genesgene on and off,
51
130000
2000
intrerupatoare care aprind sau sting genele,
02:24
the girdersgrinzile of the cellcelulă, motorsmotoare that movemișcare your musclesmușchi.
52
132000
3000
grinzi ale celulei, motoare care misca muschii.
02:27
My little groupgrup of molecularmolecular programmersprogramatori
53
135000
2000
Echipa mea de programatori moleculari
02:29
are tryingîncercat to refashionrefasona all of these partspărți from DNAADN-UL.
54
137000
4000
incearca sa refasoneze toate aceste parti folosind ADN.
02:33
We're not DNAADN-UL zealotsfanaticii, but DNAADN-UL is the cheapestcele mai ieftine,
55
141000
2000
Nu suntem fanatici ai ADN-ului, dar ADN-ul e cel mai ieftin,
02:35
easiestCel mai simplu to understanda intelege and easyuşor to programprogram materialmaterial to do this.
56
143000
3000
cel mai usor de inteles si e un material simplu de programat.
02:38
And as other things becomedeveni easierMai uşor to use --
57
146000
2000
Si pe masura ce alte lucruri devin mai usor de utilizat --
02:40
maybe proteinproteină -- we'llbine work with those.
58
148000
3000
poate proteine -- vom lucra cu acelea în viitor.
02:43
If we succeeda reusi, what will molecularmolecular programmingprogramare look like?
59
151000
2000
Si daca reusim, in ce va consta programarea moleculara?
02:45
You're going to sitsta in frontfață of your computercomputer.
60
153000
2000
Veti sta in fata calculatorului.
02:47
You're going to designproiecta something like a cellcelulă phonetelefon,
61
155000
2000
Veti concepe ceva de genul unui telefon mobil
02:49
and in a high-levelnivel inalt languagelimba, you'llveți describedescrie that cellcelulă phonetelefon.
62
157000
2000
si, intr-un limbaj de nivel inalt, veti descrie acel telefon mobil.
02:51
Then you're going to have a compilercompilator
63
159000
2000
Apoi veti avea un compilator
02:53
that's going to take that descriptionDescriere
64
161000
1000
care va implementa acest program de descriere
02:54
and it's going to turnviraj it into actualreal moleculesmolecule
65
162000
2000
si-l va transforma in bio-molecule reale,
02:56
that can be senttrimis to a synthesizersintetizator
66
164000
2000
care pot fi trimise la un sintetizator
02:58
and that synthesizersintetizator will packambalaj those moleculesmolecule into a seedsămânță.
67
166000
3000
unde moleculele vor fi impachetate intr-o samanta.
03:01
And what happensse întâmplă if you waterapă and feeda hrani that seedsămânță appropriatelyîn mod corespunzător,
68
169000
3000
Si ce se intampla daca uzi si hranesti acea samanta cum trebuie,
03:04
is it will do a developmentaldezvoltare computationcalcul,
69
172000
2000
este ca va face un calcul de dezvoltare,
03:06
a molecularmolecular computationcalcul, and it'llO să buildconstrui an electronicelectronic computercomputer.
70
174000
3000
un calcul molecular, si va construi un computer electronic.
03:09
And if I haven'tnu au revealeddezvăluit my prejudicesprejudecăţi alreadydeja,
71
177000
2000
Si daca nu mi-am dat inca de gol prejudecatile
03:12
I think that life has been about molecularmolecular computerscalculatoare
72
180000
2000
consider ca viata se poate reduce la computere moleculare
03:14
buildingclădire electrochemicalelectrochimice computerscalculatoare,
73
182000
2000
care construiesc computere electrochimice
03:16
buildingclădire electronicelectronic computerscalculatoare,
74
184000
2000
care construiesc computere electronice
03:18
whichcare togetherîmpreună with electrochemicalelectrochimice computerscalculatoare
75
186000
2000
care impreuna cu computerele electrochimice
03:20
will buildconstrui newnou molecularmolecular computerscalculatoare,
76
188000
2000
vor construi computere moleculare noi
03:22
whichcare will buildconstrui newnou electronicelectronic computerscalculatoare, and so forthmai departe.
77
190000
3000
care vor construi noi computere electronice si asa mai departe.
03:25
And if you buya cumpara all of this,
78
193000
1000
Si daca esti de acord cu toate astea,
03:26
and you think life is about computationcalcul, as I do,
79
194000
2000
si crezi ca viata e in intregime calcul, asa cum fac eu,
03:28
then you look at bigmare questionsîntrebări throughprin the eyesochi of a computercomputer scientistom de stiinta.
80
196000
3000
atunci privesti intrebarile vitale prin ochii unui programator.
03:31
So one bigmare questionîntrebare is, how does a babybebelus know when to stop growingcreştere?
81
199000
4000
Deci o intrebare importanta e, cum ştie copilul cand sa nu mai creasca?
03:35
And for molecularmolecular programmingprogramare,
82
203000
2000
Pentru un programator molecular,
03:37
the questionîntrebare is how does your cellcelulă phonetelefon know when to stop growingcreştere?
83
205000
2000
intrebarea e: cum stie telefonul tau cand sa se opreasca din creştere?
03:39
(LaughterRâs)
84
207000
1000
(Rasete)
03:40
Or how does a computercomputer programprogram know when to stop runningalergare?
85
208000
3000
Sau cum stie un program de calculator cand sa se opreasca?
03:43
Or more to the pointpunct, how do you know if a programprogram will ever stop?
86
211000
3000
Ori si mai concret, cum stim daca se va opri vreodata?
03:46
There are other questionsîntrebări like this, too.
87
214000
2000
Mai exista si alt gen de intrebari.
03:48
One of them is CraigCraig Venter'sVenter pe questionîntrebare.
88
216000
2000
Una dintre ele e intrebarea lui Craig Venter.
03:50
TurnsSe transformă out I think he's actuallyde fapt a computercomputer scientistom de stiinta.
89
218000
2000
De fapt se pare ca el gandeste ca un programator.
03:52
He askedîntrebă, how bigmare is the minimalminim genomegenomului
90
220000
3000
El a intrebat cat de mare trebuie sa fie genomul minim
03:55
that will give me a functioningfuncționare microorganismmicroorganism?
91
223000
2000
care ar genera un microorganism funcţional.
03:57
How fewpuțini genesgene can I use?
92
225000
2000
Cat de putine gene pot folosi?
03:59
This is exactlyexact analogousanalog to the questionîntrebare,
93
227000
2000
Asta e similara cu intrebarea
04:01
what's the smallestcel mai mic programprogram I can writescrie
94
229000
1000
care-i cel mai mic program pe care-l pot scrie
04:02
that will actact exactlyexact like MicrosoftMicrosoft WordCuvântul?
95
230000
2000
care sa opereze exact ca Microsoft Word ?
04:04
(LaughterRâs)
96
232000
1000
(Rasete)
04:05
And just as he's writingscris, you know, bacteriabacterii that will be smallermai mic,
97
233000
4000
Si la fel cum el concepe, stiti, bacterii care vor fi mai mici,
04:09
he's writingscris genomesgenomilor that will work,
98
237000
1000
concepe genomuri care vor functiona,
04:10
we could writescrie smallermai mic programsprograme
99
238000
2000
noi am putea scrie programe mai mici
04:12
that would do what MicrosoftMicrosoft WordCuvântul does.
100
240000
2000
care sa functioneze ca Microsoft Word.
04:14
But for molecularmolecular programmingprogramare, our questionîntrebare is,
101
242000
2000
Insa in cazul programarii moleculare, intrebarea devine
04:16
how manymulți moleculesmolecule do we need to put in that seedsămânță to get a cellcelulă phonetelefon?
102
244000
4000
cate molecule trebuie sa impachetam intr-o samanta pentru a obtine un celular.
04:20
What's the smallestcel mai mic numbernumăr we can get away with?
103
248000
2000
Care-i cel mai mic numar cu care ne-am putea descurca?
04:22
Now, these are bigmare questionsîntrebări in computercomputer scienceştiinţă.
104
250000
2000
Acestea sunt intrebari complexe,
04:24
These are all complexitycomplexitate questionsîntrebări,
105
252000
2000
iar stiinta calculatoarelor confirma
04:26
and computercomputer scienceştiinţă tellsspune us that these are very hardgreu questionsîntrebări.
106
254000
2000
ca acestea sunt intrebari foarte grele.
04:28
AlmostAproape -- manymulți of them are impossibleimposibil.
107
256000
2000
Multe dintre ele par intrebari imposibile.
04:30
But for some taskssarcini, we can startstart to answerRăspuns them.
108
258000
3000
Dar pentru unele din ele putem incepe sa raspundem.
04:33
So, I'm going to startstart askingcer those questionsîntrebări
109
261000
1000
Deci, voi incepe sa pun acele intrebari
04:34
for the DNAADN-UL structuresstructuri I'm going to talk about nextUrmător →.
110
262000
3000
pentru structurile ADN de care voi vorbi in continuare.
04:37
So, this is normalnormal DNAADN-UL, what you think of as normalnormal DNAADN-UL.
111
265000
3000
Acesta este ADN-ul normal.
04:40
It's double-strandeddublu-stranded, it's a doubledubla helixspirală,
112
268000
2000
E un helix cu catena dubla,
04:42
has the As, TsTS, CsCS and GsGS that pairpereche to holddeține the strandsdirecţii de acţiune togetherîmpreună.
113
270000
3000
in care bazele A, T, C si G se cupleaza pentru a sustine helixul.
04:45
And I'm going to drawa desena it like this sometimesuneori,
114
273000
2000
Si il voi desena uneori liniar, simplificat
04:47
just so I don't scarea speria you.
115
275000
2000
ca sa nu va sperii.
04:49
We want to look at individualindividual strandsdirecţii de acţiune and not think about the doubledubla helixspirală.
116
277000
3000
Vrem sa ne uitam la catene singulare si nu la helixul dublu.
04:52
When we synthesizesintetiza it, it comesvine single-strandedsingur-stranded,
117
280000
3000
Cand il sintetizam il obtinem sub forma mono-catenara,
04:55
so we can take the bluealbastru strandStrand in one tubetub
118
283000
3000
astfel incat putem sintetiza lantul albastru intr-un tub
04:58
and make an orangeportocale strandStrand in the other tubetub,
119
286000
2000
si lantul portocaliu in alt tub.
05:00
and they're floppyfloppy when they're single-strandedsingur-stranded.
120
288000
2000
Lanturile ADN cand sunt mono-catenare sunt flexibile.
05:02
You mixamesteca them togetherîmpreună and they make a rigidrigide doubledubla helixspirală.
121
290000
3000
Doar cand le amesteci se cupleaza intr-un helix dublu rigid.
05:05
Now for the last 25 yearsani,
122
293000
2000
Ei bine, in ultimii 25 de ani,
05:07
NedNed SeemanSeeman and a bunchbuchet of his descendantsurmasi
123
295000
2000
Ned Seeman si multi din urmasii lui
05:09
have workeda lucrat very hardgreu and madefăcut beautifulfrumoasa three-dimensionaltri-dimensională structuresstructuri
124
297000
3000
au lucrat din greu si au realizat frumoase structuri tridimensionale
05:12
usingutilizând this kinddrăguț of reactionreacţie of DNAADN-UL strandsdirecţii de acţiune comingvenire togetherîmpreună.
125
300000
3000
folosind acest tip de reactie de cuplare a secventelor monocatenare de ADN.
05:15
But a lot of theiral lor approachesabordari, thoughdeşi elegantelegant, take a long time.
126
303000
3000
Dar multe din metodele lor, desi elegante, sunt laborioase.
05:18
They can take a couplecuplu of yearsani, or it can be difficultdificil to designproiecta.
127
306000
3000
Pot dura si doi ani iar design-ul poate fi dificil de programat.
05:21
So I camea venit up with a newnou methodmetodă a couplecuplu of yearsani agoîn urmă
128
309000
3000
Asa ca acum doi ani am inventat o metoda noua,
05:24
I call DNAADN-UL origamiOrigami
129
312000
1000
o numesc ADN-origami,
05:25
that's so easyuşor you could do it at home in your kitchenbucătărie
130
313000
2000
care-i atat de simpla ca ati putea-o folosi acasa, in bucatarie
05:27
and designproiecta the stuffchestie on a laptoplaptop.
131
315000
2000
si-ati putea programa totul pe un laptop.
05:29
But to do it, you need a long, singlesingur strandStrand of DNAADN-UL,
132
317000
3000
Dar pentru asta aveti nevoie de un lant lung monocatenar de ADN,
05:32
whichcare is technicallytehnic very difficultdificil to get.
133
320000
2000
care e, tehnic vorbind, foarte dificil de obtinut.
05:34
So, you can go to a naturalnatural sourcesursă.
134
322000
2000
In schimb, poti cauta o sursa naturala.
05:36
You can look in this computer-fabricatedfabricate de calculator artifactartefact,
135
324000
2000
Te poti uita la acest artefact fabricat-de-computer
05:38
and he's got a double-strandeddublu-stranded genomegenomului -- that's no good.
136
326000
2000
dar este dublu-catenar asa ca nu ne e folositor.
05:40
You look in his intestinesintestinele. There are billionsmiliarde of bacteriabacterii.
137
328000
3000
Te poti uita in intestinele lui. Sunt miliarde de bacterii.
05:43
They're no good eitherfie.
138
331000
2000
Nici astea nu sunt bune.
05:45
DoubleDublu strandStrand again, but insideinterior them, they're infectedinfectate with a virusvirus
139
333000
2000
Din nou dublu-catenare, dar in interior sunt infectate cu un virus
05:47
that has a nicefrumos, long, single-strandedsingur-stranded genomegenomului
140
335000
3000
al carui genom e un frumos lant lung de ADN-singular
05:50
that we can foldplia like a piecebucată of paperhârtie.
141
338000
2000
pe care-l putem impaturi ca pe o bucata de hartie.
05:52
And here'saici e how we do it.
142
340000
1000
Si iata cum facem.
05:53
This is partparte of that genomegenomului.
143
341000
1000
Acesta e o parte din acel genom.
05:54
We addadăuga a bunchbuchet of shortmic de statura, syntheticsintetic DNAsDNAs that I call staplescapse.
144
342000
3000
Adaugam o gramada de ADN-uri sintetice scurte, pe care le numesc capse.
05:57
EachFiecare one has a left halfjumătate that bindsse leagă the long strandStrand in one placeloc,
145
345000
4000
Jumatatea stanga a fiecarei capse se leaga de catena lunga intr-un loc
06:01
and a right halfjumătate that bindsse leagă it in a differentdiferit placeloc,
146
349000
3000
si jumatatea dreapta se leaga intr-un loc diferit
06:04
and bringsaduce the long strandStrand togetherîmpreună like this.
147
352000
2000
si impatureste firul lung de ADN singular asa.
06:07
The netnet actionacțiune of manymulți of these on that long strandStrand
148
355000
2000
Efectul final al multor capse asupra acelei monocatene lungi
06:09
is to foldplia it into something like a rectangledreptunghi.
149
357000
2000
este o impaturire asemanatoare unui dreptunghi.
06:11
Now, we can't actuallyde fapt take a moviefilm of this processproces,
150
359000
2000
Din pacate nu putem filma acest proces efectiv,
06:13
but ShawnShawn DouglasDouglas at HarvardHarvard
151
361000
2000
dar Shawn Douglas la Harvard
06:15
has madefăcut a nicefrumos visualizationvizualizare for us
152
363000
2000
ne-a facut o frumoasa vizualizare virtuala,
06:17
that beginsîncepe with a long strandStrand and has some shortmic de statura strandsdirecţii de acţiune in it.
153
365000
4000
care incepe cu un lant ADN lung si are cateva catene scurte.
06:21
And what happensse întâmplă is that we mixamesteca these strandsdirecţii de acţiune togetherîmpreună.
154
369000
4000
Apoi aceste catene lungi si scurte se amesteca impreuna.
06:25
We heatcăldură them up, we addadăuga a little bitpic of saltsare,
155
373000
2000
Le incalzim, adaugam un pic de sare,
06:27
we heatcăldură them up to almostaproape boilingfierbere and coolmisto them down,
156
375000
2000
le incalzim pana aproape de fierbere si apoi le racim.
06:29
and as we coolmisto them down,
157
377000
1000
In timp ce se racesc,
06:30
the shortmic de statura strandsdirecţii de acţiune bindlega the long strandsdirecţii de acţiune
158
378000
2000
capsele scurte se prind de catena lunga
06:32
and startstart to formformă structurestructura.
159
380000
2000
si incep sa formeze structura;
06:34
And you can see a little bitpic of doubledubla helixspirală formingformare there.
160
382000
3000
si vedeti cum incepe sa se formeze un helix dublu acolo.
06:38
When you look at DNAADN-UL origamiOrigami,
161
386000
2000
Cand te uiti la acest ADN-origami,
06:40
you can see that what it really is,
162
388000
3000
poti vedea ce este in realitate,
06:43
even thoughdeşi you think it's complicatedcomplicat,
163
391000
1000
si chiar daca pare complicat,
06:44
is a bunchbuchet of doubledubla heliceshelices that are parallelparalel to eachfiecare other,
164
392000
3000
nu-i decat o gramada de helixuri duble paralele între ele,
06:47
and they're helda avut loc togetherîmpreună
165
395000
2000
care sunt legate de coturi
06:49
by placeslocuri where shortmic de statura strandsdirecţii de acţiune go alongde-a lungul one helixspirală
166
397000
2000
unde unele capse scurte se leaga de o spirala
06:51
and then jumpa sari to anothero alta one.
167
399000
2000
si apoi sar la alta.
06:53
So there's a strandStrand that goesmerge like this, goesmerge alongde-a lungul one helixspirală and bindsse leagă --
168
401000
3000
Iata o capsa care merge de-a lungul unei spirale
06:56
it jumpssalturi to anothero alta helixspirală and comesvine back.
169
404000
2000
si apoi sare la un alt helix si face un cot in forma de U,
06:58
That holdsdeține the long strandStrand like this.
170
406000
2000
si tine lantul lung de ADN asa.
07:00
Now, to showspectacol that we could make any shapeformă or patternmodel
171
408000
3000
Pentru a demonstra ca putem asambla orice forma sau model
07:03
that we wanted, I triedîncercat to make this shapeformă.
172
411000
2000
dorim, am incercat sa asamblez forma asta.
07:06
I wanted to foldplia DNAADN-UL into something that goesmerge up over the eyeochi,
173
414000
2000
Am vrut sa impaturesc ADN-ul in ceva care se infasoara
07:08
down the nosenas, up the nosenas, around the foreheadfrunte,
174
416000
3000
in jurul ochiului, nasului, in jurul fruntii,
07:11
back down and endSfârşit in a little loopbuclă like this.
175
419000
3000
inapoi in jos si se incheie intr-o mica bucla.
07:14
And so, I thought, if this could work, anything could work.
176
422000
3000
M-am gandit ca daca aceasta forma se poate programa, orice altceva se poate.
07:17
So I had the computercomputer programprogram designproiecta the shortmic de statura staplescapse to do this.
177
425000
3000
Deci cu ajutorul computerului am programat capsele necesare pentru a face asta.
07:20
I orderedordonat them; they camea venit by FedExFedEx.
178
428000
2000
Le-am comandat, au venit prin FedEx.
07:22
I mixedamestecat them up, heatedîncălzit them, cooledrăcit them down,
179
430000
2000
Le-am amestecat, le-am incalzit, le-am racit,
07:24
and I got 50 billionmiliard little smileySmiley facesfețe
180
432000
4000
si am obtinut 50 miliarde de ‘feţe zâmbitoare’ microscopice
07:28
floatingplutitor around in a singlesingur dropcădere brusca of waterapă.
181
436000
2000
plutind toate intr-o singura picatura de apa.
07:30
And eachfiecare one of these is just
182
438000
2000
Fiecare dintre acestea este doar
07:32
one-thousandthO miime the widthlăţime of a humanuman hairpăr, OK?
183
440000
4000
o miime din latimea unui fir de par uman, bine?
07:36
So, they're all floatingplutitor around in solutionsoluţie, and to look at them,
184
444000
3000
Deci, toate plutesc in solutie si pentru a te uita la ele,
07:39
you have to get them on a surfacesuprafaţă where they stickbăț.
185
447000
2000
trebuie aduse pe o suprafata uscata de care sa se lipeasca.
07:41
So, you pourturna them out ontope a surfacesuprafaţă
186
449000
2000
Le torni pe o suprafaţa,
07:43
and they startstart to stickbăț to that surfacesuprafaţă,
187
451000
2000
ele incep sa se prinda pe acea suprafata,
07:45
and we take a pictureimagine usingutilizând an atomic-forceforță atomică microscopemicroscop.
188
453000
2000
si facem o poza folosind un microscop de forta atomica (AFM).
07:47
It's got a needleac, like a recordrecord needleac,
189
455000
2000
Acesta are un ac, ca un ac de inregistrat,
07:49
that goesmerge back and forthmai departe over the surfacesuprafaţă,
190
457000
2000
care merge inainte si inapoi, pe deasupra suprafetei,
07:51
bumpsumflaturi up and down, and feelsse simte the heightînălţime of the first surfacesuprafaţă.
191
459000
3000
gliseaza in sus si in jos si apreciaza inaltimea suprafetei.
07:54
It feelsse simte the DNAADN-UL origamiOrigami.
192
462000
2000
'Simte' ADN-ul origami.
07:56
There's the atomic-forceforță atomică microscopemicroscop workinglucru
193
464000
2000
Iata microscopul atomic la lucru,
07:59
and you can see that the landing'saterizare pe a little roughstare brută.
194
467000
1000
puteti vedea ca aterizarea e putin cam dura.
08:00
When you zoomzoom in, they'vele-au got, you know,
195
468000
2000
Cand focalizam, au, dupa cum vedeti,
08:02
weakslab jawsfălci that flipflip- over theiral lor headsCapete
196
470000
1000
unele maxilare sparte si rasucite deasupra capetelor,
08:03
and some of theiral lor nosesnasurile get punchedpocnit out, but it's prettyfrumos good.
197
471000
3000
iar unele dintre nasuri sunt busite, dar in general e destul de bine.
08:06
You can zoomzoom in and even see the extrasuplimentar little loopbuclă,
198
474000
2000
Puteti focaliza si vedea chiar mica bucla,
08:08
this little nano-goateeNano-cioc.
199
476000
2000
acest nano-cioculet mititel.
08:10
Now, what's great about this is anybodycineva can do this.
200
478000
3000
Ce-i grozav la acest procedeu este ca oricine poate face asta.
08:13
And so, I got this in the mailPoștă about a yearan after I did this, unsolicitednesolicitate.
201
481000
4000
Si deci am primit asta in posta cam la un an dupa ce-am facut asta, nesolicitat.
08:17
AnyoneOricine know what this is? What is it?
202
485000
3000
Stie cineva ce este asta? Ce este?
08:20
It's ChinaChina, right?
203
488000
2000
E harta Chinei, nu-i asa?
08:22
So, what happeneds-a întâmplat is, a graduateabsolvent studentstudent in ChinaChina,
204
490000
2000
Deci, ce s-a intamplat este ca o studenta din China,
08:24
LuluLulu QianQian, did a great jobloc de munca.
205
492000
2000
Lulu Qian, a facut o treaba grozava.
08:26
She wrotea scris all her ownpropriu softwaresoftware-ul
206
494000
2000
Si-a programat propriul ei software
08:28
to designproiecta and builtconstruit this DNAADN-UL origamiOrigami,
207
496000
2000
ca sa proiecteze si sa asambleze acest origami ADN,
08:30
a beautifulfrumoasa renditionextrădare of ChinaChina, whichcare even has TaiwanTaiwan,
208
498000
3000
o frumoasa reprezentare a Chinei, care are chiar si Taiwan-ul,
08:33
and you can see it's sortfel of on the world'slume shortestmai scurt leashlesa, right?
209
501000
3000
dupa cum vedeti legat prin cea mai scurta lesa din lume, corect?
08:36
(LaughterRâs)
210
504000
2000
(Rasete)
08:39
So, this workslucrări really well
211
507000
1000
Deci, asta functioneaza foarte bine,
08:41
and you can make patternsmodele as well as shapesforme, OK?
212
509000
2000
poti construi diferite modele si forme.
08:44
And you can make a mapHartă of the AmericasAmericas and spellvraja DNAADN-UL with DNAADN-UL.
213
512000
3000
Poti face o harta a Americilor si poti scrie literele ADN folosind ADN.
08:47
And what's really neatcurat about it --
214
515000
3000
Si ce este cu adevarat elegant –
08:50
well, actuallyde fapt, this all looksarată like nano-artworkNano-Opera de arta,
215
518000
2000
e ca toate astea arata ca o nano-opera-de-arta,
08:52
but it turnstransformă out that nano-artworkNano-Opera de arta
216
520000
1000
dar se pare ca nano-operele-de-arta
08:53
is just what you need to make nano-circuitsnano-circuite.
217
521000
2000
sunt exact ce ai nevoie pentru a face nano-circuite.
08:55
So, you can put circuitcircuit componentscomponente on the staplescapse,
218
523000
2000
Deci, poti atasa componente de circuit pe capse,
08:57
like a lightușoară bulbbec and a lightușoară switchintrerupator.
219
525000
2000
cum ar fi un bec electric si un intrerupator.
08:59
Let the thing assembleasambla, and you'llveți get some kinddrăguț of a circuitcircuit.
220
527000
3000
Lasa-le sa se asambleze si vei obtine un fel de circuit.
09:02
And then you can maybe washspalare the DNAADN-UL away and have the circuitcircuit left over.
221
530000
3000
Si apoi poti spala ADN-ul remanent si ce ramane e circuitul.
09:05
So, this is what some colleaguescolegii of mineA mea at CaltechCaltech did.
222
533000
2000
Exact asta au facut niste colegi de-ai mei de la Caltech.
09:07
They tooka luat a DNAADN-UL origamiOrigami, organizedorganizat some carboncarbon nano-tubesnano-tuburi,
223
535000
3000
Au luat un origami ADN, au organizat niste nano-tuburi de carbon,
09:10
madefăcut a little switchintrerupator, you see here, wiredcu fir it up,
224
538000
2000
au facut un mic comutator, l-au legat,
09:12
testedtestat it and showeda arătat that it is indeedintr-adevar a switchintrerupator.
225
540000
3000
l-au testat si au aratat ca este intr-adevar un comutator.
09:15
Now, this is just a singlesingur switchintrerupator
226
543000
2000
Ei bine, acesta e doar un singur comutator
09:17
and you need halfjumătate a billionmiliard for a computercomputer, so we have a long way to go.
227
545000
4000
si e nevoie de o jumatate de miliard pentru un computer, deci avem mult de mers.
09:21
But this is very promisingpromițător
228
549000
2000
Dar e foarte promitator,
09:23
because the origamiOrigami can organizeorganiza partspărți just one-tentho zecime the sizemărimea
229
551000
5000
intrucat cu origami se pot organiza piese de doar o zecime din dimensiunea
09:28
of those in a normalnormal computercomputer.
230
556000
1000
celor dintr-un computer normal.
09:29
So it's very promisingpromițător for makingluare smallmic computerscalculatoare.
231
557000
3000
Deci, metoda e foarte promitatoare pentru a face computere mici.
09:32
Now, I want to get back to that compilercompilator.
232
560000
3000
Acum, vreau sa ma intorc la compilator.
09:35
The DNAADN-UL origamiOrigami is a proofdovadă that that compilercompilator actuallyde fapt workslucrări.
233
563000
3000
ADN-origami este o dovada ca de fapt compilatorul functioneaza.
09:39
So, you startstart with something in the computercomputer.
234
567000
2000
Deci, se incepe cu programul in calculator.
09:41
You get a high-levelnivel inalt descriptionDescriere of the computercomputer programprogram,
235
569000
3000
Se obtine o descriere in limbaj de programare de înalt nivel,
09:44
a high-levelnivel inalt descriptionDescriere of the origamiOrigami.
236
572000
2000
o descriere a acestui origami.
09:46
You can compilecompila it to moleculesmolecule, sendtrimite it to a synthesizersintetizator,
237
574000
3000
Poti sa-l compilezi si sa obtii astfel moleculele, sa le trimiţi la un sintetizator
09:49
and it actuallyde fapt workslucrări.
238
577000
1000
si chiar functioneaza.
09:50
And it turnstransformă out that a companycompanie has madefăcut a nicefrumos programprogram
239
578000
4000
Si se pare ca o companie a facut un program frumos,
09:54
that's much better than my codecod, whichcare was kinddrăguț of uglyurât,
240
582000
2000
care e mult mai bun decat codul meu, care era cam urat,
09:56
and will allowpermite us to do this in a nicefrumos,
241
584000
1000
care ne va permite sa facem intr-un mod elegant
09:57
visualvizual, computer-aidedasistată de calculator designproiecta way.
242
585000
2000
acest gen de design asistat de calculator.
10:00
So, now you can say, all right,
243
588000
1000
Deci, acum ai putea intreba, bine,
10:01
why isn't DNAADN-UL origamiOrigami the endSfârşit of the storypoveste?
244
589000
2000
de ce nu este ADN-origami sfarsitul povestii ?
10:03
You have your molecularmolecular compilercompilator, you can do whateverindiferent de you want.
245
591000
2000
Ai compilatorul molecular, poti programa orice vrei.
10:05
The factfapt is that it does not scalescară.
246
593000
3000
In realitate metoda nu se aplica bine la scara mare.
10:08
So if you want to buildconstrui a humanuman from DNAADN-UL origamiOrigami,
247
596000
3000
Daca vrei sa construiesti un om din ADN-origami,
10:11
the problemproblemă is, you need a long strandStrand
248
599000
2000
problema e ca trebuie sa pornesti de la un lant lung
10:13
that's 10 trilliontrilion trilliontrilion basesbaze long.
249
601000
3000
de 10 trilioane de trilioane de baze.
10:16
That's threeTrei lightușoară years'ani' worthin valoare de of DNAADN-UL,
250
604000
2000
Asta-i egal cu trei ani lumina de ADN,
10:18
so we're not going to do this.
251
606000
2000
deci nu vom face asta.
10:20
We're going to turnviraj to anothero alta technologytehnologie,
252
608000
2000
In schimb vom considera o alta tehnologie
10:22
calleddenumit algorithmicalgoritmice self-assemblyauto-asamblare of tilesgresie.
253
610000
2000
numita auto-asamblare algoritmica de dale.
10:24
It was starteda început by ErikErik WinfreeWinfree,
254
612000
2000
Tehnologia a fost initiata de Erik Winfree,
10:26
and what it does,
255
614000
1000
si ce face ea,
10:27
it has tilesgresie that are a hundredthsutime the sizemărimea of a DNAADN-UL origamiOrigami.
256
615000
4000
are dale care sunt a suta parte din marimea unui ADN-origami.
10:31
You zoomzoom in, there are just fourpatru DNAADN-UL strandsdirecţii de acţiune
257
619000
2000
Fiecare placuta e alcatuita din patru secvente de ADN
10:34
and they have little single-strandedsingur-stranded bitsbiți on them
258
622000
2000
si acestea au bucatele mono-catenate pe ele
10:36
that can bindlega to other tilesgresie, if they matchMeci.
259
624000
2000
care se pot lipi de alte dale daca se potrivesc.
10:38
And we like to drawa desena these tilesgresie as little squarespătrate.
260
626000
3000
Pentru simplificare reprezentam aceste dale ca patratele.
10:42
And if you look at theiral lor stickylipicios endscapete, these little DNAADN-UL bitsbiți,
261
630000
2000
Daca te uiti la capetele lipicioase ale acestor bucatele de ADN
10:44
you can see that they actuallyde fapt formformă a checkerboardtablă de şah patternmodel.
262
632000
3000
vezi ca formeaza de fapt o structura ca tabla de sah.
10:47
So, these tilesgresie would make a complicatedcomplicat, self-assemblingAuto-asamblare checkerboardtablă de şah.
263
635000
3000
Deci, aceste placi se auto-asambleaza intr-o tabla de sah complicata.
10:50
And the pointpunct of this, if you didn't catchcaptură that,
264
638000
2000
Esentialul este, in caz ca nu v-ati dat seama,
10:52
is that tilesgresie are a kinddrăguț of molecularmolecular programprogram
265
640000
3000
ca aceste placute asamblate sunt un fel de program molecular
10:55
and they can outputproducție patternsmodele.
266
643000
3000
care poate crea modele.
10:58
And a really amazinguimitor partparte of this is
267
646000
2000
Si o parte cu adevarat uimitoare a acestui fapt
11:00
that any computercomputer programprogram can be translatedtradus
268
648000
2000
e ca orice program de calculator poate fi tradus
11:02
into one of these tileţiglă programsprograme -- specificallyspecific, countingsocoteală.
269
650000
3000
intr-un astfel de program de placute ADN -- cum ar fi un algoritm de numarare.
11:05
So, you can come up with a seta stabilit of tilesgresie
270
653000
3000
Deci, puteti asambla un set de placute ADN
11:08
that when they come togetherîmpreună, formformă a little binarybinar countertejghea
271
656000
3000
care alcatuiesc mai degraba un mic sistem de numaratoare binara
11:11
rathermai degraba than a checkerboardtablă de şah.
272
659000
2000
decat o tabla de sah.
11:13
So you can readcitit off binarybinar numbersnumerele fivecinci, sixşase and sevenȘapte.
273
661000
3000
Astfel puteti citi numere binare, cinci, şase şi şapte.
11:16
And in orderOrdin to get these kindstipuri of computationscalcule starteda început right,
274
664000
3000
Ca sa pornim corect acest gen de calcule,
11:19
you need some kinddrăguț of inputintrare, a kinddrăguț of seedsămânță.
275
667000
2000
avem nevoie de date de intrare, un fel de samanta.
11:21
You can use DNAADN-UL origamiOrigami for that.
276
669000
2000
Putem folosi ADN-origami pentru asta.
11:23
You can encodecodifica the numbernumăr 32
277
671000
2000
Codificam numarul 32
11:25
in the right-handmana dreapta sidelatură of a DNAADN-UL origamiOrigami,
278
673000
2000
in partea dreapta a unui ADN-origami
11:27
and when you addadăuga those tilesgresie that countnumara,
279
675000
2000
si cand adaugam acele placute care numara
11:29
they will startstart to countnumara -- they will readcitit that 32
280
677000
3000
ele vor incepe sa numere, sa citeasca acel 32
11:32
and they'llei vor stop at 32.
281
680000
2000
si se vor opri la 32.
11:34
So, what we'vene-am doneTerminat is we'vene-am figuredimaginat out a way
282
682000
3000
Deci, ce am realizat este ca am gasit o metoda
11:37
to have a molecularmolecular programprogram know when to stop going.
283
685000
3000
de a determina un program molecular sa stie cand sa se opreasca din crestere.
11:40
It knowsștie when to stop growingcreştere because it can countnumara.
284
688000
2000
Stie cand sa se opreasca din crestere pentru ca stie sa numere.
11:42
It knowsștie how bigmare it is.
285
690000
2000
Stie cat este de mare.
11:44
So, that answersrăspunsuri that sortfel of first questionîntrebare I was talkingvorbind about.
286
692000
3000
Prin urmare, asta raspunde la acea prima intrebare pe care am mentionat-o.
11:47
It doesn't tell us how babiescopii do it, howeverin orice caz.
287
695000
3000
Nu ne spune insa cum stiu copiii sa se opreasca din crestere.
11:50
So now, we can use this countingsocoteală to try and get at much biggermai mare things
288
698000
4000
Acum, putem folosi aceasta numarare pentru a asambla sisteme mult mai mari
11:54
than DNAADN-UL origamiOrigami could otherwisein caz contrar.
289
702000
1000
decat am fi putut cu metoda ADN-origami.
11:55
Here'sAici este the DNAADN-UL origamiOrigami, and what we can do
290
703000
3000
Aici e o structura ADN-origami, ce putem face,
11:58
is we can writescrie 32 on bothambii edgesmargini of the DNAADN-UL origamiOrigami,
291
706000
3000
putem scrie cate un 32 la ambele margini ale ADN-ului origami
12:01
and we can now use our wateringadăpare can
292
709000
2000
iar apoi folosind stropitoarea
12:03
and waterapă with tilesgresie, and we can startstart growingcreştere tilesgresie off of that
293
711000
4000
si adaugand dale si putem sa initiem o crestere cu ajutorul placutelor
12:07
and createcrea a squarepătrat.
294
715000
2000
si sa cream un patrat.
12:09
The countertejghea servesservește as a templateșablon
295
717000
3000
Contorul serveste ca un sablon
12:12
to fillcompletati in a squarepătrat in the middlemijloc of this thing.
296
720000
2000
care umple acest patrat in mijloc.
12:14
So, what we'vene-am doneTerminat is we'vene-am succeededreușit
297
722000
1000
Prin urmare am reusit sa cream
12:15
in makingluare something much biggermai mare than a DNAADN-UL origamiOrigami
298
723000
3000
ceva de marime mult mai mare decat un ADN origami
12:18
by combiningcombinând DNAADN-UL origamiOrigami with tilesgresie.
299
726000
3000
prin combinarea de ADN-origami cu dale.
12:21
And the neatcurat thing about it is, is that it's alsode asemenea reprogrammablereprogramabili.
300
729000
3000
Si partea frumoasa e ca acestea sunt reprogramabile.
12:24
You can just changeSchimbare a couplecuplu of the DNAADN-UL strandsdirecţii de acţiune in this binarybinar representationreprezentare
301
732000
4000
Prin schimbarea a doua catene de ADN in aceasta reprezentare binara
12:28
and you'llveți get 96 rathermai degraba than 32.
302
736000
3000
se obtine o latura de 96 in loc de 32.
12:31
And if you do that, the origami'sOrigami pe the samela fel sizemărimea,
303
739000
3000
Si daca faci asta, AND-ul origami e de aceeasi marime,
12:34
but the resultingRezultate squarepătrat that you get is threeTrei timesori biggermai mare.
304
742000
4000
dar patratul final e de trei ori mai mare.
12:39
So, this sortfel of recapitulatesrecapitulates
305
747000
1000
Sa recapitulam acum ce va spuneam
12:40
what I was tellingspune you about developmentdezvoltare.
306
748000
2000
depre cresterea programata.
12:42
You have a very sensitivesensibil computercomputer programprogram
307
750000
3000
Aveti un program de computer foarte sensibil
12:45
where smallmic changesschimbări -- singlesingur, tinyminuscul, little mutationsmutații --
308
753000
3000
unde schimbari minore -- mutaţii singulare, minore ---
12:48
can take something that madefăcut one sizemărimea squarepătrat
309
756000
2000
pot lua ceva care a facut un patrat de o anumita marime
12:50
and make something very much biggermai mare.
310
758000
3000
si face o structura mult mai mare.
12:54
Now, this -- usingutilizând countingsocoteală to computecalcula
311
762000
3000
Acum, folosirea acestui gen de algoritm
12:57
and buildconstrui these kindstipuri of things
312
765000
2000
si asamblarea acestui gen de structuri
12:59
by this kinddrăguț of developmentaldezvoltare processproces
313
767000
2000
prin acest proces de augmentare
13:01
is something that alsode asemenea has bearingținând on CraigCraig Venter'sVenter pe questionîntrebare.
314
769000
4000
ne ajuta sa raspundem si la intrebarea lui Craig Venter.
13:05
So, you can askcere, how manymulți DNAADN-UL strandsdirecţii de acţiune are requirednecesar
315
773000
2000
Deci, puteti intreba, cate catene de ADN sunt necesare
13:07
to buildconstrui a squarepătrat of a givendat sizemărimea?
316
775000
2000
pentru a construi un patrat de o marime data?
13:09
If we wanted to make a squarepătrat of sizemărimea 10, 100 or 1,000,
317
777000
5000
Daca am dori sa realizam un patrat de 10, 100 sau 1.000,
13:14
if we used DNAADN-UL origamiOrigami alonesingur,
318
782000
2000
si daca am folosi doar ADN-origami,
13:16
we would requirenecesita a numbernumăr of DNAADN-UL strandsdirecţii de acţiune that's the squarepătrat
319
784000
3000
ar fi necesar un numar de monocatene de ADN egal cu
13:19
of the sizemărimea of that squarepătrat;
320
787000
2000
acea marime la patrat;
13:21
so we'dne-am need 100, 10,000 or a millionmilion DNAADN-UL strandsdirecţii de acţiune.
321
789000
2000
deci am avea nevoie de 100, 10.000 respectiv 1.000.000 de catene ADN.
13:23
That's really not affordableaccesibil.
322
791000
2000
Nu ne putem permite asta.
13:25
But if we use a little computationcalcul --
323
793000
2000
Dar daca folosim cateva computatii --
13:27
we use origamiOrigami, plusla care se adauga some tilesgresie that countnumara --
324
795000
4000
adica folosim origami plus placute care numara --
13:31
then we can get away with usingutilizând 100, 200 or 300 DNAADN-UL strandsdirecţii de acţiune.
325
799000
3000
atunci putem scapa folosind un numar de 100, 200, 300 de lanturi.
13:34
And so we can exponentiallyexponențial reducereduce the numbernumăr of DNAADN-UL strandsdirecţii de acţiune we use,
326
802000
5000
Si astfel putem reduce exponential numarul de catene ADN necesare
13:39
if we use countingsocoteală, if we use a little bitpic of computationcalcul.
327
807000
3000
daca folosim ceva calcule.
13:42
And so computationcalcul is some very powerfulputernic way
328
810000
3000
Prin urmare aceste calcule au potential mare
13:45
to reducereduce the numbernumăr of moleculesmolecule you need to buildconstrui something,
329
813000
3000
de a reduce numarul de molecule de care ai nevoie ca sa construiesti ceva,
13:48
to reducereduce the sizemărimea of the genomegenomului that you're buildingclădire.
330
816000
3000
de a reduce marimea genomului pe care il asamblezi.
13:51
And finallyin sfarsit, I'm going to get back to that sortfel of crazynebun ideaidee
331
819000
3000
Si in sfarsit, ma voi referi din nou la acea idee indrazneata
13:54
about computerscalculatoare buildingclădire computerscalculatoare.
332
822000
2000
respectiv computere care construiesc computere.
13:56
If you look at the squarepătrat that you buildconstrui with the origamiOrigami
333
824000
3000
Daca va uitati la patratul construit cu origami
13:59
and some counterscontoare growingcreştere off it,
334
827000
2000
si la numaratorile care rezulta din acestea
14:01
the patternmodel that it has is exactlyexact the patternmodel that you need
335
829000
3000
tiparul pe care il are este exact cel de care ai nevoie
14:04
to make a memorymemorie.
336
832000
1000
pentru a crea o memorie.
14:05
So if you affixaplice some wiresfire and switchesîntrerupătoare to those tilesgresie --
337
833000
3000
Acum, daca aplici niste conexiuni si intrerupatoare la acele dale,
14:08
rathermai degraba than to the staplecapsa strandsdirecţii de acţiune, you affixaplice them to the tilesgresie --
338
836000
3000
in loc sa le aplici pe capse
14:11
then they'llei vor self-assembleauto-asambla the somewhatoarecum complicatedcomplicat circuitscircuite,
339
839000
3000
atunci se pot auto-asambla circuite destul de complicate ---
14:14
the demultiplexerDemultiplexer circuitscircuite, that you need to addressadresa this memorymemorie.
340
842000
3000
circuite de-multiplexer necesare pentru a adresa memoria unui calculator.
14:17
So you can actuallyde fapt make a complicatedcomplicat circuitcircuit
341
845000
2000
In concluzie chiar putem construi circuite complicate
14:19
usingutilizând a little bitpic of computationcalcul.
342
847000
2000
folosind putina computatie.
14:21
It's a molecularmolecular computercomputer buildingclădire an electronicelectronic computercomputer.
343
849000
3000
Aici avem un computer molecular care construieste un computer electronic.
14:24
Now, you askcere me, how fardeparte have we gottenajuns down this pathcale?
344
852000
3000
Poate va intrebati cat de departe am ajuns in aceasta directie.
14:27
ExperimentallyExperimental, this is what we'vene-am doneTerminat in the last yearan.
345
855000
3000
Experimental, iata ce am facut anul trecut.
14:30
Here is a DNAADN-UL origamiOrigami rectangledreptunghi,
346
858000
2000
Acesta e un dreptunghi de ADN-origami,
14:33
and here are some tilesgresie growingcreştere from it.
347
861000
2000
iar aici sunt niste placute care au crescut din el.
14:35
And you can see how they countnumara.
348
863000
2000
Si puteti vedea cum calculeaza ele.
14:37
One, two, threeTrei, fourpatru, fivecinci, sixşase, ninenouă, 10, 11, 12, 17.
349
865000
12000
1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 17.
14:49
So it's got some errorserori, but at leastcel mai puţin it countscontează up.
350
877000
4000
Observati niste erori, dar cel putin numara in sus.
14:53
(LaughterRâs)
351
881000
1000
(Rasete)
14:54
So, it turnstransformă out we actuallyde fapt had this ideaidee ninenouă yearsani agoîn urmă,
352
882000
3000
De fapt ne-a venit aceasta idee acum noua ani,
14:57
and that's about the time constantconstant for how long it takes
353
885000
3000
dar, considerand constanta de timp necesara realizarii efective,
15:00
to do these kindstipuri of things, so I think we madefăcut a lot of progressprogres.
354
888000
2000
consideram ca am progresat mult.
15:02
We'veNe-am got ideasidei about how to fixrepara these errorserori.
355
890000
2000
Avem ceva idei de cum sa reparam aceste erori.
15:04
And I think in the nextUrmător → fivecinci or 10 yearsani,
356
892000
2000
Si cred ca in urmatorii 5 sau 10 ani
15:06
we'llbine make the kinddrăguț of squarespătrate that I describeddescris
357
894000
2000
vom face patratelele pe care le-am descris
15:08
and maybe even get to some of those self-assembledauto-asamblate circuitscircuite.
358
896000
3000
si poate chiar si acele circuite auto-asamblate.
15:11
So now, what do I want you to take away from this talk?
359
899000
4000
In concluzie, cu ce as dori sa ramaneti din aceasta prezentare?
15:15
I want you to remembertine minte that
360
903000
2000
As dori sa retineti ca
15:17
to createcrea life'sviata lui very diversedivers and complexcomplex formsformulare,
361
905000
4000
pentru a crea formele diverse si complexe de viata
15:21
life usesutilizări computationcalcul to do that.
362
909000
2000
viata foloseste calcule in acest scop.
15:23
And the computationscalcule that it usesutilizări, they're molecularmolecular computationscalcule,
363
911000
4000
Aceste calcule sunt computatii moleculare
15:27
and in orderOrdin to understanda intelege this and get a better handlemâner on it,
364
915000
2000
iar in scopul de a le intelege mai bine
15:29
as FeynmanFeynman said, you know,
365
917000
2000
cum spunea Feyman,
15:31
we need to buildconstrui something to understanda intelege it.
366
919000
2000
trebuie sa le construim ca sa le intelegem.
15:33
And so we are going to use moleculesmolecule and refashionrefasona this thing,
367
921000
4000
Si astfel vom folosi molecule ADN si le vom refasona,
15:37
rebuildreconstrui everything from the bottomfund up,
368
925000
2000
reconstruind totul de jos in sus,
15:39
usingutilizând DNAADN-UL in waysmoduri that naturenatură never intendeddestinate,
369
927000
3000
folosind ADN-ul in moduri in care natura nu a intentionat niciodata,
15:42
usingutilizând DNAADN-UL origamiOrigami,
370
930000
2000
folosind ADN-origami,
15:44
and DNAADN-UL origamiOrigami to seedsămânță this algorithmicalgoritmice self-assemblyauto-asamblare.
371
932000
3000
fie ca atare, fie pentru a initia aceste auto-asamblari algoritmice.
15:47
You know, so this is all very coolmisto,
372
935000
2000
Ei bine, toate acestea sunt grozave,
15:50
but what I'd like you to take from the talk,
373
938000
1000
dar ce mi-ar placea sa retineti din prezentare,
15:51
hopefullyin speranta from some of those bigmare questionsîntrebări,
374
939000
2000
din acele intrebari majore,
15:53
is that this molecularmolecular programmingprogramare isn't just about makingluare gadgetsgadget-uri.
375
941000
3000
este ca aceste programe moleculare
15:56
It's not just makingluare about --
376
944000
2000
nu se reduc doar la a construi dispozitive,
15:58
it's makingluare self-assembledauto-asamblate cellcelulă phonestelefoane and circuitscircuite.
377
946000
2000
doar la asamblarea de celulare si circuite.
16:00
What it's really about is takingluare computercomputer scienceştiinţă
378
948000
2000
Ceea ce este cu adevarat important e a reusi in procesul de programare
16:02
and looking at bigmare questionsîntrebări in a newnou lightușoară,
379
950000
3000
sa privim intrebarile vietii intr-o lumina noua,
16:05
askingcer newnou versionsversiuni of those bigmare questionsîntrebări
380
953000
2000
sa cream versiuni noi ale acelor intrebari complexe
16:07
and tryingîncercat to understanda intelege how biologybiologie
381
955000
2000
si sa incercam sa intelegem cum reuseste biologia
16:09
can make suchastfel de amazinguimitor things. Thank you.
382
957000
2000
sa faca astfel de lucruri uimitoare. Multumesc.
16:12
(ApplauseAplauze)
383
960000
7000
(Aplauze)
Translated by Ariana Bleau Lugo
Reviewed by Brandusa Gheorghe

▲Back to top

ABOUT THE SPEAKER
Paul Rothemund - DNA origamist
Paul Rothemund folds DNA into shapes and patterns. Which is a simple enough thing to say, but the process he has developed has vast implications for computing and manufacturing -- allowing us to create things we can now only dream of.

Why you should listen

Paul Rothemund won a MacArthur grant this year for a fairly mystifying study area: "folding DNA." It brings up the question: Why fold DNA? The answer is -- because the power to manipulate DNA in this way could change the way we make things at a very basic level.

Rothemund's work combines the study of self-assembly (watch the TEDTalks from Neil Gershenfeld and Saul Griffith for more on this) with the research being done in DNA nanotechnology -- and points the way toward self-assembling devices at microscale, making computer memory, for instance, smaller, faster and maybe even cheaper.

More profile about the speaker
Paul Rothemund | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee