ABOUT THE SPEAKER
Rajiv Maheswaran - Researcher
Using advanced data analysis tools, Rajiv Maheswaran and Second Spectrum help make basketball teams smarter.

Why you should listen

Sports fans can get obsessed with stats about player performance and game-day physics. But basketball, a fluid and fast-moving game, has been tough to understand through numbers. Rajiv Maheswaran is working to change that, by offering pro basketball teams insight into game data to make better decisions. Maheswaran is the CEO and co-founder of Second Spectrum, a startup transforming sports through technology. He is also a Research Assistant Professor at the University of Southern California's Computer Science Department and a Project Leader at the Information Sciences Institute at the USC Viterbi School of Engineering, where he co-directs the Computational Behavior Group.

His research spans various aspects of multi-agent systems and distributed artificial intelligence using decision-theoretic and game-theoretic frameworks and solutions. His current interests focus on data analytics, visualization and real-time interaction to understand behavior in spatiotemporal domains. Like, say, the spatiotemporal domain around a basketball hoop.

More profile about the speaker
Rajiv Maheswaran | Speaker | TED.com
TED2015

Rajiv Maheswaran: The math behind basketball's wildest moves

拉吉夫· 马赫斯瓦兰: 篮球场上最疯狂步伐背后的数学原理

Filmed:
2,683,104 views

篮球是一项即兴,接触频繁,有着可识别时间, 空间模式的快节奏运动。拉吉夫· 马赫斯瓦兰和他的同事分析了比赛中关键时刻背后的移动,帮助教练和球员结合直觉和新数据提高战术。“追加罚篮”:他们的成果将帮助我们理解人类无处不在的行动。
- Researcher
Using advanced data analysis tools, Rajiv Maheswaran and Second Spectrum help make basketball teams smarter. Full bio

Double-click the English transcript below to play the video.

00:12
My colleagues同事 and I are fascinated入迷
by the science科学 of moving移动 dots.
0
954
3583
我和我的同事对移动圆点
背后的科学非常着迷。
00:16
So what are these dots?
1
4927
1150
那么这些小圆点是什么呢?
00:18
Well, it's all of us.
2
6101
1287
就是我们自己。
00:19
And we're moving移动 in our homes家园,
in our offices办事处, as we shop and travel旅行
3
7412
5085
我们在家里,办公室里来回走动,
也在世界各地旅行和购物。
00:24
throughout始终 our cities城市
and around the world世界.
4
12521
2066
00:26
And wouldn't不会 it be great
if we could understand理解 all this movement运动?
5
14958
3669
如果我们能弄清这些移动,
并从中发现规律,意义并提出见解,
不是一件很棒的事吗?
00:30
If we could find patterns模式 and meaning含义
and insight眼光 in it.
6
18918
2890
00:34
And luckily for us, we live生活 in a time
7
22259
1785
很幸运的是,
我们生活在这么一个时代,
00:36
where we're incredibly令人难以置信 good
at capturing捕获 information信息 about ourselves我们自己.
8
24068
4497
我们非常擅长捕捉关于自身的信息。
00:40
So whether是否 it's through通过
sensors传感器 or videos视频, or apps应用,
9
28807
3663
不管是通过传感器,视频,或软件应用,
我们都能详尽地追踪到个人移动的轨迹。
00:44
we can track跟踪 our movement运动
with incredibly令人难以置信 fine detail详情.
10
32494
2809
00:48
So it turns out one of the places地方
where we have the best最好 data数据 about movement运动
11
36092
5032
这就让我们发现,
最佳的数据来源之一
就是体育运动。
00:53
is sports体育.
12
41148
1208
00:54
So whether是否 it's basketball篮球 or baseball棒球,
or football足球 or the other football足球,
13
42682
5333
因此无论是篮球、棒球、橄榄球或足球,
我们都可以在场馆内,
甚至运动员身上装上设备来追踪
01:00
we're instrumenting插桩 our stadiums体育场馆
and our players玩家 to track跟踪 their movements运动
14
48039
4402
他们每个时刻的运动数据。
01:04
every一切 fraction分数 of a second第二.
15
52465
1313
01:05
So what we're doing
is turning车削 our athletes运动员 into --
16
53802
4382
所以我们要做的
——你们大概已经猜到了——
就是把运动员的移动
01:10
you probably大概 guessed it --
17
58208
1959
转化成圆点的移动。
01:12
moving移动 dots.
18
60191
1396
01:13
So we've我们已经 got mountains of moving移动 dots
and like most raw生的 data数据,
19
61946
4934
所以我们收集了不计其数的移动小圆点,
就像多数原始数据一样,
难以处理,也没什么趣味。
01:18
it's hard to deal合同 with
and not that interesting有趣.
20
66904
2502
01:21
But there are things that, for example,
basketball篮球 coaches教练 want to know.
21
69430
3769
但数据里面蕴藏着,
比如篮球教练想知道的事情。
01:25
And the problem问题 is they can't know them
because they'd他们会 have to watch every一切 second第二
22
73223
3810
但问题是,除非教练们把每场比赛里
每一秒数据都记下来再去思考,
01:29
of every一切 game游戏, remember记得 it and process处理 it.
23
77057
2589
否则他们没法从中得到想要的信息。
01:31
And a person can't do that,
24
79804
1930
人类大脑无法做到这件事,
01:33
but a machine can.
25
81758
1310
但机器没问题。
01:35
The problem问题 is a machine can't see
the game游戏 with the eye of a coach教练.
26
83661
3410
然而,机器没办法自己
以教练的视角去看一场比赛。
01:39
At least最小 they couldn't不能 until直到 now.
27
87363
2261
直到现在,我们做到了。
01:42
So what have we taught the machine to see?
28
90228
2103
那么,
我们让机器去观察些什么呢?
01:45
So, we started开始 simply只是.
29
93569
1787
先从简单的开始。
01:47
We taught it things like passes通行证,
shots镜头 and rebounds篮板.
30
95380
3799
我们先教会它传球、投篮和篮板球,
01:51
Things that most casual随便 fans球迷 would know.
31
99203
2541
这类普通球迷也知道的事。
01:53
And then we moved移动 on to things
slightly more complicated复杂.
32
101768
2832
然后我们开始教它一些
稍复杂点的事情,
01:56
Events活动 like post-ups后起坐,
and pick-and-rolls拾辊, and isolations隔离.
33
104624
4588
比如落位背打、挡拆和拉开单打。
02:01
And if you don't know them, that's okay.
Most casual随便 players玩家 probably大概 do.
34
109377
3543
你们如果不了解这些名词,
没关系。打球的人大都了如指掌。
02:05
Now, we've我们已经 gotten得到 to a point where today今天,
the machine understands理解 complex复杂 events事件
35
113560
5340
迄今为止,我们已经能够让机器理解
02:10
like down screens屏幕 and wide pins.
36
118924
3073
下掩护和无球掩护这类复杂的,
02:14
Basically基本上 things only professionals专业人士 know.
37
122021
2726
只有专业人士才懂的战术。
02:16
So we have taught a machine to see
with the eyes眼睛 of a coach教练.
38
124771
4388
于是我们已经教会电脑用
教练的视角去观察数据了。
02:22
So how have we been able能够 to do this?
39
130009
1857
我们是怎么做到的呢?
02:24
If I asked a coach教练 to describe描述
something like a pick-and-roll接机和辊,
40
132511
3118
如果我让一个教练讲解挡拆,
我会得到一个定义,
02:27
they would give me a description描述,
41
135653
1640
如果我把这个定义编码成一个算法
估计会惨不忍睹。
02:29
and if I encoded编码 that as an algorithm算法,
it would be terrible可怕.
42
137317
2856
02:33
The pick-and-roll接机和辊 happens发生 to be this dance舞蹈
in basketball篮球 between之间 four players玩家,
43
141026
4278
挡拆就是四个球员之间的舞蹈,
两人进攻,两人防守。
02:37
two on offense罪行 and two on defense防御.
44
145328
1912
02:39
And here's这里的 kind of how it goes.
45
147486
1618
大概是这么个过程:
02:41
So there's the guy on offense罪行
without the ball
46
149128
2533
一个没有带球的进攻球员
02:43
the ball and he goes next下一个 to the guy
guarding守着 the guy with the ball,
47
151685
3209
跑向持球的防守队员,
站在那里待一会儿,
02:46
and he kind of stays入住 there
48
154918
1257
然后他们一起移动(制造机会),
嗒哒,这就是挡拆。
02:48
and they both move移动 and stuff东东 happens发生,
and ta-da当当, it's a pick-and-roll接机和辊.
49
156199
3317
02:51
(Laughter笑声)
50
159540
2215
(笑声)
02:53
So that is also an example
of a terrible可怕 algorithm算法.
51
161779
2508
这也是个糟糕的算法实例。
02:56
So, if the player播放机 who's谁是 the interferer干扰 --
he's called the screener筛选 --
52
164913
4204
如果那个干扰的球员——
或者叫掩护者——
03:01
goes close by, but he doesn't stop,
53
169278
2872
只是跑过来干扰一下而不停下,
这可能就不是挡拆了。
03:04
it's probably大概 not a pick-and-roll接机和辊.
54
172174
1765
03:06
Or if he does stop,
but he doesn't stop close enough足够,
55
174560
3945
就算他停下来,
但停的位置不够接近,
那也不算是挡拆。
03:10
it's probably大概 not a pick-and-roll接机和辊.
56
178529
1761
03:12
Or, if he does go close by
and he does stop
57
180642
3237
或者,就算他足够近,而且停下来,
03:15
but they do it under the basket,
it's probably大概 not a pick-and-roll接机和辊.
58
183903
3324
但他是在篮下完成的
那也不算挡拆。
03:19
Or I could be wrong错误,
they could all be pick-and-rolls拾辊.
59
187462
2524
或者我可能错了,
这些都是挡拆。
是否是挡拆要根据发生的时间、
球员间距、位置而定,
03:22
It really depends依靠 on the exact精确 timing定时,
the distances距离, the locations地点,
60
190010
4568
这些都很难去界定。
03:26
and that's what makes品牌 it hard.
61
194602
1495
03:28
So, luckily, with machine learning学习,
we can go beyond our own拥有 ability能力
62
196579
4944
幸运的是,有了机器学习技术,
我们就能超越自身的能力
来描述我们已知的事物。
03:33
to describe描述 the things we know.
63
201547
1743
03:35
So how does this work?
Well, it's by example.
64
203314
2280
这个技术要如何实现呢?
举个例子:
03:37
So we go to the machine and say,
"Good morning早上, machine.
65
205759
2830
我们对机器说,
“早上好,机器。
03:41
Here are some pick-and-rolls拾辊,
and here are some things that are not.
66
209077
3359
这儿有些挡拆例子,还有一些不是。
03:44
Please find a way to tell the difference区别."
67
212720
2252
你来找出不同点吧。”
03:47
And the key to all of this is to find
features特征 that enable启用 it to separate分离.
68
215076
3707
这其中的关键是电脑能找出
区别两者的特征来。
03:50
So if I was going
to teach it the difference区别
69
218807
2109
所以如果我要教会机器
辨别苹果和橘子,
03:52
between之间 an apple苹果 and orange橙子,
70
220940
1381
我可能会说:
“不妨用颜色和形状来区分吧?”
03:54
I might威力 say, "Why don't you
use color颜色 or shape形状?"
71
222345
2375
而目前要解决的问题就是,
要区分事物的特征是什么?
03:56
And the problem问题 that we're solving is,
what are those things?
72
224744
2943
电脑需要掌握的整个
03:59
What are the key features特征
73
227711
1247
移动圆点世界的关键特征是什么?
04:00
that let a computer电脑 navigate导航
the world世界 of moving移动 dots?
74
228982
3499
04:04
So figuring盘算 out all these relationships关系
with relative相对的 and absolute绝对 location位置,
75
232505
4823
搞清楚所有这些相对位置、
绝对位置、距离、时机、
04:09
distance距离, timing定时, velocities速度 --
76
237352
1909
速率之间的关系——
04:11
that's really the key to the science科学
of moving移动 dots, or as we like to call it,
77
239440
4928
就是移动圆点科学的真正关键所在,
换成专业术语,
04:16
spatiotemporal时空 pattern模式 recognition承认,
in academic学术的 vernacular白话.
78
244392
3344
我们喜欢称之为:时空模式识别。
04:19
Because the first thing is,
you have to make it sound声音 hard --
79
247925
2898
因为首先,你要让它听起来
很难懂,很专业——
因为事实的确如此。
04:22
because it is.
80
250847
1278
04:24
The key thing is, for NBANBA coaches教练,
it's not that they want to know
81
252410
3141
对于NBA教练们来说,判断是否是
挡拆并不是关键,
04:27
whether是否 a pick-and-roll接机和辊 happened发生 or not.
82
255575
1922
而这个挡拆是怎么发生的
才是他们关注的。
04:29
It's that they want to know
how it happened发生.
83
257521
2076
为何教练们如此关心这一点?
这儿我要解释一下。
04:31
And why is it so important重要 to them?
So here's这里的 a little insight眼光.
84
259621
2986
04:34
It turns out in modern现代 basketball篮球,
85
262631
1771
在现代的篮球比赛中,
挡拆几乎是最重要的战术。
04:36
this pick-and-roll接机和辊 is perhaps也许
the most important重要 play.
86
264426
2539
04:39
And knowing会心 how to run it,
and knowing会心 how to defend保卫 it,
87
267065
2620
了解如何使用以及怎样防守挡拆,
基本上是比赛输赢的关键。
04:41
is basically基本上 a key to winning胜利
and losing失去 most games游戏.
88
269709
2670
04:44
So it turns out that this dance舞蹈
has a great many许多 variations变化
89
272403
3801
因此挡拆的步伐多种多样,
能够识别这些不同的形式
是非常重要的,
04:48
and identifying识别 the variations变化
is really the thing that matters事项,
90
276228
3648
这就是为什么我们对
机器的智能性要求相当高。
04:51
and that's why we need this
to be really, really good.
91
279900
2529
举个例子。
04:55
So, here's这里的 an example.
92
283228
1176
这儿有两个进攻队员和
两个防守队员,
04:56
There are two offensive进攻
and two defensive防御性 players玩家,
93
284428
2379
他们准备开始实施挡拆。
04:58
getting得到 ready准备 to do
the pick-and-roll接机和辊 dance舞蹈.
94
286831
2152
那么持球人既可以选择利用挡拆,
也可以放弃挡拆,
05:01
So the guy with ball
can either take, or he can reject拒绝.
95
289007
2683
05:04
His teammate队友 can either roll or pop流行的.
96
292086
3001
他的队友可以拆向篮下,
或撤到一个无人盯防的空位。
05:07
The guy guarding守着 the ball
can either go over or under.
97
295111
2986
防守持球者的人可以上前绕过掩护,
或者从后方绕过掩护。
而他的队友则可以探出补防,或保持
近距离防守,亦或者向后消极防守。
05:10
His teammate队友 can either show显示
or play up to touch触摸, or play soft柔软的
98
298121
4565
05:14
and together一起 they can
either switch开关 or blitz闪电战
99
302710
2618
两个防守球员也可以换防,或者包夹。
05:17
and I didn't know
most of these things when I started开始
100
305352
2659
一开始的时候我也不是很懂这些,
05:20
and it would be lovely可爱 if everybody每个人 moved移动
according根据 to those arrows箭头.
101
308035
3920
如果每个人都能沿着箭头方向移动,
事情就好办多了。
这会让我们的工作简单很多,
但往往这些移动非常杂乱。
05:23
It would make our lives生活 a lot easier更轻松,
but it turns out movement运动 is very messy.
102
311979
3905
球场上会发生很多突然的变动,
要在查准率和查全率方面
05:28
People wiggle摆动 a lot and getting得到
these variations变化 identified确定
103
316047
5484
准确识别这些变化
05:33
with very high accuracy准确性,
104
321555
1303
是相当困难的,
05:34
both in precision精确 and recall召回, is tough强硬
105
322882
1868
05:36
because that's what it takes to get
a professional专业的 coach教练 to believe in you.
106
324774
3618
但只有这样,
才能让专业教练相信你的技术。
尽管在准确的时空特性识别上
困难重重,
05:40
And despite尽管 all the difficulties困难
with the right spatiotemporal时空 features特征
107
328416
3380
我们还是成功地做到了。
05:43
we have been able能够 to do that.
108
331820
1474
教练相信我们的机器
能够识别这些变化。
05:45
Coaches教练 trust相信 our ability能力 of our machine
to identify鉴定 these variations变化.
109
333318
3927
05:49
We're at the point where
almost几乎 every一切 single contender竞争者
110
337478
3533
目前,我们已经推出了
相关的识别软件,几乎每个
觊觎今年NBA总冠军的球队,
05:53
for an NBANBA championship锦标赛 this year
111
341035
1623
05:54
is using运用 our software软件, which哪一个 is built内置
on a machine that understands理解
112
342682
4408
都在使用我们的这款软件,
其功能就是通过机器
识别篮球领域的移动。
05:59
the moving移动 dots of basketball篮球.
113
347114
1634
06:01
So not only that, we have given特定 advice忠告
that has changed strategies策略
114
349872
5153
不仅如此,
我们还对如何改善战术提供建议,
并帮助球队赢得过重要的比赛。
06:07
that have helped帮助 teams球队 win赢得
very important重要 games游戏,
115
355049
3352
06:10
and it's very exciting扣人心弦 because you have
coaches教练 who've谁一直 been in the league联盟
116
358425
3732
能够让联盟中执教30年的
老教练愿意听取
机器提供的意见,这太让人激动了。
06:14
for 30 years年份 that are willing愿意 to take
advice忠告 from a machine.
117
362181
3067
06:17
And it's very exciting扣人心弦,
it's much more than the pick-and-roll接机和辊.
118
365874
2906
不仅仅局限于挡拆,
更让我们兴奋的是
我们让电脑从简单的事情着手,
06:20
Our computer电脑 started开始 out
with simple简单 things
119
368804
2076
逐渐学会了更复杂的事物,
06:22
and learned学到了 more and more complex复杂 things
120
370904
2064
如今它已经掌握了丰富的知识。
06:24
and now it knows知道 so many许多 things.
121
372992
1561
老实说,我不大明白它是怎么做到的,
06:26
Frankly坦率地说, I don't understand理解
much of what it does,
122
374577
2835
06:29
and while it's not that special特别
to be smarter聪明 than me,
123
377436
3715
不过就算比我聪明也没什么特别的,
06:33
we were wondering想知道,
can a machine know more than a coach教练?
124
381175
3644
但我们在想,
机器能否比教练懂得更多呢?
06:36
Can it know more than person could know?
125
384843
2055
它能比人类懂得更多吗?
06:38
And it turns out the answer回答 is yes.
126
386922
1745
事实上,答案是肯定的。
06:40
The coaches教练 want players玩家
to take good shots镜头.
127
388691
2557
教练想让球员投出好球。
06:43
So if I'm standing常设 near the basket
128
391272
1651
所以如果我站在篮筐旁边,
周围没人,这就是好的投篮时机。
06:44
and there's nobody没有人 near me,
it's a good shot射击.
129
392947
2166
如果我站得远,而且被对方包围住,
通常来讲这球投不进。
06:47
If I'm standing常设 far away surrounded包围
by defenders捍卫者, that's generally通常 a bad shot射击.
130
395137
3940
但我们无法定量衡量这个“好”有多好,
“差”有多差,
06:51
But we never knew知道 how good "good" was,
or how bad "bad" was quantitatively数量上.
131
399101
4876
06:56
Until直到 now.
132
404209
1150
但现在不同了。
06:57
So what we can do, again,
using运用 spatiotemporal时空 features特征,
133
405771
3058
同样,我们能做的就是利用时空特性
来分析每次投篮。
07:00
we looked看着 at every一切 shot射击.
134
408853
1374
07:02
We can see: Where is the shot射击?
What's the angle角度 to the basket?
135
410251
3005
我们可以看到:在哪里投篮?
投篮的角度是多少?
07:05
Where are the defenders捍卫者 standing常设?
What are their distances距离?
136
413280
2762
防守方的站位?
他们间的距离,
以及角度如何?
07:08
What are their angles?
137
416066
1331
防守球员不止一名的情况下,
我们能够通过观察球员的移动
07:09
For multiple defenders捍卫者, we can look
at how the player's玩家 moving移动
138
417421
2977
07:12
and predict预测 the shot射击 type类型.
139
420422
1433
来预测投篮类型。
07:13
We can look at all their velocities速度
and we can build建立 a model模型 that predicts预测
140
421879
4074
我们可以根据他们的速度
建立一个模型,
07:17
what is the likelihood可能性 that this shot射击
would go in under these circumstances情况?
141
425977
4052
预测在这些情况下,进球的可能性。
07:22
So why is this important重要?
142
430188
1500
为什么这一点很重要?
07:24
We can take something that was shooting射击,
143
432102
2803
因为我们可以通过分析投篮
这一单一行为得到
07:26
which哪一个 was one thing before,
and turn it into two things:
144
434929
2680
不同以往的两种信息:
投篮的质量,以及投手的质量。
07:29
the quality质量 of the shot射击
and the quality质量 of the shooter射手.
145
437633
2651
07:33
So here's这里的 a bubble泡沫 chart图表,
because what's TEDTED without a bubble泡沫 chart图表?
146
441680
3262
我们可以看一下这个气泡图,
没有气泡图,还算什么TED呢?
07:36
(Laughter笑声)
147
444966
1014
(笑声)
07:38
Those are NBANBA players玩家.
148
446004
1311
这些气泡都是NBA球员。
07:39
The size尺寸 is the size尺寸 of the player播放机
and the color颜色 is the position位置.
149
447339
3120
大小代表球员的体型,
颜色代表他们的位置。
x轴代表投篮的命中率。
07:42
On the x-axisx轴,
we have the shot射击 probability可能性.
150
450483
2132
靠左的球员偏向勉强投篮,
07:44
People on the left take difficult shots镜头,
151
452639
1953
07:46
on the right, they take easy简单 shots镜头.
152
454616
2229
靠右的球员会在有空当时才出手。
07:49
On the [y-axisy轴] is their shooting射击 ability能力.
153
457194
2057
Y轴代表的是投篮质量。
07:51
People who are good are at the top最佳,
bad at the bottom底部.
154
459275
2562
好投手在上面,较差的在下面。
举个例子,有一个球员的
07:53
So for example, if there was a player播放机
155
461861
1760
07:55
who generally通常 made制作
47 percent百分 of their shots镜头,
156
463621
2097
投篮命中率是47%,
07:57
that's all you knew知道 before.
157
465718
1389
以前你只能知道这么多。
07:59
But today今天, I can tell you that player播放机
takes shots镜头 that an average平均 NBANBA player播放机
158
467345
4850
但如今,我能告诉你NBA球员投篮的
08:04
would make 49 percent百分 of the time,
159
472219
1961
平均命中率是49%,
他还低了两个百分点。
08:06
and they are two percent百分 worse更差.
160
474204
1684
08:08
And the reason原因 that's important重要
is that there are lots of 47s out there.
161
476266
4515
因为我们要在众多47%的
球员中选择一个。
08:13
And so it's really important重要 to know
162
481714
2549
那么重点就在于要搞清楚
08:16
if the 47 that you're considering考虑
giving 100 million百万 dollars美元 to
163
484287
3956
让你支付了一大笔美金的人
到底是个经常勉强投篮的神投手,
08:20
is a good shooter射手 who takes bad shots镜头
164
488267
3055
08:23
or a bad shooter射手 who takes good shots镜头.
165
491346
2397
还是一个愿意空位出手的差投手。
08:27
Machine understanding理解 doesn't just change更改
how we look at players玩家,
166
495130
3333
机器分析不只改变了
我们对球员的看法,
08:30
it changes变化 how we look at the game游戏.
167
498487
1858
也改变了我们看待比赛的方式。
08:32
So there was this very exciting扣人心弦 game游戏
a couple一对 of years年份 ago, in the NBANBA finals决赛.
168
500369
3755
几年前有一场很激烈的NBA总决赛,
08:36
Miami迈阿密 was down by three,
there was 20 seconds left.
169
504148
3207
迈阿密落后三分,只剩20秒了。
他们将要失去总冠军了。
08:39
They were about to lose失去 the championship锦标赛.
170
507379
2025
一位叫勒布朗詹姆斯的年轻人
上去想投个三分追平。
08:41
A gentleman绅士 named命名 LeBron勒布朗 James詹姆士
came来了 up and he took a three to tie领带.
171
509428
3341
但他没投中。
08:44
He missed错过.
172
512793
1198
他的队友克里斯波什拿到篮板,
08:46
His teammate队友 Chris克里斯 Bosh胡说 got a rebound篮板球,
173
514015
1837
传给另一个队友雷阿伦。
08:47
passed通过 it to another另一个 teammate队友
named命名 Ray射线 Allen艾伦.
174
515876
2159
他投中了个三分,比赛进入加时。
08:50
He sank沉没 a three. It went into overtime随着时间的推移.
175
518059
1919
08:52
They won韩元 the game游戏.
They won韩元 the championship锦标赛.
176
520002
2096
最后他们赢了比赛,得了总冠军。
这是篮球比赛中
最激动人心的时刻之一。
08:54
It was one of the most exciting扣人心弦
games游戏 in basketball篮球.
177
522122
2444
08:57
And our ability能力 to know
the shot射击 probability可能性 for every一切 player播放机
178
525438
3429
而我们能知道每个球员在每一刻的
投篮命中率
09:00
at every一切 second第二,
179
528891
1188
以及抢到篮板的可能性,
09:02
and the likelihood可能性 of them getting得到
a rebound篮板球 at every一切 second第二
180
530103
2956
这种能力是前所未有的。
09:05
can illuminate照亮 this moment时刻 in a way
that we never could before.
181
533083
3443
09:09
Now unfortunately不幸,
I can't show显示 you that video视频.
182
537618
2668
有点可惜,
我无法给大家展示这个精彩片段。
09:12
But for you, we recreated重建 that moment时刻
183
540310
4493
但为了在座的各位,我们在三周前的
篮球周赛上重塑了那经典一刻。
09:16
at our weekly每周 basketball篮球 game游戏
about 3 weeks ago.
184
544827
2336
09:19
(Laughter笑声)
185
547279
2167
(笑声)
09:21
And we recreated重建 the tracking追踪
that led to the insights见解.
186
549573
3410
我们也重新加入了
电脑追踪数据的演示。
09:25
So, here is us.
This is Chinatown唐人街 in Los洛杉矶 Angeles洛杉矶,
187
553199
4255
这就是我和同事们,
在洛杉矶的唐人街,
我们每周都会去打球的公园,
09:29
a park公园 we play at every一切 week,
188
557478
1564
09:31
and that's us recreating再创造
the Ray射线 Allen艾伦 moment时刻
189
559066
2231
我们在重塑雷阿伦时刻,
09:33
and all the tracking追踪
that's associated相关 with it.
190
561321
2229
所有的轨迹都与之相关。
09:36
So, here's这里的 the shot射击.
191
564772
1517
就是这个投篮。
09:38
I'm going to show显示 you that moment时刻
192
566313
2516
你们会看到这一经典时刻,
09:40
and all the insights见解 of that moment时刻.
193
568853
2587
以及这一刻背后都发生了什么。
09:43
The only difference区别 is, instead代替
of the professional专业的 players玩家, it's us,
194
571464
3730
唯一的不同就是
我们取代了专业球员,
09:47
and instead代替 of a professional专业的
announcer播音员, it's me.
195
575218
2618
而我取代了专业讲解员。
大家请见谅。
09:49
So, bear with me.
196
577860
1477
09:53
Miami迈阿密.
197
581153
1150
迈阿密。
09:54
Down three.
198
582671
1150
落后三分。
09:56
Twenty二十 seconds left.
199
584107
1150
还有20秒。
09:59
Jeff杰夫 brings带来 up the ball.
200
587385
1198
杰夫带球。
10:02
Josh玩笑 catches渔获, puts看跌期权 up a three!
201
590656
1535
约什接球,三分出手!
10:04
[Calculating计算 shot射击 probability可能性]
202
592631
1849
[计算命中率]
10:07
[Shot射击 quality质量]
203
595278
1150
[投篮质量]
10:09
[Rebound篮板球 probability可能性]
204
597048
1785
[篮板球概率]
10:12
Won't惯于 go!
205
600373
1173
进不了!
10:13
[Rebound篮板球 probability可能性]
206
601570
1446
[篮板球概率]
10:15
Rebound篮板球, Noel诺埃尔.
207
603777
1256
诺尔的篮板。
传回给达丽亚。
10:17
Back to Daria达里娅.
208
605057
1150
10:18
[Shot射击 quality质量]
209
606509
3365
[投篮质量]
10:22
Her three-pointer三分球 -- bang!
210
610676
1620
球进了——三分!
10:24
Tie领带 game游戏 with five seconds left.
211
612320
2197
打平了,还剩5秒。
10:26
The crowd人群 goes wild野生.
212
614880
1618
观众们沸腾了!
10:28
(Laughter笑声)
213
616522
1659
(笑声)
10:30
That's roughly大致 how it happened发生.
214
618205
1547
真实情况大概就是这样。
10:31
(Applause掌声)
215
619776
1151
(掌声)
差不多。
10:32
Roughly大致.
216
620951
1175
(掌声)
10:34
(Applause掌声)
217
622150
1531
10:36
That moment时刻 had about a nine percent百分
chance机会 of happening事件 in the NBANBA
218
624121
5484
在NBA有9%的概率
会发生这样的时刻,
我们知道的还有很多。
10:41
and we know that
and a great many许多 other things.
219
629629
2261
10:43
I'm not going to tell you how many许多 times
it took us to make that happen发生.
220
631914
3491
我是不会告诉你们
我们尝试了多少次才成功的。
10:47
(Laughter笑声)
221
635429
1747
(笑声)
10:49
Okay, I will! It was four.
222
637200
1872
好吧,我还是说吧,四次。
(笑声)
10:51
(Laughter笑声)
223
639096
1001
达丽亚,三分球还得努力啊。
10:52
Way to go, Daria达里娅.
224
640121
1165
10:53
But the important重要 thing about that video视频
225
641647
4263
但那段视频以及我们对
每场NBA比赛的细微观察
并不是重点。
10:57
and the insights见解 we have for every一切 second第二
of every一切 NBANBA game游戏 -- it's not that.
226
645934
4568
11:02
It's the fact事实 you don't have to be
a professional专业的 team球队 to track跟踪 movement运动.
227
650639
3929
事实上,你无需组建
一个专业团队才能追踪移动。
11:07
You do not have to be a professional专业的
player播放机 to get insights见解 about movement运动.
228
655083
3657
你也无需成为专业运动员
去理解那些移动。
而且,这不仅限于运动,
因为我们无时不刻不在移动。
11:10
In fact事实, it doesn't even have to be about
sports体育 because we're moving移动 everywhere到处.
229
658764
3858
11:15
We're moving移动 in our homes家园,
230
663654
2369
我们在家里,
11:21
in our offices办事处,
231
669428
1205
在办公室里来回走动,
11:24
as we shop and we travel旅行
232
672238
2690
我们也在世界各地
11:29
throughout始终 our cities城市
233
677318
1253
各个城市
11:32
and around our world世界.
234
680065
1618
购物旅行。
11:35
What will we know? What will we learn学习?
235
683270
2295
我们能发现什么?
我们能学到什么?
11:37
Perhaps也许, instead代替 of identifying识别
pick-and-rolls拾辊,
236
685589
2305
或许,除了识别挡拆,
11:39
a machine can identify鉴定
the moment时刻 and let me know
237
687918
3010
机器还能识别某些时刻,
让我知道我女儿何时
迈出她的第一步。
11:42
when my daughter女儿 takes her first steps脚步.
238
690952
2059
11:45
Which哪一个 could literally按照字面 be happening事件
any second第二 now.
239
693035
2536
她现在随时都有可能学会走路。
11:48
Perhaps也许 we can learn学习 to better use
our buildings房屋, better plan计划 our cities城市.
240
696140
3697
或许我们能合理地利用我们的建筑物,
更加好地规划我们的城市。
我相信随着移动圆点这一科学的发展,
11:52
I believe that with the development发展
of the science科学 of moving移动 dots,
241
700362
4173
11:56
we will move移动 better, we will move移动 smarter聪明,
we will move移动 forward前锋.
242
704559
3643
我们能更好地移动,
更智能地移动,一路向前。
12:00
Thank you very much.
243
708607
1189
谢谢大家。
12:01
(Applause掌声)
244
709820
5045
(掌声)
Translated by Lee Li
Reviewed by Jing Peng

▲Back to top

ABOUT THE SPEAKER
Rajiv Maheswaran - Researcher
Using advanced data analysis tools, Rajiv Maheswaran and Second Spectrum help make basketball teams smarter.

Why you should listen

Sports fans can get obsessed with stats about player performance and game-day physics. But basketball, a fluid and fast-moving game, has been tough to understand through numbers. Rajiv Maheswaran is working to change that, by offering pro basketball teams insight into game data to make better decisions. Maheswaran is the CEO and co-founder of Second Spectrum, a startup transforming sports through technology. He is also a Research Assistant Professor at the University of Southern California's Computer Science Department and a Project Leader at the Information Sciences Institute at the USC Viterbi School of Engineering, where he co-directs the Computational Behavior Group.

His research spans various aspects of multi-agent systems and distributed artificial intelligence using decision-theoretic and game-theoretic frameworks and solutions. His current interests focus on data analytics, visualization and real-time interaction to understand behavior in spatiotemporal domains. Like, say, the spatiotemporal domain around a basketball hoop.

More profile about the speaker
Rajiv Maheswaran | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee