ABOUT THE SPEAKER
Ajit Narayanan - Visual grammar engine inventor
Ajit Narayanan is the inventor of Avaz, an affordable, tablet-based communication device for people who are speech-impaired.

Why you should listen

Ajit Narayanan is the founder and CEO of Invention Labs, and the inventor of Avaz AAC, the first assistive device aimed at an Indian market that helps people with speech disabilities -- such as cerebral palsy, autism, intellectual disability, aphasia and learning disabilities -- to communicate. Avaz is also available as an iPad app, aimed at children with autism. In 2010, Avaz won the National Award for Empowerment of People with Disabilities from the president of India, and in 2011, Narayanan was listed in MIT Technology Review 35 under 35.
 
Narayanan is a prolific inventor with more than 20 patent applications. He is an electrical engineer with degrees from IIT Madras. His research interests are embedded systems, signal processing and understanding how the brain perceives language and communication.

More profile about the speaker
Ajit Narayanan | Speaker | TED.com
TED2013

Ajit Narayanan: A word game to communicate in any language

阿吉特:纳拉亚南: 一个能用任何语言交流的文字游戏

Filmed:
1,391,245 views

在帮助有语言障碍的自闭症儿童的工作中,阿吉特-纳拉亚南勾画出一种用图片来思考语言的方法,将文字和概念用“地图”联系在一起。这个想法现在成就了一个应用,它帮助有语言缺陷的人们交流,而在这背后的大构想,一个叫做“Free Speech”的语言概念,拥有激动人心的潜力。
- Visual grammar engine inventor
Ajit Narayanan is the inventor of Avaz, an affordable, tablet-based communication device for people who are speech-impaired. Full bio

Double-click the English transcript below to play the video.

00:12
I work with children孩子 with autism自闭症.
0
721
2670
我从事关于自闭症儿童的工作。
00:15
Specifically特别, I make technologies技术
1
3391
1914
具体而言,我发明技术
00:17
to help them communicate通信.
2
5305
2171
来帮助他们交流。
00:19
Now, many许多 of the problems问题 that children孩子
3
7476
1539
许多自闭症儿童所面临的问题,
00:21
with autism自闭症 face面对, they have a common共同 source资源,
4
9015
3763
它们有一个共同的根源,
00:24
and that source资源 is that they find it difficult
5
12778
2094
而这个根源就是他们觉得
00:26
to understand理解 abstraction抽象化, symbolism象征.
6
14872
5260
很难理解抽象概念和符号。
00:32
And because of this, they have
a lot of difficulty困难 with language语言.
7
20132
4652
因此,他们在语言上存在很大的困难。
00:36
Let me tell you a little bit about why this is.
8
24784
3015
让我来告诉你们一些会这样的原因
00:39
You see that this is a picture图片 of a bowl of soup.
9
27799
3934
你看这是一碗汤的图片。
00:43
All of us can see it. All of us understand理解 this.
10
31733
2485
我们都可以看见它。我们都能理解这个。
00:46
These are two other pictures图片 of soup,
11
34218
2312
这里是另外两张汤的图片。
00:48
but you can see that these are more abstract抽象
12
36530
2067
但是你可以看到,这些更加抽象。
00:50
These are not quite相当 as concrete具体.
13
38597
1856
这些并不那么具体。
00:52
And when you get to language语言,
14
40453
2174
而当你使用语言的时候,
00:54
you see that it becomes a word
15
42627
1868
你看它变成了一个单词
00:56
whose谁的 look, the way it looks容貌 and the way it sounds声音,
16
44495
3261
它看起来,听起来
00:59
has absolutely绝对 nothing to do
with what it started开始 with,
17
47756
2912
都跟刚开始的或代表的一碗汤,
01:02
or what it represents代表, which哪一个 is the bowl of soup.
18
50668
2830
没有半点关系。
01:05
So it's essentially实质上 a completely全然 abstract抽象,
19
53498
2900
所以它本质上是完全抽象的,
01:08
a completely全然 arbitrary随意 representation表示 of something
20
56398
2576
一个对现实生活中事物
01:10
which哪一个 is in the real真实 world世界,
21
58974
1163
很随意的陈述,
01:12
and this is something that children孩子 with autism自闭症
22
60137
1791
这才是自闭症儿童
01:13
have an incredible难以置信 amount of difficulty困难 with.
23
61928
3164
有极大困难的地方。
01:17
Now that's why most of the people
that work with children孩子 with autism自闭症 --
24
65092
2751
这就是为什么如今大多数从事自闭症儿童工作的人
01:19
speech言语 therapists治疗师, educators教育工作者 --
25
67843
1878
——语言治疗师们,教育者们
01:21
what they do is, they try to help children孩子 with autism自闭症
26
69721
2633
——他们所做的是帮助自闭症儿童交流,
01:24
communicate通信 not with words, but with pictures图片.
27
72354
3229
不是通过文字,而是通过图片。
01:27
So if a child儿童 with autism自闭症 wanted to say,
28
75583
1930
于是如果一个自闭症儿童想说,
01:29
"I want soup," that child儿童 would pick
29
77513
2458
"I want soup"(我要汤),那个孩子将会拿起
01:31
three different不同 pictures图片, "I," "want," and "soup,"
30
79971
2260
三张不同的图片,"I"(我),"want"(要)和"soup"(汤)
01:34
and they would put these together一起,
31
82231
1609
他们会将这些拼凑在一起,
01:35
and then the therapist治疗师 or the parent would
32
83840
1867
然后治疗师或者家长就能理解
01:37
understand理解 that this is what the kid孩子 wants to say.
33
85707
1887
这就是孩子想要说的。
01:39
And this has been incredibly令人难以置信 effective有效;
34
87594
1778
而且这已经卓有成效了;
01:41
for the last 30, 40 years年份
35
89372
2141
在过去的30,40年间
01:43
people have been doing this.
36
91513
1613
人们一直在这样做。
01:45
In fact事实, a few少数 years年份 back,
37
93126
1349
事实上,几年前,
01:46
I developed发达 an app应用 for the iPadiPad的
38
94475
2675
我在iPad上开发了一个app
01:49
which哪一个 does exactly究竟 this. It's called AvazAvaz,
39
97150
2255
就是这样的运作的。它叫做Avaz,
01:51
and the way it works作品 is that kids孩子 select选择
40
99405
2279
它是这样运行的:孩子们选择
01:53
different不同 pictures图片.
41
101684
1321
不同的图片。
01:55
These pictures图片 are sequenced测序
together一起 to form形成 sentences句子,
42
103005
2570
这些图片排列成句子,
01:57
and these sentences句子 are spoken out.
43
105575
1719
然后这些句子被读出来。
01:59
So AvazAvaz is essentially实质上 converting转换 pictures图片,
44
107294
3025
所以 Avaz 基本上在转译图片,
02:02
it's a translator翻译者, it converts转换 pictures图片 into speech言语.
45
110319
3960
他是个翻译器,它将图片翻译成语音。
02:06
Now, this was very effective有效.
46
114279
1718
现在,这已经很有效了。
02:07
There are thousands数千 of children孩子 using运用 this,
47
115997
1384
有数千个孩子正在使用这个,
02:09
you know, all over the world世界,
48
117381
1430
你知道的,遍布全世界,
02:10
and I started开始 thinking思维 about
49
118811
2175
于是我开始思考
02:12
what it does and what it doesn't do.
50
120986
2654
它可以做的和不能做的地方。
02:15
And I realized实现 something interesting有趣:
51
123640
1684
我发现了一些有趣的地方:
02:17
AvazAvaz helps帮助 children孩子 with autism自闭症 learn学习 words.
52
125324
4203
Avaz 可以帮助自闭症儿童学习单词。
02:21
What it doesn't help them do is to learn学习
53
129527
2405
它没做到的是帮助他们学习
02:23
word patterns模式.
54
131932
2748
文字模式。
02:26
Let me explain说明 this in a little more detail详情.
55
134680
2472
让我更具体地解释下这个。
02:29
Take this sentence句子: "I want soup tonight今晚."
56
137152
3057
比如这句话:"I want soup tonight"(我要汤今晚)。
02:32
Now it's not just the words
here that convey传达 the meaning含义.
57
140209
4080
它不仅仅是文字传达了意思。
02:36
It's also the way in which哪一个 these words are arranged安排,
58
144289
3140
这些文字的排列方式也起到了作用,
02:39
the way these words are modified改性 and arranged安排.
59
147429
2515
文字被修饰和排列的方式。
02:41
And that's why a sentence句子 like "I want soup tonight今晚"
60
149959
2306
那就是为什么一句话比如"I want soup tonight"(我要汤今晚)
02:44
is different不同 from a sentence句子 like
61
152265
1984
不同于这句
02:46
"Soup want I tonight今晚," which哪一个
is completely全然 meaningless无意义的.
62
154249
3312
"Soup want I tonight"(汤要我今晚),后者是没意义 的。
02:49
So there is another另一个 hidden abstraction抽象化 here
63
157561
2619
所以这里有另一个隐藏的抽象概念
02:52
which哪一个 children孩子 with autism自闭症 find
a lot of difficulty困难 coping应对 with,
64
160180
3557
自闭症儿童很难应对,
02:55
and that's the fact事实 that you can modify修改 words
65
163737
2840
那就是,你可以修辞文字
02:58
and you can arrange安排 them to have
66
166577
2101
你可以对他们进行排序
03:00
different不同 meanings含义, to convey传达 different不同 ideas思路.
67
168678
2895
来得到不同的含义,来表达不同的思想。
03:03
Now, this is what we call grammar语法.
68
171573
3459
这就是我们所说的语法。
03:07
And grammar语法 is incredibly令人难以置信 powerful强大,
69
175032
2036
而且语法极其有用的,
03:09
because grammar语法 is this one component零件 of language语言
70
177068
3157
因为语法是语言的一个这样的组成部分。
03:12
which哪一个 takes this finite有限 vocabulary词汇 that all of us have
71
180225
3489
它用我们所拥有的有限的词汇
03:15
and allows允许 us to convey传达 an
infinite无穷 amount of information信息,
72
183714
4531
使我们表达无限的信息,
03:20
an infinite无穷 amount of ideas思路.
73
188245
2134
无限的思想。
03:22
It's the way in which哪一个 you can put things together一起
74
190379
2002
这是一种你可以将事物连在一起
03:24
in order订购 to convey传达 anything you want to.
75
192381
2168
来表达任何你所要表达的。
03:26
And so after I developed发达 AvazAvaz,
76
194549
2127
于是在我开发了 Avaz 之后,
03:28
I worried担心 for a very long time
77
196676
1568
我担心过很长一段时间
03:30
about how I could give grammar语法
to children孩子 with autism自闭症.
78
198244
3910
关于我该怎样将语法传递给患了自闭症的孩子们。
03:34
The solution came来了 to me from
a very interesting有趣 perspective透视.
79
202154
2275
解决方案来自于一个很有意思的观点。
03:36
I happened发生 to chance机会 upon a child儿童 with autism自闭症
80
204429
3449
我碰巧遇到一个自闭症孩子
03:39
conversing交谈 with her mom妈妈,
81
207878
2109
正在和他的妈妈交谈,
03:41
and this is what happened发生.
82
209987
2094
然后发生了这样的事。
03:44
Completely全然 out of the blue蓝色, very spontaneously自发,
83
212081
2186
完全出乎意料的,很自然地,
03:46
the child儿童 got up and said, "Eat."
84
214267
2463
那个孩子站起来并说道,"Eat"(吃)
03:48
Now what was interesting有趣 was
85
216730
1770
非常有意思的是
03:50
the way in which哪一个 the mom妈妈 was trying to tease out
86
218500
4244
这位妈妈试图梳理出
03:54
the meaning含义 of what the child儿童 wanted to say
87
222744
2213
孩子所以表达的意思
03:56
by talking to her in questions问题.
88
224957
2260
通过提问来与她交谈。
03:59
So she asked, "Eat what? Do
you want to eat ice cream奶油?
89
227217
2593
于是她问道,“吃什么?你想吃冰淇淋吗?
04:01
You want to eat? Somebody else其他 wants to eat?
90
229810
2112
你想吃?还是别人想吃?
04:03
You want to eat cream奶油 now? You
want to eat ice cream奶油 in the evening晚间?"
91
231922
3313
你现在想吃奶油?还是你晚上想吃冰淇淋?“
04:07
And then it struck来袭 me that
92
235235
1514
这件事让我突然想到
04:08
what the mother母亲 had doneDONE was something incredible难以置信.
93
236749
2028
这位妈妈做的事情是不可思议的。
04:10
She had been able能够 to get that child儿童 to communicate通信
94
238777
1994
她已经能够让孩子和她交流想法
04:12
an idea理念 to her without grammar语法.
95
240771
4138
却不需要语法。
04:16
And it struck来袭 me that maybe this is what
96
244909
2696
我突然想到也许这就是
04:19
I was looking for.
97
247605
1385
我一直在寻找的。
04:20
Instead代替 of arranging整理 words in an order订购, in sequence序列,
98
248990
4142
与其将文字 按顺序,按词组,按句子排列,
04:25
as a sentence句子, you arrange安排 them
99
253132
2172
不如将他们安放在
04:27
in this map地图, where they're all linked关联 together一起
100
255304
3811
这个地图中,它们都是联系在一起
04:31
not by placing配售 them one after the other
101
259115
2143
不是通过将他们一个接着一个地排放
04:33
but in questions问题, in question-answer问答 pairs.
102
261258
3284
而是按问题,按 [问题-答案] 成对排列。
04:36
And so if you do this, then what you're conveying输送
103
264542
2358
如果你这样做,那么你所表达的
04:38
is not a sentence句子 in English英语,
104
266900
1986
就不是英文中的一个句子,
04:40
but what you're conveying输送 is really a meaning含义,
105
268886
2966
你所表达的是真实的"意义",
04:43
the meaning含义 of a sentence句子 in English英语.
106
271852
1511
英文句子的"意义"。
04:45
Now, meaning含义 is really the underbelly软肋,
in some sense, of language语言.
107
273363
2932
"意义"在某种程度上是语言的软肋。
04:48
It's what comes after thought but before language语言.
108
276295
3821
它是一种在想法之后语言之前的东西。
04:52
And the idea理念 was that this particular特定 representation表示
109
280116
2503
所以这个想法是,这种特别的表达方式
04:54
might威力 convey传达 meaning含义 in its raw生的 form形成.
110
282619
3261
可能能够用原始形式传递"意义"。
04:57
So I was very excited兴奋 by this, you know,
111
285880
1771
我对此非常兴奋,你知道的,
04:59
hopping跃迁 around all over the place地点,
112
287651
1493
手舞足蹈地,
05:01
trying to figure数字 out if I can convert兑换
113
289144
1771
试图确定我是否能够将
05:02
all possible可能 sentences句子 that I hear into this.
114
290915
2524
所有我听到的句子转换成这样。
05:05
And I found发现 that this is not enough足够.
115
293439
1773
然后我发现这样是不够的。
05:07
Why is this not enough足够?
116
295212
1385
为什么不够呢?
05:08
This is not enough足够 because if you wanted to convey传达
117
296597
1711
不够是因为如果你想要表达
05:10
something like negation否定,
118
298308
2250
某些东西,比如否认,
05:12
you want to say, "I don't want soup,"
119
300558
1736
你会想说,"I don't want soup"(我不想要汤),
05:14
then you can't do that by asking a question.
120
302294
2220
然而你不能通过提问来做到这个,
05:16
You do that by changing改变 the word "want."
121
304514
2285
你通过改变“want”(要)这个词来做到的。
05:18
Again, if you wanted to say,
122
306799
1637
再者,如果你想要说,
05:20
"I wanted soup yesterday昨天,"
123
308436
1980
"I wanted soup yesterday"(我昨天想要汤)
05:22
you do that by converting转换
the word "want" into "wanted."
124
310416
2737
你是通过将“want”转换成“wanted”做到的
05:25
It's a past过去 tense紧张.
125
313153
1666
它是个过去时态。
05:26
So this is a flourish繁荣 which哪一个 I added添加
126
314819
2103
所以这是一个重要的进度
05:28
to make the system系统 complete完成.
127
316922
1576
使我完善这系统。
05:30
This is a map地图 of words joined加盟 together一起
128
318498
1977
这是单词彼此联系在一起的一张图
05:32
as questions问题 and answers答案,
129
320475
1656
通过问题和答案的方式,
05:34
and with these filters过滤器 applied应用的 on top最佳 of them
130
322131
2264
通过顶上这些过滤器的应用
05:36
in order订购 to modify修改 them to represent代表
131
324395
1817
来修改他们来表达
05:38
certain某些 nuances细微之处.
132
326212
1709
某种细微差别。
05:39
Let me show显示 you this with a different不同 example.
133
327921
1951
让我通过一个不同的例子来展示给大家。
05:41
Let's take this sentence句子:
134
329872
1254
就拿这个句子来说吧:
05:43
"I told the carpenter木匠 I could not pay工资 him."
135
331126
1980
"I told the carpenter I could not pay him."(我跟木匠说过了我不能付他钱)
05:45
It's a fairly相当 complicated复杂 sentence句子.
136
333106
1792
这是一个相当复杂的句子。
05:46
The way that this particular特定 system系统 works作品,
137
334898
1893
这个特别的系统工作的方式就是,
05:48
you can start开始 with any part部分 of this sentence句子.
138
336791
2578
你可以以句子的任意部分开始。
05:51
I'm going to start开始 with the word "tell."
139
339369
1698
我将从"tell"(说)这个词开始。
05:53
So this is the word "tell."
140
341067
1462
这就是“说‘(tell)这个单词。
05:54
Now this happened发生 in the past过去,
141
342529
1600
这发生在过去,
05:56
so I'm going to make that "told."
142
344129
2223
所以我将把它变成"说过"(told)。
05:58
Now, what I'm going to do is,
143
346352
1708
现在,我将这样做,
06:00
I'm going to ask questions问题.
144
348060
1756
我将提问,
06:01
So, who told? I told.
145
349816
2364
那么,谁说(told)了?我说(told)了。
06:04
I told whom? I told the carpenter木匠.
146
352180
1927
我跟谁说(told)了?我跟木匠说(told)了。
06:06
Now we start开始 with a different不同 part部分 of the sentence句子.
147
354107
1751
现在让我们从句子的另一个部分开始。
06:07
We start开始 with the word "pay工资,"
148
355858
1867
我们从“付钱”(pay)这个词开始,
06:09
and we add the ability能力 filter过滤 to it to make it "can pay工资."
149
357725
4577
我们加入了能力过滤器,将它变成了“can pay”(能够付钱)。
06:14
Then we make it "can't pay工资,"
150
362302
2101
然后我们将它变成了“can't pay”(不能付钱)
06:16
and we can make it "couldn't不能 pay工资"
151
364403
1599
而且我们将它变成了“couldn't pay”((过去)不能付钱)
06:18
by making制造 it the past过去 tense紧张.
152
366002
1663
通过将它变成过去时态。
06:19
So who couldn't不能 pay工资? I couldn't不能 pay工资.
153
367665
1923
那么谁"couldn't pay"((过去)不能付钱)?我"couldn't pay"((过去)不能付钱)。
06:21
Couldn't不能 pay工资 whom? I couldn't不能 pay工资 the carpenter木匠.
154
369588
2676
不能付钱给谁?我不能付钱付给木匠。
06:24
And then you join加入 these two together一起
155
372264
1731
然后你讲这两个关联在一起
06:25
by asking this question:
156
373995
1350
通过问这样的一个问题:
06:27
What did I tell the carpenter木匠?
157
375345
1737
我跟木匠说什么了?
06:29
I told the carpenter木匠 I could not pay工资 him.
158
377082
4049
我跟木匠说我不能付钱给他。
06:33
Now think about this. This is
159
381131
1937
现在想想这个问题。这是
06:35
—(Applause掌声)—
160
383068
3542
—(掌声)—
06:38
this is a representation表示 of this sentence句子
161
386610
3672
这是对这个句子的一个描述
06:42
without language语言.
162
390282
2435
不需要语言。
06:44
And there are two or three
interesting有趣 things about this.
163
392717
2192
这里有两三个很有意思的现象。
06:46
First of all, I could have started开始 anywhere随地.
164
394909
3131
首先,我可以从任何地方开始。
06:50
I didn't have to start开始 with the word "tell."
165
398040
2243
我没有必要从"tell"(说)这个单词开始。
06:52
I could have started开始 anywhere随地 in the sentence句子,
166
400283
1416
我本可以从句子的任何一个地方开始,
06:53
and I could have made制作 this entire整个 thing.
167
401699
1507
也能弄出这整个东西。
06:55
The second第二 thing is, if I wasn't an English英语 speaker扬声器,
168
403206
2776
第二点是,如果我不是一个说英语的人,
06:57
if I was speaking请讲 in some other language语言,
169
405982
2175
如果我说某种其他的语言,
07:00
this map地图 would actually其实 hold保持 true真正 in any language语言.
170
408157
3156
这个地图能够在任何语言中适用。
07:03
So long as the questions问题 are standardized标准化,
171
411313
1990
只要问题能够被标准化,
07:05
the map地图 is actually其实 independent独立 of language语言.
172
413303
4287
这个地图事实上是独立于语言的。
07:09
So I call this FreeSpeechFreeSpeech,
173
417590
2115
我管这个叫 Free Speech(自由说话),
07:11
and I was playing播放 with this for many许多, many许多 months个月.
174
419705
2935
我玩这个玩了好多好多个月。
07:14
I was trying out so many许多
different不同 combinations组合 of this.
175
422640
2726
我试过关于这个的好多个不同的组合。
07:17
And then I noticed注意到 something very
interesting有趣 about FreeSpeechFreeSpeech.
176
425366
2289
然后我注意到 Free Speech 有一些非常有趣的现象。
07:19
I was trying to convert兑换 language语言,
177
427655
3243
我尝试过将语言进行转换,
07:22
convert兑换 sentences句子 in English英语
into sentences句子 in FreeSpeechFreeSpeech,
178
430898
2384
将英文句子转换成 Free Speech的句子,
07:25
and vice versa反之亦然, and back and forth向前.
179
433282
1752
然后反向转换,然后反复转换。
07:27
And I realized实现 that this particular特定 configuration组态,
180
435034
2255
我意识到这种特别的结构,
07:29
this particular特定 way of representing代表 language语言,
181
437289
2026
这种特别的语言表示方式,
07:31
it allowed允许 me to actually其实 create创建 very concise简洁 rules规则
182
439315
4395
它竟然能让我创造非常简明的规则,
07:35
that go between之间 FreeSpeechFreeSpeech on one side
183
443710
2734
这种规则能够在 Free Speech 和
07:38
and English英语 on the other.
184
446444
1488
英语之间转换。
07:39
So I could actually其实 write this set of rules规则
185
447932
2180
因此我事实上能够写下这些
07:42
that translates转换 from this particular特定
representation表示 into English英语.
186
450112
3395
将特别表示法转换成英语的规则。
07:45
And so I developed发达 this thing.
187
453507
1831
于是我发明了这个东西。
07:47
I developed发达 this thing called
the FreeSpeechFreeSpeech Engine发动机
188
455338
2232
我发明了这个,叫做 Free Speech 引擎
07:49
which哪一个 takes any FreeSpeechFreeSpeech sentence句子 as the input输入
189
457570
2561
它将任何 Free Speech 句子作为输入
07:52
and gives out perfectly完美 grammatical语法的 English英语 text文本.
190
460131
3930
然后输出语法完美的英语文本。
07:56
And by putting these two pieces together一起,
191
464061
1605
通过将这两部分结合在一起,
07:57
the representation表示 and the engine发动机,
192
465666
1881
表示部分和引擎部分,
07:59
I was able能够 to create创建 an app应用, a
technology技术 for children孩子 with autism自闭症,
193
467547
3796
我得以创造一个 app, 一种专为自闭症儿童而生的技术,
08:03
that not only gives them words
194
471343
2499
它不仅教他们文字
08:05
but also gives them grammar语法.
195
473842
3941
它也教他们语法。
08:09
So I tried试着 this out with kids孩子 with autism自闭症,
196
477783
2360
我给患了自闭症的孩子试过这个,
08:12
and I found发现 that there was an
incredible难以置信 amount of identification鉴定.
197
480143
5013
我获得了莫大的肯定。
08:17
They were able能够 to create创建 sentences句子 in FreeSpeechFreeSpeech
198
485156
2720
他们能够使用 Free Speech 来创造那些
08:19
which哪一个 were much more complicated复杂
but much more effective有效
199
487876
2558
比起类似英文语句
08:22
than equivalent当量 sentences句子 in English英语,
200
490434
2899
更复杂却有效多了的语句,
08:25
and I started开始 thinking思维 about
201
493333
1682
然后我开始思考
08:27
why that might威力 be the case案件.
202
495015
1969
为什么是这样的。
08:28
And I had an idea理念, and I want to
talk to you about this idea理念 next下一个.
203
496984
4287
我有一个想法,我后面想要和大家说说这个想法。
08:33
In about 1997, about 15 years年份 back,
204
501271
3142
大概在1997年,大约15年前,
08:36
there were a group of scientists科学家们 that were trying
205
504413
2011
有一群科学家他们试图
08:38
to understand理解 how the brain processes流程 language语言,
206
506424
2389
弄清楚大脑是如何处理语言的,
08:40
and they found发现 something very interesting有趣.
207
508813
1779
然后他们发现了一些有很意思的现象。
08:42
They found发现 that when you learn学习 a language语言
208
510592
1872
他们发现当你还说小孩时学习一门语言
08:44
as a child儿童, as a two-year-old二十岁,
209
512464
2912
比如2岁大,
08:47
you learn学习 it with a certain某些 part部分 of your brain,
210
515376
2366
你使用大脑的特定的部分来学习它,
08:49
and when you learn学习 a language语言 as an adult成人 --
211
517742
1600
当你作为一名成年人来学习它的时候——
08:51
for example, if I wanted to
learn学习 Japanese日本 right now —
212
519342
3911
比如,我现在想学习日语——
08:55
a completely全然 different不同 part部分 of my brain is used.
213
523253
2707
我的大脑的一个完全不同的部分被使用了。
08:57
Now I don't know why that's the case案件,
214
525960
1831
现在我不知道为什么是这样的,
08:59
but my guess猜测 is that that's because
215
527791
1991
但是我猜测那是因为
09:01
when you learn学习 a language语言 as an adult成人,
216
529782
2437
当你作为成年人学习语言的时候,
09:04
you almost几乎 invariably不变地 learn学习 it
217
532219
1616
你几乎总是在
09:05
through通过 your native本地人 language语言, or
through通过 your first language语言.
218
533835
4266
通过你的母语或者通过你的第一语言在学习它。
09:10
So what's interesting有趣 about FreeSpeechFreeSpeech
219
538101
3252
所以对于 Free Speech 而言有意思的是
09:13
is that when you create创建 a sentence句子
220
541353
1802
当你创造一个句子
09:15
or when you create创建 language语言,
221
543155
1695
或者当你创造语言时,
09:16
a child儿童 with autism自闭症 creates创建
language语言 with FreeSpeechFreeSpeech,
222
544850
3070
患了自闭症的孩子通过 Free Speech 创造语言,
09:19
they're not using运用 this support支持 language语言,
223
547920
1833
他们没有使用这种语言中介,
09:21
they're not using运用 this bridge language语言.
224
549753
2211
他们没有使用桥梁语言。
09:23
They're directly constructing建设 the sentence句子.
225
551964
2657
他们直接在构造句子。
09:26
And so this gave me this idea理念.
226
554621
2193
这给了我这样一个想法。
09:28
Is it possible可能 to use FreeSpeechFreeSpeech
227
556814
2024
这样是可能的吗?不仅仅将 Free Speech
09:30
not for children孩子 with autism自闭症
228
558838
2510
给自闭症儿童使用
09:33
but to teach language语言 to people without disabilities残疾人?
229
561348
6262
也给没有缺陷的人学习语言用?
09:39
And so I tried试着 a number of experiments实验.
230
567610
1978
于是我尝试了一些实验。
09:41
The first thing I did was I built内置 a jigsaw拼图 puzzle难题
231
569588
2948
首先我做的时建造一个拼图游戏
09:44
in which哪一个 these questions问题 and answers答案
232
572536
1970
它的问题和答案
09:46
are coded编码 in the form形成 of shapes形状,
233
574506
1835
以图形和颜色
09:48
in the form形成 of colors颜色,
234
576341
1138
的形式编码,
09:49
and you have people putting these together一起
235
577479
1849
然后你让人们把他们拼凑在一起
09:51
and trying to understand理解 how this works作品.
236
579328
1773
然后试图理解这是怎么运作的。
09:53
And I built内置 an app应用 out of it, a game游戏 out of it,
237
581101
2376
我通过它制作了一个应用,是一个游戏
09:55
in which哪一个 children孩子 can play with words
238
583477
2661
孩子们可以用文字游戏
09:58
and with a reinforcement加强,
239
586138
1704
然后巩固,
09:59
a sound声音 reinforcement加强 of visual视觉 structures结构,
240
587842
2585
用声音强化视觉结构,
10:02
they're able能够 to learn学习 language语言.
241
590427
2013
让他们学习语言。
10:04
And this, this has a lot of potential潜在, a lot of promise诺言,
242
592440
2736
然后这个,这个有很大的潜力,很多承诺,
10:07
and the government政府 of India印度 recently最近
243
595176
1975
而且印度政府最近
10:09
licensed领有牌照 this technology技术 from us,
244
597151
1404
从我们这项技术授权,
10:10
and they're going to try it out
with millions百万 of different不同 children孩子
245
598555
2074
他们将在上百万不同的儿童身上使用
10:12
trying to teach them English英语.
246
600629
2605
尝试教他们英语。
10:15
And the dream梦想, the hope希望, the vision视力, really,
247
603234
2614
而这个梦想,希望,远景,实际上,
10:17
is that when they learn学习 English英语 this way,
248
605848
3082
就是他们能够用这种方式学习英语,
10:20
they learn学习 it with the same相同 proficiency精通
249
608930
2643
他们想能够将它学得熟练得
10:23
as their mother母亲 tongue.
250
611573
3718
跟他们的母语一样。
10:27
All right, let's talk about something else其他.
251
615291
3816
好吧,让我们来谈点别的东西。
10:31
Let's talk about speech言语.
252
619107
1997
让我们谈谈语言。
10:33
This is speech言语.
253
621104
1271
这个是语言,
10:34
So speech言语 is the primary mode模式 of communication通讯
254
622375
1962
语言是我们之间
10:36
delivered交付 between之间 all of us.
255
624337
1613
交流主要模式。
10:37
Now what's interesting有趣 about speech言语 is that
256
625950
1855
关于语言有意思的是
10:39
speech言语 is one-dimensional一维.
257
627805
1245
语言是一维的。
10:41
Why is it one-dimensional一维?
258
629050
1359
为什么是一维的呢?
10:42
It's one-dimensional一维 because it's sound声音.
259
630409
1568
它是一维的因为它是声音。
10:43
It's also one-dimensional一维 because
260
631977
1539
它是一维的也是因为
10:45
our mouths嘴巴 are built内置 that way.
261
633516
1205
我们的嘴是那样构造的。
10:46
Our mouths嘴巴 are built内置 to create创建
one-dimensional一维 sound声音.
262
634721
3512
我们的嘴被构造得生产一维的声音。
10:50
But if you think about the brain,
263
638233
2866
但是如果你想想大脑,
10:53
the thoughts思念 that we have in our heads
264
641099
1764
在我们脑子中的思法
10:54
are not one-dimensional一维.
265
642863
2102
不是一维的。
10:56
I mean, we have these rich丰富,
266
644965
1459
我的意思是,我们拥有这些丰富的,
10:58
complicated复杂, multi-dimensional多维 ideas思路.
267
646424
3028
复杂的,多维的思想。
11:01
Now, it seems似乎 to me that language语言
268
649452
1690
现在,对我而言好像是这样的
11:03
is really the brain's大脑的 invention发明
269
651142
2332
语言确实是大脑的发明
11:05
to convert兑换 this rich丰富, multi-dimensional多维 thought
270
653474
3096
将这种丰富的,多维的想法
11:08
on one hand
271
656570
1587
进行转换,一方面,
11:10
into speech言语 on the other hand.
272
658157
1923
转换成语言,另一方面。
11:12
Now what's interesting有趣 is that
273
660080
1762
现在有趣的是
11:13
we do a lot of work in information信息 nowadays如今,
274
661842
2568
我们如今在做大量的信息化工作,
11:16
and almost几乎 all of that is doneDONE
in the language语言 domain.
275
664410
3079
而且几乎所有的工作都是在语言领域的。
11:19
Take Google谷歌, for example.
276
667489
1939
比如Google,打个比方吧。
11:21
Google谷歌 trawls拖网 all these
countless无数 billions数十亿 of websites网站,
277
669428
2677
Google 网罗了数十亿的网站,
11:24
all of which哪一个 are in English英语,
and when you want to use Google谷歌,
278
672105
2725
都是英文网站,当你想要使用 Google 时,
11:26
you go into Google谷歌 search搜索, and you type类型 in English英语,
279
674830
2450
你进入 Google 搜索,然后你输入英文,
11:29
and it matches火柴 the English英语 with the English英语.
280
677280
4163
然后它将英文与英文匹配。
11:33
What if we could do this in FreeSpeechFreeSpeech instead代替?
281
681443
3583
如果我们能够用 Free Speech 来替代这件事会怎样呢?
11:37
I have a suspicion怀疑 that if we did this,
282
685026
2301
我有一个猜想就是如果我们做到了这个,
11:39
we'd星期三 find that algorithms算法 like searching搜索,
283
687327
2068
我们就会发现类似于搜索,
11:41
like retrieval恢复, all of these things,
284
689395
2325
类似于检索,所有这样的算法,
11:43
are much simpler简单 and also more effective有效,
285
691720
3075
简单得多同时也有效得多了,
11:46
because they don't process处理
the data数据 structure结构体 of speech言语.
286
694795
4417
因为他们不是处理语言的信息结构,
11:51
Instead代替 they're processing处理
the data数据 structure结构体 of thought.
287
699212
5976
而是他们处理想法的信息结构。
11:57
The data数据 structure结构体 of thought.
288
705188
2808
想法的信息结构。
11:59
That's a provocative挑衅 idea理念.
289
707996
2076
这是个令人振奋的主意。
12:02
But let's look at this in a little more detail详情.
290
710072
2142
但是让我们更仔细的想想这个问题。
12:04
So this is the FreeSpeechFreeSpeech ecosystem生态系统.
291
712214
2366
这就是 Free Speech 生态体系。
12:06
We have the Free自由 Speech言语
representation表示 on one side,
292
714580
2884
我们把 Free Speech 的表示法放置在一个站点上,
12:09
and we have the FreeSpeechFreeSpeech
Engine发动机, which哪一个 generates生成 English英语.
293
717464
2228
我们有 Free Speech 引擎, 它生成英文。
12:11
Now if you think about it,
294
719694
1725
现在大家思考一下这个,
12:13
FreeSpeechFreeSpeech, I told you, is completely全然
language-independent语言无关.
295
721419
2544
Free Speech,我已经跟大家讲过,是完全语言独立的。
12:15
It doesn't have any specific具体 information信息 in it
296
723963
2087
他没有任何特定的信息在里面
12:18
which哪一个 is about English英语.
297
726050
1228
关于英语的。
12:19
So everything that this system系统 knows知道 about English英语
298
727278
2800
于是这个系统所知的所有关于英语的
12:22
is actually其实 encoded编码 into the engine发动机.
299
730078
4620
事实上都被编码写入了引擎。
12:26
That's a pretty漂亮 interesting有趣 concept概念 in itself本身.
300
734698
2237
它本身就是一个非常有趣的概念。
12:28
You've encoded编码 an entire整个 human人的 language语言
301
736935
3604
你已经将整个人类的的语种编码
12:32
into a software软件 program程序.
302
740539
2645
写入了一个软件程序中。
12:35
But if you look at what's inside the engine发动机,
303
743184
2531
但是如果你看看引擎里面有什么,
12:37
it's actually其实 not very complicated复杂.
304
745715
2358
他实际上并不是很复杂。
12:40
It's not very complicated复杂 code.
305
748073
2105
不是非常复杂的代码。
12:42
And what's more interesting有趣 is the fact事实 that
306
750178
2672
更有趣的情况是
12:44
the vast广大 majority多数 of the code in that engine发动机
307
752850
2203
引擎里绝大多数的代码
12:47
is not really English-specific英语专用.
308
755053
2412
都不是英文特有的。
12:49
And that gives this interesting有趣 idea理念.
309
757465
1895
这给出的这样一个有趣的想法。
12:51
It might威力 be very easy简单 for us to actually其实
310
759360
2038
或许对我们来说
12:53
create创建 these engines引擎 in many许多,
many许多 different不同 languages语言,
311
761398
3826
用许多不同的语言来创造这些引擎是很容易的,
12:57
in Hindi印地语, in French法国, in German德语, in Swahili斯瓦希里.
312
765224
6354
比如用印地语,法语,德语,斯瓦希里语。
13:03
And that gives another另一个 interesting有趣 idea理念.
313
771578
2799
这给了我们另一个有趣的想法。
13:06
For example, supposing假如 I was a writer作家,
314
774377
2654
比如,假设我是一名作家,
13:09
say, for a newspaper报纸 or for a magazine杂志.
315
777031
2122
比方说,为报社或者为杂志工作。
13:11
I could create创建 content内容 in one language语言, FreeSpeechFreeSpeech,
316
779153
5011
我可以用一种语言创作内容,Free Speech,
13:16
and the person who's谁是 consuming消费 that content内容,
317
784164
2056
看内容的人,
13:18
the person who's谁是 reading that particular特定 information信息
318
786220
3061
阅览特定信息的人,
13:21
could choose选择 any engine发动机,
319
789281
2495
能够选择任意引擎,
13:23
and they could read it in their own拥有 mother母亲 tongue,
320
791776
2736
他们能够用他们的母语来阅读,
13:26
in their native本地人 language语言.
321
794512
3939
用他们的当地语言。
13:30
I mean, this is an incredibly令人难以置信 attractive有吸引力 idea理念,
322
798451
2722
我的意思是,这是一个极其诱人的想法,
13:33
especially特别 for India印度.
323
801173
1999
特别是对印度而言。
13:35
We have so many许多 different不同 languages语言.
324
803172
1690
我们有这么多不同的语言。
13:36
There's a song歌曲 about India印度, and there's a description描述
325
804862
2142
有一首关于印度的歌,其中有一段描述
13:39
of the country国家 as, it says,
326
807004
2344
是关于这个国家的,它是这样唱的,
13:41
(in Sanskrit梵文).
327
809348
2360
(梵文)
13:43
That means手段 "ever-smiling永远微笑 speaker扬声器
328
811708
2773
意思是说“永远微笑着的
13:46
of beautiful美丽 languages语言."
329
814481
4519
美好的语言的述说者”
13:51
Language语言 is beautiful美丽.
330
819000
1964
语言是美好的。
13:52
I think it's the most beautiful美丽 of human人的 creations创作.
331
820964
2454
我认为它是人类发明中最美好的。
13:55
I think it's the loveliest可爱 thing
that our brains大脑 have invented发明.
332
823418
3978
我认为他是我们的大脑创造的最可爱的东西。
13:59
It entertains招待, it educates受教育者, it enlightens启蒙观,
333
827396
3584
它使人欢乐,教导众生,启发心灵
14:02
but what I like the most about language语言
334
830980
2044
但是关于语言我最喜欢的
14:05
is that it empowers如虎添翼.
335
833024
1500
是它带给人力量。
14:06
I want to leave离开 you with this.
336
834524
1838
我想以一下内容作为结束。
14:08
This is a photograph照片 of my collaborators合作者,
337
836362
2385
这是一张我的同事的照片,
14:10
my earliest最早 collaborators合作者
338
838747
997
我最早的同事
14:11
when I started开始 working加工 on language语言
339
839744
1462
当我开始研究语言
14:13
and autism自闭症 and various各个 other things.
340
841206
1502
和自闭症和许多其他的东西的时候。
14:14
The girl's女孩 name名称 is PavnaPavna,
341
842708
1417
这个女孩的名字叫 Pavna,
14:16
and that's her mother母亲, Kalpana卡尔帕纳.
342
844125
1902
这个是她的妈妈, Kalpana。
14:18
And Pavna'sPavna的 an entrepreneur企业家,
343
846027
2138
Pavna 是一名创业者,
14:20
but her story故事 is much more remarkable卓越 than mine,
344
848165
2371
但她的故事比我的更值得一提,
14:22
because PavnaPavna is about 23.
345
850536
2400
因为 Pavna 大约只有23岁。
14:24
She has quadriplegic四肢瘫痪 cerebral颅内 palsy麻痹,
346
852936
2552
她患有脑性四肢瘫痪,
14:27
so ever since以来 she was born天生,
347
855488
1640
所以从她出生以来,
14:29
she could neither也不 move移动 nor也不 talk.
348
857128
3600
她既不能行动也不能说话。
14:32
And everything that she's accomplished完成 so far,
349
860728
2403
她目前的所有成就,
14:35
finishing精加工 school学校, going to college学院,
350
863131
2227
完成学业,进入大学,
14:37
starting开始 a company公司,
351
865358
1416
创立公司,
14:38
collaborating合作 with me to develop发展 AvazAvaz,
352
866774
2140
与我合作开发 Avaz,
14:40
all of these things she's doneDONE
353
868914
1892
她所做的所有这些
14:42
with nothing more than moving移动 her eyes眼睛.
354
870806
5523
都是通过移动她的眼睛来完成的。
14:48
Daniel丹尼尔 Webster韦伯斯特 said this:
355
876329
2689
Daniel Webster 曾经这样说过:
14:51
He said, "If all of my possessions财产 were taken采取
356
879018
2940
他说,“如果我所拥有的一切都将被带走
14:53
from me with one exception例外,
357
881958
2988
只能有一个例外,
14:56
I would choose选择 to keep the power功率 of communication通讯,
358
884946
2981
我将选择留下交流的力量,
14:59
for with it, I would regain恢复 all the rest休息."
359
887927
3903
因为有了它,我将能够重建所有其他的东西。”
15:03
And that's why, of all of these incredible难以置信
applications应用 of FreeSpeechFreeSpeech,
360
891830
5116
这就是为何,在 Free Speech 所有这些不可思议的应用中,
15:08
the one that's closest最近的 to my heart
361
896946
2080
最接近我的心灵的那一个
15:11
still remains遗迹 the ability能力 for this
362
899026
2068
仍旧是它赋予
15:13
to empower授权 children孩子 with disabilities残疾人
363
901094
2380
自闭症儿童
15:15
to be able能够 to communicate通信,
364
903474
1773
能够交流的力量,
15:17
the power功率 of communication通讯,
365
905247
1789
交流的力量,
15:19
to get back all the rest休息.
366
907036
2240
重建所有其他的东西。
15:21
Thank you.
367
909276
1397
谢谢大家。
15:22
(Applause掌声)
368
910673
1332
(掌声)
15:24
Thank you. (Applause掌声)
369
912005
4199
谢谢。(掌声)
15:28
Thank you. Thank you. Thank you. (Applause掌声)
370
916204
5323
谢谢大家。谢谢。谢谢。(掌声)
15:33
Thank you. Thank you. Thank you. (Applause掌声)
371
921527
4000
谢谢大家。谢谢。谢谢。(掌声)
Translated by Cici W
Reviewed by Chen Yimei

▲Back to top

ABOUT THE SPEAKER
Ajit Narayanan - Visual grammar engine inventor
Ajit Narayanan is the inventor of Avaz, an affordable, tablet-based communication device for people who are speech-impaired.

Why you should listen

Ajit Narayanan is the founder and CEO of Invention Labs, and the inventor of Avaz AAC, the first assistive device aimed at an Indian market that helps people with speech disabilities -- such as cerebral palsy, autism, intellectual disability, aphasia and learning disabilities -- to communicate. Avaz is also available as an iPad app, aimed at children with autism. In 2010, Avaz won the National Award for Empowerment of People with Disabilities from the president of India, and in 2011, Narayanan was listed in MIT Technology Review 35 under 35.
 
Narayanan is a prolific inventor with more than 20 patent applications. He is an electrical engineer with degrees from IIT Madras. His research interests are embedded systems, signal processing and understanding how the brain perceives language and communication.

More profile about the speaker
Ajit Narayanan | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee