ABOUT THE SPEAKER
Sougwen Chung - Artist, researcher
Sougwen 愫君 Chung is an artist and researcher whose work explores the dynamics between humans and systems.

Why you should listen
Sougwen Chung's work explores the mark-made-by-hand and the mark-made-by-machine as an approach to understanding the dynamics of humans and systems. Chung is a former research fellow at MIT’s Media Lab and a pioneer in the field of human-machine collaboration. In 2019, she was selected as the Woman of the Year in Monaco for achievement in the Arts & Sciences.
 
In 2018 she was an inaugural E.A.T. Artist in Resident in partnership with New Museum and Bell Labs, and was awarded a commission for her project Omnia per Omnia. In 2016, Chung received Japan Media Art’s Excellence Award in for her project, Drawing Operations. She is a former research fellow at MIT’s Media Lab. She has been awarded Artist in Residence positions at Google, Eyebeam, Japan Media Arts and Pier 9 Autodesk. Her speculative critical practice spans performance, installation and drawings which have been featured in numerous exhibitions at museums and galleries around the world.
More profile about the speaker
Sougwen Chung | Speaker | TED.com
TED@BCG Mumbai

Sougwen Chung: Why I draw with robots

钟愫君: 我为何与机器人共同作画

Filmed:
160,983 views

当人类和机器人一起创造艺术时会发生什么?在这场令人叹为观止的演讲中,艺术家钟愫君(Sougwen Chung)展示了她如何将自己的艺术风格“传授”给一台机器——并在意外发现机器人也会犯错后,分享了他们合作的成果,她说:“人类和机器系统的美妙之一正是它们固有的、共同的不完美。 ”
- Artist, researcher
Sougwen 愫君 Chung is an artist and researcher whose work explores the dynamics between humans and systems. Full bio

Double-click the English transcript below to play the video.

00:12
Many许多 of us here use technology技术
in our day-to-day日复一日.
0
937
3165
在座的各位在日常生活中
都会使用科技,
00:16
And some of us rely依靠
on technology技术 to do our jobs工作.
1
4126
3247
许多人依赖科技来
进行他们的工作。
00:19
For a while, I thought of machines
and the technologies技术 that drive驾驶 them
2
7397
3950
有一段时间,我认为机器和科技
00:23
as perfect完善 tools工具 that could make my work
more efficient高效 and more productive生产的.
3
11371
4505
只是让我的工作更高效、高产的
完美工具。
00:28
But with the rise上升 of automation自动化
across横过 so many许多 different不同 industries行业,
4
16403
3254
但随着自动化技术
在各行各业的崛起,
00:31
it led me to wonder奇迹:
5
19681
1372
让我不禁试想:
00:33
If machines are starting开始
to be able能够 to do the work
6
21077
2341
如果机器能够完成
00:35
traditionally传统 doneDONE by humans人类,
7
23442
1667
原本由人类做的工作,
00:37
what will become成为 of the human人的 hand?
8
25133
2333
那我们人类之手又能做些什么呢?
00:40
How does our desire欲望 for perfection完美,
precision精确 and automation自动化
9
28133
4093
对完美,精确和自动化的追求
00:44
affect影响 our ability能力 to be creative创作的?
10
32250
1922
是如何影响我的创造力?
00:46
In my work as an artist艺术家 and researcher研究员,
I explore探索 AIAI and robotics机器人
11
34553
4087
作为艺术家和研究者,
我研究人工智能和机器人,
00:50
to develop发展 new processes流程
for human人的 creativity创造力.
12
38664
3005
以此来开发人类创造的新途径。
00:54
For the past过去 few少数 years年份,
13
42077
1286
过去几年里,
00:55
I've made制作 work alongside并肩 machines,
data数据 and emerging新兴 technologies技术.
14
43387
4376
我运用机器,数据
和新兴科技进行创作。
01:00
It's part部分 of a lifelong终身 fascination魅力
15
48143
1861
其中一部分永恒的魅力
01:02
about the dynamics动力学
of individuals个人 and systems系统
16
50028
2735
在于人与技术间奇妙的动态,
01:04
and all the messiness杂乱 that that entails限嗣继承.
17
52787
2381
还有其中不可避免的混乱。
01:07
It's how I'm exploring探索 questions问题 about
where AIAI ends结束 and we begin开始
18
55192
4808
我借此来探索人工智能与我们的界限,
01:12
and where I'm developing发展 processes流程
19
60024
1642
以及探索发展
01:13
that investigate调查 potential潜在
sensory感觉的 mixes混合 of the future未来.
20
61690
3326
未来感官融合的可能。
01:17
I think it's where philosophy哲学
and technology技术 intersect相交.
21
65675
2857
我想这是哲学与技术的交汇点。
01:20
Doing this work
has taught me a few少数 things.
22
68992
2239
这项工作教会了我一些事。
01:23
It's taught me how embracing拥抱 imperfection缺陷
23
71642
2824
它教会我拥抱不完美
01:26
can actually其实 teach us
something about ourselves我们自己.
24
74490
2489
可以帮助我们认识自我。
01:29
It's taught me that exploring探索 art艺术
25
77428
2336
它教会我探索艺术
01:31
can actually其实 help shape形状
the technology技术 that shapes形状 us.
26
79788
2931
能够更好的构建科技,
从而塑造自我。
01:35
And it's taught me
that combining结合 AIAI and robotics机器人
27
83148
3261
它教会我将人工智能和机器人
01:38
with traditional传统 forms形式 of creativity创造力 --
visual视觉 arts艺术 in my case案件 --
28
86433
3532
结合到传统的创作中——
以我创作的视觉艺术为例——
01:41
can help us think a little bit more deeply
29
89989
2302
能够帮助我们更深入理解
01:44
about what is human人的
and what is the machine.
30
92315
2897
何为人类,何为机器。
01:47
And it's led me to the realization实现
31
95942
1707
它让我意识到
01:49
that collaboration合作 is the key
to creating创建 the space空间 for both
32
97673
3055
在我们进步的路上,
合作是创造人与机器共存空间的关键。
01:52
as we move移动 forward前锋.
33
100752
1267
01:54
It all started开始 with a simple简单
experiment实验 with machines,
34
102387
2746
这一切都始于
一个简单的机器实验,
01:57
called "Drawing画画 Operations操作
Unit单元: Generation 1."
35
105157
2826
实验机器叫“绘图机器:初代”
(Drawing Operations Unit: Generation 1)。
02:00
I call the machine "D.O.U.G." for short.
36
108434
2516
我把它简称为道格(D.O.U.G.),
02:02
Before I built内置 D.O.U.G,
37
110974
1326
在我建造道格之前,
02:04
I didn't know anything
about building建造 robots机器人.
38
112324
2365
我对造机器人一无所知,
02:07
I took some open-source开源
robotic机器人 arm designs设计,
39
115220
2897
我参考了一些开源的机器臂设计,
02:10
I hacked砍死 together一起 a system系统
where the robot机器人 would match比赛 my gestures手势
40
118141
3341
编成了一个系统来实现匹配手势,
02:13
and follow跟随 [them] in real真实 time.
41
121506
1639
并实时模仿它们。
02:15
The premise前提 was simple简单:
42
123169
1448
前提很简单:
02:16
I would lead, and it would follow跟随.
43
124641
2200
我画,而它会学我。
02:19
I would draw a line线,
and it would mimic模仿者 my line线.
44
127403
2936
我画一条线,
它也会跟着我画一条线。
02:22
So back in 2015, there we were,
drawing画画 for the first time,
45
130363
3698
回到 2015 年,那是我们第一次
02:26
in front面前 of a small audience听众
in New York纽约 City.
46
134085
2619
在纽约的一小群观众前作画。
02:28
The process处理 was pretty漂亮 sparse --
47
136728
2555
整个过程非常冷清——
02:31
no lights灯火, no sounds声音,
nothing to hide隐藏 behind背后.
48
139307
3487
没有灯光,没有音效,
也没有什么悬念。
02:35
Just my palms手掌 sweating出汗
and the robot's机器人 new servos舵机 heating加热 up.
49
143241
3395
只有手掌冒出的冷汗
和机器臂不断升高的温度。
02:38
(Laughs) Clearly明确地, we were
not built内置 for this.
50
146950
2441
(笑声)显然,
这不是我们想要的效果。
02:41
But something interesting有趣 happened发生,
something I didn't anticipate预料.
51
149820
3233
但有趣的事发生了,
完全出乎意料。
02:45
See, D.O.U.G., in its primitive原始 form形成,
wasn't tracking追踪 my line线 perfectly完美.
52
153077
4802
初代的道格并没有
完美地模仿我画的线条,
02:49
While in the simulation模拟
that happened发生 onscreen在屏幕上
53
157903
2333
在计算器模拟中显示
02:52
it was pixel-perfect像素完美,
54
160260
1357
它的模仿事精确完美的,
02:53
in physical物理 reality现实,
it was a different不同 story故事.
55
161641
2531
但到了现实中,却并非如此。
02:56
It would slip and slide滑动
and punctuate圈点 and falter动摇,
56
164196
2817
它会滑动,会卡顿,会晃动,
02:59
and I would be forced被迫 to respond响应.
57
167037
2068
于是我不得不附和它的线条。
03:01
There was nothing pristine质朴 about it.
58
169525
1778
它的状态不完美,
03:03
And yet然而, somehow不知何故, the mistakes错误
made制作 the work more interesting有趣.
59
171327
3238
而这些失误让作品更加有趣,
03:06
The machine was interpreting解读
my line线 but not perfectly完美.
60
174589
2754
机器在模仿我的线条,
但是并不完美,
03:09
And I was forced被迫 to respond响应.
61
177367
1372
于是变成我在附和机器。
03:10
We were adapting适应
to each other in real真实 time.
62
178763
2709
我们不断地实时熟悉彼此。
03:13
And seeing眼看 this taught me a few少数 things.
63
181496
1937
看到这些,教会了我一些事,
03:15
It showed显示 me that our mistakes错误
actually其实 made制作 the work more interesting有趣.
64
183457
4880
我们的失误,实际上
让我们的作品更加有趣,
03:20
And I realized实现 that, you know,
through通过 the imperfection缺陷 of the machine,
65
188663
4249
我从机器的不完美中意识到,
03:24
our imperfections缺陷 became成为
what was beautiful美丽 about the interaction相互作用.
66
192936
3705
我们的不完美成就了这互动之美。
03:29
And I was excited兴奋,
because it led me to the realization实现
67
197650
3087
而我很兴奋,因为它让我意识到
03:32
that maybe part部分 of the beauty美女
of human人的 and machine systems系统
68
200761
3650
或许人类和机器系统的美妙之一
03:36
is their shared共享 inherent固有 fallibility易错.
69
204435
2738
正是他们共同的、固有的不完美。
03:39
For the second第二 generation of D.O.U.G.,
70
207197
1820
对于第二代的道格,
03:41
I knew知道 I wanted to explore探索 this idea理念.
71
209041
2307
我知道我要探索这个想法,
03:43
But instead代替 of an accident事故 produced生成
by pushing推动 a robotic机器人 arm to its limits范围,
72
211372
4418
我并非打算通过放大机器臂的失误,
03:47
I wanted to design设计 a system系统
that would respond响应 to my drawings图纸
73
215814
2897
而是想要设计一个系统
能够以出其不意的方式
03:50
in ways方法 that I didn't expect期望.
74
218735
1833
回应我的画作。
03:52
So, I used a visual视觉 algorithm算法
to extract提取 visual视觉 information信息
75
220592
3849
所以,我运用一个视觉算法
来提取我几十年来的
03:56
from decades几十年 of my digital数字
and analog类似物 drawings图纸.
76
224465
2978
数字和实体绘图中的视觉样本信息,
03:59
I trained熟练 a neural神经 net on these drawings图纸
77
227467
2055
以此我训练了一个神经网络
04:01
in order订购 to generate生成
recurring经常性 patterns模式 in the work
78
229546
2865
优化机器的循环模式,
04:04
that were then fed美联储 through通过 custom习惯 software软件
back into the machine.
79
232435
3476
视觉样本由经专门的
软件处理导入机器。
04:07
I painstakingly精心 collected
as many许多 of my drawings图纸 as I could find --
80
235935
4386
于是我煞费苦心地
收集我的所有的画作——
04:12
finished works作品, unfinished未完成 experiments实验
and random随机 sketches素描 --
81
240345
4215
成品,半成品,随手简笔画——
04:16
and tagged标记 them for the AIAI system系统.
82
244584
1999
把它们标记给人工智能系统。
04:18
And since以来 I'm an artist艺术家,
I've been making制造 work for over 20 years年份.
83
246607
3684
作为一位艺术家,
我作画超过了 20 年,
04:22
Collecting收集 that many许多 drawings图纸 took months个月,
84
250315
2024
所以收集这些画作花了好多个月,
04:24
it was a whole整个 thing.
85
252363
1389
这是个大工程。
04:25
And here's这里的 the thing
about training训练 AIAI systems系统:
86
253776
2595
说到训练人工智能:
04:28
it's actually其实 a lot of hard work.
87
256395
2200
这其实大费功夫。
04:31
A lot of work goes on behind背后 the scenes场景.
88
259022
2191
幕后的工作很多很多,
04:33
But in doing the work,
I realized实现 a little bit more
89
261237
2681
但在其中,我对人工智能的构造
04:35
about how the architecture建筑
of an AIAI is constructed.
90
263942
3421
更深入了解了一些。
04:39
And I realized实现 it's not just made制作
of models楷模 and classifiers分类
91
267387
2947
我意识到它不仅是
神经网络的
04:42
for the neural神经 network网络.
92
270358
1322
模型和分屏器。
04:43
But it's a fundamentally从根本上
malleable可锻铸 and shapable沙布 system系统,
93
271704
3532
它是一个可延展的、可塑的系统,
04:47
one in which哪一个 the human人的 hand
is always present当下.
94
275260
3111
人类的手始终参与其中。
04:50
It's far from the omnipotent无所不能 AIAI
we've我们已经 been told to believe in.
95
278395
4000
它不再是我们认为的
无所不能的人工智能。
04:54
So I collected these drawings图纸
for the neural神经 net.
96
282419
2515
所以,我收集画作以训练神经网络,
04:56
And we realized实现 something
that wasn't previously先前 possible可能.
97
284958
3929
而且我们意识到
前所未有的事情发生了,
05:00
My robot机器人 D.O.U.G. became成为
a real-time即时的 interactive互动 reflection反射
98
288911
4091
我对机器人道格
在实时交互创作中,
05:05
of the work I'd doneDONE
through通过 the course课程 of my life.
99
293026
2627
对我过去人生几十年的作品做出回应。
05:07
The data数据 was personal个人,
but the results结果 were powerful强大.
100
295677
3865
数据源于我个人,
但结果却很有力。
05:11
And I got really excited兴奋,
101
299566
1484
我感到非常兴奋,
05:13
because I started开始 thinking思维 maybe
machines don't need to be just tools工具,
102
301074
4582
因为我开始想或许机器不该只是工具,
05:17
but they can function功能
as nonhuman非人 collaborators合作者.
103
305680
3420
它还可以是非人的合作者。
05:21
And even more than that,
104
309537
1547
再进一步想,
05:23
I thought maybe
the future未来 of human人的 creativity创造力
105
311108
2429
也许未来的人类创作
05:25
isn't in what it makes品牌
106
313561
1524
不在于作品本身,
05:27
but how it comes together一起
to explore探索 new ways方法 of making制造.
107
315109
3436
而在于对艺术诞生新方式的探索。
05:31
So if D.O.U.G._1 was the muscle肌肉,
108
319101
2190
所以,如果道格初代是肌肉,
05:33
and D.O.U.G._2 was the brain,
109
321315
1762
那么道格二代就是大脑,
05:35
then I like to think
of D.O.U.G._3 as the family家庭.
110
323101
2928
然后我想道格三代就是家人。
05:38
I knew知道 I wanted to explore探索 this idea理念
of human-nonhuman人-非人类 collaboration合作 at scale规模.
111
326482
4793
我知道我想要将对
人类和非人类合作的想法放大。
05:43
So over the past过去 few少数 months个月,
112
331299
1373
于是再过去的几个月里,
05:44
I worked工作 with my team球队
to develop发展 20 custom习惯 robots机器人
113
332696
3135
我和团队造出了 20 个定制的机器人
05:47
that could work with me as a collective集体.
114
335855
1960
与我集体创作。
05:49
They would work as a group,
115
337839
1293
它们像团队一样工作,
05:51
and together一起, we would collaborate合作
with all of New York纽约 City.
116
339156
2889
我们共同与整个纽约市携手合作,
05:54
I was really inspired启发
by Stanford斯坦福 researcher研究员 Fei-Fei菲菲 Li,
117
342069
2944
斯坦福大学的研究员李飞飞
激发了我对灵感,
05:57
who said, "if we want to teach
machines how to think,
118
345037
2515
她说,"若像教机器如何思考,
05:59
we need to first teach them how to see."
119
347576
1984
先要教它们如何看见。"
06:01
It made制作 me think of the past过去 decade
of my life in New York纽约,
120
349584
2785
这让我想起了过去
十年的纽约生活,
06:04
and how I'd been all watched看着 over by these
surveillance监控 cameras相机 around the city.
121
352393
3993
城市上空的监控摄像头监视着我,
06:08
And I thought it would be
really interesting有趣
122
356410
2056
如果我用它们来训练
06:10
if I could use them
to teach my robots机器人 to see.
123
358490
2405
我的机器人的视觉,
那会非常有趣。
06:12
So with this project项目,
124
360919
1888
所以在这个项目中,
06:14
I thought about the gaze凝视 of the machine,
125
362831
1967
我思考机器对我们的凝视,
06:16
and I began开始 to think about vision视力
as multidimensional多维,
126
364822
3226
于是我开始将视觉看成多元化的,
06:20
as views意见 from somewhere某处.
127
368072
1600
视作来自某处的视点。
06:22
We collected video视频
128
370151
1834
我们收集视频,
06:24
from publicly公然 available可得到
camera相机 feeds供稿 on the internet互联网
129
372009
3063
从网络上公共摄像头的影片
06:27
of people walking步行 on the sidewalks人行道,
130
375096
1690
到行人在路上走的片段,
06:28
cars汽车 and taxis出租车 on the road,
131
376810
1712
道路上的汽车和出租,
06:30
all kinds of urban城市的 movement运动.
132
378546
1817
城市中各种车水马龙的片段。
06:33
We trained熟练 a vision视力 algorithm算法
on those feeds供稿
133
381188
2603
基于一种“光流技术”,
06:35
based基于 on a technique技术
called "optical光纤 flow,"
134
383815
2286
我们训练了一种视觉算法,
06:38
to analyze分析 the collective集体 density密度,
135
386125
1977
来分析收集到的人流密度,
06:40
direction方向, dwell and velocity速度 states状态
of urban城市的 movement运动.
136
388126
3637
城市流动的方向,
速度状态以及居住方式。
06:44
Our system系统 extracted提取 those states状态
from the feeds供稿 as positional位置 data数据
137
392178
4269
我们的系统从海量的
位置数据中提取这些信息,
06:48
and became成为 pads for my
robotic机器人 units单位 to draw on.
138
396471
3373
我们的机器人依靠这些信息来作画,
06:51
Instead代替 of a collaboration合作 of one-to-one一到一个,
139
399868
2534
与之前的一对一合作不同,
06:54
we made制作 a collaboration合作 of many-to-many许多一对多.
140
402426
3024
我们实现了多对多的合作。
06:57
By combining结合 the vision视力 of human人的
and machine in the city,
141
405474
3587
通过结合城市中人类与机器的视角,
07:01
we reimagined重新想象 what
a landscape景观 painting绘画 could be.
142
409085
2794
我们重构了一个景观绘图可能的样子。
07:03
Throughout始终 all of my
experiments实验 with D.O.U.G.,
143
411903
2218
在我和道格所有的实验中,
07:06
no two performances演出
have ever been the same相同.
144
414145
2717
没有哪两次的呈现是相同的,
07:08
And through通过 collaboration合作,
145
416886
1382
而且通过合作,
07:10
we create创建 something that neither也不 of us
could have doneDONE alone单独:
146
418292
2864
我们创作了我们
无法独自实现的事情,
07:13
we explore探索 the boundaries边界
of our creativity创造力,
147
421180
2611
我们共同探索了创造力的边界,
07:15
human人的 and nonhuman非人 working加工 in parallel平行.
148
423815
2892
人类和非人类并肩工作。
07:19
I think this is just the beginning开始.
149
427823
2334
我想这才是开始,
07:22
This year, I've launched推出 Scilicet西利塞特,
150
430569
2183
今年,我创办了 Scilicet,
07:24
my new lab实验室 exploring探索 human人的
and interhuman人间 collaboration合作.
151
432776
4245
这个新实验室旨在探索
人类和非人类间的合作,
07:29
We're really interested有兴趣
in the feedback反馈 loop循环
152
437339
2120
我们对个体,人工和生态系统
07:31
between之间 individual个人, artificial人造
and ecological生态 systems系统.
153
439483
4230
之间的反馈关系非常感兴趣。
07:36
We're connecting human人的 and machine output产量
154
444276
2269
我们将人类和机器与
07:38
to biometrics生物识别技术 and other kinds
of environmental环境的 data数据.
155
446569
2984
生物特征识别和其他环境数据相结合。
07:41
We're inviting诱人的 anyone任何人 who's谁是 interested有兴趣
in the future未来 of work, systems系统
156
449577
4079
我们邀请任何对未来的作品、系统
07:45
and interhuman人间 collaboration合作
157
453680
1595
和人际间合作感兴趣的人
07:47
to explore探索 with us.
158
455299
1550
和我们共同探索。
07:48
We know it's not just technologists技术专家
that have to do this work
159
456873
3405
我们知道不仅是科技工作者肩负使命,
07:52
and that we all have a role角色 to play.
160
460302
2103
所有人都可以参与其中。
07:54
We believe that by teaching教学 machines
161
462429
2243
我们坚信通过教授机器
07:56
how to do the work
traditionally传统 doneDONE by humans人类,
162
464696
2730
如何去完成人类的传统工作,
07:59
we can explore探索 and evolve发展 our criteria标准
163
467450
2953
我们就能不断探索和创新
08:02
of what's made制作 possible可能 by the human人的 hand.
164
470427
2443
超越人类之手所能达到的可能。
08:04
And part部分 of that journey旅程
is embracing拥抱 the imperfections缺陷
165
472894
3493
这段旅程之一便是拥抱不完美,
08:08
and recognizing认识 the fallibility易错
of both human人的 and machine,
166
476411
3690
发现人类和机器共有的缺憾,
08:12
in order订购 to expand扩大 the potential潜在 of both.
167
480125
2405
才能更好的拓展我们共同的潜能。
08:14
Today今天, I'm still in pursuit追求
of finding发现 the beauty美女
168
482919
2301
今天,我仍在追寻人类和
08:17
in human人的 and nonhuman非人 creativity创造力.
169
485244
2276
非人类协作的美妙之处。
08:19
In the future未来, I have no idea理念
what that will look like,
170
487865
2829
在未来,我不知道会怎样,
08:23
but I'm pretty漂亮 curious好奇 to find out.
171
491627
2024
但是我满怀好奇去寻找答案。
08:25
Thank you.
172
493675
1151
谢谢。
08:26
(Applause掌声)
173
494850
1884
(掌声)
Translated by Yanyan Hong
Reviewed by Cissy Yun

▲Back to top

ABOUT THE SPEAKER
Sougwen Chung - Artist, researcher
Sougwen 愫君 Chung is an artist and researcher whose work explores the dynamics between humans and systems.

Why you should listen
Sougwen Chung's work explores the mark-made-by-hand and the mark-made-by-machine as an approach to understanding the dynamics of humans and systems. Chung is a former research fellow at MIT’s Media Lab and a pioneer in the field of human-machine collaboration. In 2019, she was selected as the Woman of the Year in Monaco for achievement in the Arts & Sciences.
 
In 2018 she was an inaugural E.A.T. Artist in Resident in partnership with New Museum and Bell Labs, and was awarded a commission for her project Omnia per Omnia. In 2016, Chung received Japan Media Art’s Excellence Award in for her project, Drawing Operations. She is a former research fellow at MIT’s Media Lab. She has been awarded Artist in Residence positions at Google, Eyebeam, Japan Media Arts and Pier 9 Autodesk. Her speculative critical practice spans performance, installation and drawings which have been featured in numerous exhibitions at museums and galleries around the world.
More profile about the speaker
Sougwen Chung | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee