Rajiv Maheswaran: The math behind basketball's wildest moves
Radživ Mahesvaran (Rajiv Maheswaran): Matematika iza najluđih pokreta u košarci
Using advanced data analysis tools, Rajiv Maheswaran and Second Spectrum help make basketball teams smarter. Full bio
Double-click the English transcript below to play the video.
nauka o pokretnim tačkama.
by the science of moving dots.
in our offices, as we shop and travel
i kancelarijama
po gradovima i svetu.
and around the world.
if we could understand all this movement?
da razumemo sve ove pokrete?
and insight in it.
at capturing information about ourselves.
da pratimo informacije o sebi.
sensors or videos, or apps,
snimaka ili aplikacija,
with incredibly fine detail.
where we have the best data about movement
gde imamo najviše podataka o pokretu
or football or the other football,
ili američki fudbal ili onaj drugi fudbal,
and our players to track their movements
i igrače da bismo pratili njihovo kretanje
is turning our athletes into --
naše sportiste u -
and like most raw data,
i slično većini neobrađenih podataka,
and not that interesting.
a nije baš ni zanimljivo.
basketball coaches want to know.
košarkaški treneri žele da znaju.
because they'd have to watch every second
zato što bi morali da gledaju svaki sekund
the game with the eye of a coach.
ne vidi utakmicu očima trenera.
shots and rebounds.
šutevi i skok pod košem.
većina prosečnih obožavalaca.
slightly more complicated.
na malo komplikovanije stvari.
and pick-and-rolls, and isolations.
pik end rola i presinga.
Most casual players probably do.
Većina prosečnih igrača zna.
the machine understands complex events
mašina razume kompleksne događaje
samo profesionalci.
with the eyes of a coach.
da vidi očima trenera.
something like a pick-and-roll,
nešto poput pik end rola,
izgledalo bi užasno.
it would be terrible.
in basketball between four players,
u košarci ples između četiri igrača,
without the ball
guarding the guy with the ball,
koji čuva drugog momka sa loptom
i ta-da, to je pik end rol.
and ta-da, it's a pick-and-roll.
of a terrible algorithm.
užasnog algoritma.
he's called the screener --
on se zove bloker -
but he doesn't stop close enough,
ali se ne zaustavi dovoljno blizu,
and he does stop
it's probably not a pick-and-roll.
to verovatno nije pik end rol.
they could all be pick-and-rolls.
sve to pik end rol.
the distances, the locations,
udaljenosti, lokacije,
we can go beyond our own ability
možemo da idemo dalje od naše sposobnosti
Well, it's by example.
"Good morning, machine.
"Dobro jutro, mašino.
and here are some things that are not.
evo nekih stvari koje nisu.
features that enable it to separate.
koja joj omogućavaju da to raščlani.
to teach it the difference
use color or shape?"
"Što ne uzmeš boju ili obllk?"
what are those things?
šta su to te stvari?
the world of moving dots?
upravlja svetom pokretnih tački?
with relative and absolute location,
sa relativnom i apsolutnom lokacijom,
of moving dots, or as we like to call it,
tačkama ili kako mi volimo da zovemo,
in academic vernacular.
akademskim žargonom govoreći.
you have to make it sound hard --
it's not that they want to know
nije to da žele da znaju
how it happened.
So here's a little insight.
Evo malog uvida.
the most important play.
najvažniji deo igre.
and knowing how to defend it,
i kako da se odbrani,
and losing most games.
ili poraza u većini utakmica.
has a great many variations
ima mnoge varijacije
is really the thing that matters,
je ono što je stvarno važno,
to be really, really good.
bude baš, baš dobro.
and two defensive players,
i dva igrača u odbrani,
the pick-and-roll dance.
can either take, or he can reject.
ili prihvatiti, ili odbiti.
can either go over or under.
može ići iznad ili ispod.
or play up to touch, or play soft
ili da igra do kontakta, ili bez kontakta
either switch or blitz
da se zamene ili napadnu
most of these things when I started
stvari kada sam počinjao
according to those arrows.
u skladu sa ovim strelicama.
but it turns out movement is very messy.
ali izgleda da su naši pokreti zbrkani.
these variations identified
ovih identifikovanih varijacija
a professional coach to believe in you.
profesionalnog trenera koji veruje u tebe.
with the right spatiotemporal features
spaciotemporalnim karakteristikama,
to identify these variations.
da identifikuju ove varijacije.
almost every single contender
skoro svaki kandidat
on a machine that understands
u mašinu koja razume
that has changed strategies
koji menjaju strategije
very important games,
da dobiju veoma važne utakmice,
coaches who've been in the league
trenere koji su u ligi
advice from a machine.
prihvate savet od mašine.
it's much more than the pick-and-roll.
to je mnogo više od pik end rola.
with simple things
much of what it does,
dosta toga što on radi,
to be smarter than me,
pametniji od mene,
can a machine know more than a coach?
mašina da zna više od trenera?
to take good shots.
it's a good shot.
to je dobra pozicija.
by defenders, that's generally a bad shot.
odbranom, to je generalno loša pozicija.
or how bad "bad" was quantitatively.
koliko je stvarno dobra ili loša.
using spatiotemporal features,
koristeći spaciotemporalne podatke,
What's the angle to the basket?
Pod kojim uglom je od koša?
What are their distances?
Na kojoj su udaljenosti?
at how the player's moving
kako se igrač kreće
and we can build a model that predicts
i možemo napraviti model koji predviđa
would go in under these circumstances?
ući pod ovim okolnostima?
and turn it into two things:
i podeliti ga na dve stvari:
and the quality of the shooter.
because what's TED without a bubble chart?
jer šta bi bio TED bez toga?
and the color is the position.
a boja je njegova pozicija.
we have the shot probability.
bad at the bottom.
loši pri dnu.
47 percent of their shots,
takes shots that an average NBA player
šutira onako kako bi prosečan NBA igrač
is that there are lots of 47s out there.
što ovde ima dosta onih sa 47%.
giving 100 million dollars to
da platite 100 miliona dolara
how we look at players,
a couple of years ago, in the NBA finals.
bila jedna vrlo zanimljiva utakmica.
there was 20 seconds left.
20 sekundi pre kraja.
came up and he took a three to tie.
je ušao i pucao trojku za izjednačenje.
named Ray Allen.
They won the championship.
games in basketball.
najuzbudljivijih utakmica.
the shot probability for every player
verovatnoću pogotka svakog igrača
a rebound at every second
u svakoj sekundi
that we never could before.
na koji nikad ranije nismo mogli.
I can't show you that video.
ne mogu pokazati taj snimak.
about 3 weeks ago.
pre oko tri sedmice.
that led to the insights.
koja je dovela do tog uvida.
This is Chinatown in Los Angeles,
Ovo je Kineska četvrt u Los Anđelesu,
the Ray Allen moment
that's associated with it.
of the professional players, it's us,
profesionalnih igrača ovde mi,
announcer, it's me.
komentatora, tu sam ja.
chance of happening in the NBA
od devet procenata da se desi u NBA
and a great many other things.
it took us to make that happen.
nam je ovo uspelo.
u vezi sa ovim snimkom
of every NBA game -- it's not that.
svake NBA utakmice - nije to.
a professional team to track movement.
profesionalni tim da bi pratili kretanje.
player to get insights about movement.
da biste imali uvid u pokrete.
sports because we're moving everywhere.
o sportu jer se mi krećemo svuda.
pick-and-rolls,
pick-and-rolla,
the moment and let me know
trenutak i da me obavesti
any second now.
desi svakog trenutka.
our buildings, better plan our cities.
zgrade, da bolje planiramo gradove.
of the science of moving dots,
nauke pokretnih tački,
we will move forward.
kretati napred.
ABOUT THE SPEAKER
Rajiv Maheswaran - ResearcherUsing advanced data analysis tools, Rajiv Maheswaran and Second Spectrum help make basketball teams smarter.
Why you should listen
Sports fans can get obsessed with stats about player performance and game-day physics. But basketball, a fluid and fast-moving game, has been tough to understand through numbers. Rajiv Maheswaran is working to change that, by offering pro basketball teams insight into game data to make better decisions. Maheswaran is the CEO and co-founder of Second Spectrum, a startup transforming sports through technology. He is also a Research Assistant Professor at the University of Southern California's Computer Science Department and a Project Leader at the Information Sciences Institute at the USC Viterbi School of Engineering, where he co-directs the Computational Behavior Group.
His research spans various aspects of multi-agent systems and distributed artificial intelligence using decision-theoretic and game-theoretic frameworks and solutions. His current interests focus on data analytics, visualization and real-time interaction to understand behavior in spatiotemporal domains. Like, say, the spatiotemporal domain around a basketball hoop.
Rajiv Maheswaran | Speaker | TED.com