TED@BCG Mumbai
Sougwen Chung: Why I draw with robots
Sougwen Chung: Por que desenho com robôs?
Filmed:
Readability: 4.4
160,983 views
O que acontece quando robôs e humanos criam arte juntos? Nesta palestra inspiradora, a artista Sougwen Chung mostra como ela “ensinou” seu estilo artístico para uma máquina, e compartilha os resultados dessa colaboração depois de descobrir algo surpreendente: robôs também erram. Ela afirma que “Parte da beleza dos sistemas humanos e das máquinas vem de sua falibilidade herdada e partilhada”.
Sougwen Chung - Artist, researcher
Sougwen 愫君 Chung is an artist and researcher whose work explores the dynamics between humans and systems. Full bio
Sougwen 愫君 Chung is an artist and researcher whose work explores the dynamics between humans and systems. Full bio
Double-click the English transcript below to play the video.
00:12
Many of us here use technology
in our day-to-day.
in our day-to-day.
0
937
3165
Muitos de nós usamos
a tecnologia no dia a dia.
a tecnologia no dia a dia.
00:16
And some of us rely
on technology to do our jobs.
on technology to do our jobs.
1
4126
3247
E alguns de nós dependem
da tecnologia para trabalhar.
da tecnologia para trabalhar.
Por um tempo,
00:19
For a while, I thought of machines
and the technologies that drive them
and the technologies that drive them
2
7397
3950
acreditei que as máquinas
e a tecnologia por trás delas
e a tecnologia por trás delas
00:23
as perfect tools that could make my work
more efficient and more productive.
more efficient and more productive.
3
11371
4505
eram ferramentas perfeitas que tornavam
meu trabalho mais eficiente e produtivo.
meu trabalho mais eficiente e produtivo.
Mas com o surgimento da automação
em tantos ramos industriais diferentes,
em tantos ramos industriais diferentes,
00:28
But with the rise of automation
across so many different industries,
across so many different industries,
4
16403
3254
00:31
it led me to wonder:
5
19681
1372
comecei a pensar: "Se as máquinas
estão começando a fazer o trabalho
estão começando a fazer o trabalho
00:33
If machines are starting
to be able to do the work
to be able to do the work
6
21077
2341
tradicionalmente feito pelo homem,
qual será a parte humana na produção?"
qual será a parte humana na produção?"
00:35
traditionally done by humans,
7
23442
1667
00:37
what will become of the human hand?
8
25133
2333
00:40
How does our desire for perfection,
precision and automation
precision and automation
9
28133
4093
Como nossa busca pela perfeição,
precisão e automação
precisão e automação
afeta nossa capacidade
de sermos criativos?
de sermos criativos?
00:44
affect our ability to be creative?
10
32250
1922
Em meu trabalho como artista
e pesquisadora, exploro IA e robótica
e pesquisadora, exploro IA e robótica
00:46
In my work as an artist and researcher,
I explore AI and robotics
I explore AI and robotics
11
34553
4087
00:50
to develop new processes
for human creativity.
for human creativity.
12
38664
3005
para desenvolver novos processos
da criatividade humana.
da criatividade humana.
00:54
For the past few years,
13
42077
1286
Durante os últimos anos,
00:55
I've made work alongside machines,
data and emerging technologies.
data and emerging technologies.
14
43387
4376
tenho trabalhado com máquinas,
dados e tecnologias emergentes.
dados e tecnologias emergentes.
01:00
It's part of a lifelong fascination
15
48143
1861
É parte da minha fascinação
01:02
about the dynamics
of individuals and systems
of individuals and systems
16
50028
2735
sobre a dinâmica de indivíduos e máquinas
01:04
and all the messiness that that entails.
17
52787
2381
e toda a bagunça envolvida.
01:07
It's how I'm exploring questions about
where AI ends and we begin
where AI ends and we begin
18
55192
4808
É assim que estou explorando
onde a IA termina e nós entramos
onde a IA termina e nós entramos
e onde estou desenvolvendo processos
01:12
and where I'm developing processes
19
60024
1642
01:13
that investigate potential
sensory mixes of the future.
sensory mixes of the future.
20
61690
3326
que investigam potenciais
combinações sensoriais do futuro.
combinações sensoriais do futuro.
01:17
I think it's where philosophy
and technology intersect.
and technology intersect.
21
65675
2857
Acho que é onde a filosofia
e a tecnologia se encontram.
e a tecnologia se encontram.
Ao realizar esse trabalho,
tenho aprendido algumas coisas:
tenho aprendido algumas coisas:
01:20
Doing this work
has taught me a few things.
has taught me a few things.
22
68992
2239
01:23
It's taught me how embracing imperfection
23
71642
2824
que aceitar a imperfeição
01:26
can actually teach us
something about ourselves.
something about ourselves.
24
74490
2489
pode nos ensinar algumas coisas
sobre nós mesmos;
sobre nós mesmos;
01:29
It's taught me that exploring art
25
77428
2336
que explorar a arte
01:31
can actually help shape
the technology that shapes us.
the technology that shapes us.
26
79788
2931
pode ajudar a aperfeiçoar
a tecnologia que nos aperfeiçoa;
a tecnologia que nos aperfeiçoa;
01:35
And it's taught me
that combining AI and robotics
that combining AI and robotics
27
83148
3261
e que combinar IA e robótica
01:38
with traditional forms of creativity --
visual arts in my case --
visual arts in my case --
28
86433
3532
com meios criativos tradicionais,
artes visuais no meu caso,
artes visuais no meu caso,
01:41
can help us think a little bit more deeply
29
89989
2302
pode nos ajudar a pensar
mais profundamente
mais profundamente
01:44
about what is human
and what is the machine.
and what is the machine.
30
92315
2897
sobre o que é humano e o que é máquina.
E tenho aprendido que a colaboração
é a chave para criar espaço para ambos
é a chave para criar espaço para ambos
01:47
And it's led me to the realization
31
95942
1707
01:49
that collaboration is the key
to creating the space for both
to creating the space for both
32
97673
3055
01:52
as we move forward.
33
100752
1267
conforme progredimos.
01:54
It all started with a simple
experiment with machines,
experiment with machines,
34
102387
2746
Tudo começou com uma simples
experiência com máquinas,
experiência com máquinas,
01:57
called "Drawing Operations
Unit: Generation 1."
Unit: Generation 1."
35
105157
2826
a "Drawing Operations Unit: Generation 1".
02:00
I call the machine "D.O.U.G." for short.
36
108434
2516
Eu a apelidei de "D.O.U.G.".
Antes de construir o D.O.U.G.,
02:02
Before I built D.O.U.G,
37
110974
1326
02:04
I didn't know anything
about building robots.
about building robots.
38
112324
2365
eu não sabia nada sobre criação de robôs.
02:07
I took some open-source
robotic arm designs,
robotic arm designs,
39
115220
2897
Peguei designs de braços robóticos
de código aberto
de código aberto
02:10
I hacked together a system
where the robot would match my gestures
where the robot would match my gestures
40
118141
3341
e os juntei a um sistema
no qual o robô copiava meus gestos
no qual o robô copiava meus gestos
02:13
and follow [them] in real time.
41
121506
1639
e os seguia em tempo real.
02:15
The premise was simple:
42
123169
1448
A premissa era simples:
02:16
I would lead, and it would follow.
43
124641
2200
eu guiaria, e ele seguiria;
02:19
I would draw a line,
and it would mimic my line.
and it would mimic my line.
44
127403
2936
eu desenharia uma linha, e ele a imitaria.
02:22
So back in 2015, there we were,
drawing for the first time,
drawing for the first time,
45
130363
3698
Em 2015, estávamos desenhando
pela primeira vez
pela primeira vez
02:26
in front of a small audience
in New York City.
in New York City.
46
134085
2619
para um pequeno público em Nova York.
02:28
The process was pretty sparse --
47
136728
2555
O processo era bem simples,
02:31
no lights, no sounds,
nothing to hide behind.
nothing to hide behind.
48
139307
3487
sem luzes, sons, nada escondido.
02:35
Just my palms sweating
and the robot's new servos heating up.
and the robot's new servos heating up.
49
143241
3395
Somente minhas mãos suando
e meu robô esquentando.
e meu robô esquentando.
02:38
(Laughs) Clearly, we were
not built for this.
not built for this.
50
146950
2441
Obviamente, não fomos feitos para isso.
02:41
But something interesting happened,
something I didn't anticipate.
something I didn't anticipate.
51
149820
3233
Mas algo interessante aconteceu,
algo que eu não tinha previsto.
algo que eu não tinha previsto.
O D.O.U.G., em sua forma original,
não copiava minhas linhas perfeitamente.
não copiava minhas linhas perfeitamente.
02:45
See, D.O.U.G., in its primitive form,
wasn't tracking my line perfectly.
wasn't tracking my line perfectly.
52
153077
4802
02:49
While in the simulation
that happened onscreen
that happened onscreen
53
157903
2333
Apesar de na simulação exibida na tela
02:52
it was pixel-perfect,
54
160260
1357
ele parecer perfeito,
02:53
in physical reality,
it was a different story.
it was a different story.
55
161641
2531
na prática era outra história.
02:56
It would slip and slide
and punctuate and falter,
and punctuate and falter,
56
164196
2817
Ele escorregava, deslizava,
pontuava e vacilava,
pontuava e vacilava,
02:59
and I would be forced to respond.
57
167037
2068
e eu era forçada a reagir.
Não era perfeito, mesmo assim,
de certa forma,
de certa forma,
03:01
There was nothing pristine about it.
58
169525
1778
03:03
And yet, somehow, the mistakes
made the work more interesting.
made the work more interesting.
59
171327
3238
os erros tornaram o trabalho
mais interessante.
mais interessante.
03:06
The machine was interpreting
my line but not perfectly.
my line but not perfectly.
60
174589
2754
A máquina interpretava minhas linhas,
mas não perfeitamente
mas não perfeitamente
03:09
And I was forced to respond.
61
177367
1372
e eu era forçada a reagir.
03:10
We were adapting
to each other in real time.
to each other in real time.
62
178763
2709
Nos adaptávamos um ao outro
simultaneamente
simultaneamente
03:13
And seeing this taught me a few things.
63
181496
1937
e isso me ensinou algumas coisas.
03:15
It showed me that our mistakes
actually made the work more interesting.
actually made the work more interesting.
64
183457
4880
Nossos erros tornaram
o trabalho mais interessante
o trabalho mais interessante
03:20
And I realized that, you know,
through the imperfection of the machine,
through the imperfection of the machine,
65
188663
4249
e descobri que, por meio
da imperfeição da máquina,
da imperfeição da máquina,
03:24
our imperfections became
what was beautiful about the interaction.
what was beautiful about the interaction.
66
192936
3705
nossas imperfeições tornaram-se
a beleza da interação.
a beleza da interação.
03:29
And I was excited,
because it led me to the realization
because it led me to the realization
67
197650
3087
Fiquei muito animada
porque me fez perceber
porque me fez perceber
03:32
that maybe part of the beauty
of human and machine systems
of human and machine systems
68
200761
3650
que talvez, parte da beleza
de sistemas homem-máquina,
de sistemas homem-máquina,
03:36
is their shared inherent fallibility.
69
204435
2738
seja o compartilhamento
de suas falhas inerentes.
de suas falhas inerentes.
03:39
For the second generation of D.O.U.G.,
70
207197
1820
Para a segunda geração do D.O.U.G.,
03:41
I knew I wanted to explore this idea.
71
209041
2307
eu sabia que queria explorar essa ideia.
03:43
But instead of an accident produced
by pushing a robotic arm to its limits,
by pushing a robotic arm to its limits,
72
211372
4418
Mas em vez de ser algo acidental produzido
por levar um braço robótico ao seu limite,
por levar um braço robótico ao seu limite,
03:47
I wanted to design a system
that would respond to my drawings
that would respond to my drawings
73
215814
2897
queria um sistema que reagisse
aos meus desenhos de forma imprevista.
aos meus desenhos de forma imprevista.
03:50
in ways that I didn't expect.
74
218735
1833
03:52
So, I used a visual algorithm
to extract visual information
to extract visual information
75
220592
3849
Então usei um algoritmo de visão
para coletar informações
para coletar informações
03:56
from decades of my digital
and analog drawings.
and analog drawings.
76
224465
2978
de meus desenhos digitais e analógicos
produzidos em décadas.
produzidos em décadas.
Treinei uma rede neural com esses desenhos
03:59
I trained a neural net on these drawings
77
227467
2055
04:01
in order to generate
recurring patterns in the work
recurring patterns in the work
78
229546
2865
para gerar padrões recorrentes no trabalho
04:04
that were then fed through custom software
back into the machine.
back into the machine.
79
232435
3476
que, então, alimentaram a máquina
através de um software.
através de um software.
04:07
I painstakingly collected
as many of my drawings as I could find --
as many of my drawings as I could find --
80
235935
4386
Coletei meticulosamente
todos os desenhos que encontrei,
todos os desenhos que encontrei,
04:12
finished works, unfinished experiments
and random sketches --
and random sketches --
81
240345
4215
trabalhos concluídos e incompletos,
rascunhos aleatórios
rascunhos aleatórios
04:16
and tagged them for the AI system.
82
244584
1999
e os identifiquei no sistema de IA.
04:18
And since I'm an artist,
I've been making work for over 20 years.
I've been making work for over 20 years.
83
246607
3684
Como artista, venho desenhando
há mais de 20 anos.
há mais de 20 anos.
04:22
Collecting that many drawings took months,
84
250315
2024
Juntar tantos desenhos levou meses;
04:24
it was a whole thing.
85
252363
1389
foi muito complicado.
04:25
And here's the thing
about training AI systems:
about training AI systems:
86
253776
2595
E o problema de treinar sistemas de IA
é que, na verdade, é um trabalho árduo.
é que, na verdade, é um trabalho árduo.
04:28
it's actually a lot of hard work.
87
256395
2200
04:31
A lot of work goes on behind the scenes.
88
259022
2191
Muito trabalho acontece nos bastidores.
Mas trabalhando com isso,
04:33
But in doing the work,
I realized a little bit more
I realized a little bit more
89
261237
2681
aprendi mais sobre a estrutura
da arquitetura de uma IA,
da arquitetura de uma IA,
04:35
about how the architecture
of an AI is constructed.
of an AI is constructed.
90
263942
3421
e percebi que não é feita somente
de modelos e classificadores
de modelos e classificadores
04:39
And I realized it's not just made
of models and classifiers
of models and classifiers
91
267387
2947
04:42
for the neural network.
92
270358
1322
para a rede neural.
04:43
But it's a fundamentally
malleable and shapable system,
malleable and shapable system,
93
271704
3532
É basicamente um sistema
maleável e moldável,
maleável e moldável,
04:47
one in which the human hand
is always present.
is always present.
94
275260
3111
no qual o toque humano
está sempre presente.
está sempre presente.
04:50
It's far from the omnipotent AI
we've been told to believe in.
we've been told to believe in.
95
278395
4000
Está longe da onipotente IA
na qual nos fizeram acreditar.
na qual nos fizeram acreditar.
04:54
So I collected these drawings
for the neural net.
for the neural net.
96
282419
2515
Depois de coletar os desenhos
para a rede neural,
para a rede neural,
04:56
And we realized something
that wasn't previously possible.
that wasn't previously possible.
97
284958
3929
descobrimos algo que antes era impossível.
05:00
My robot D.O.U.G. became
a real-time interactive reflection
a real-time interactive reflection
98
288911
4091
Meu robô D.O.U.G. tornou-se
um reflexo interativo em tempo real
um reflexo interativo em tempo real
05:05
of the work I'd done
through the course of my life.
through the course of my life.
99
293026
2627
do trabalho que fiz durante minha vida.
05:07
The data was personal,
but the results were powerful.
but the results were powerful.
100
295677
3865
Os dados eram pessoais,
mas os resultados, poderosos.
mas os resultados, poderosos.
Fiquei bem animada, pois comecei a pensar
05:11
And I got really excited,
101
299566
1484
05:13
because I started thinking maybe
machines don't need to be just tools,
machines don't need to be just tools,
102
301074
4582
que talvez as máquinas não precisassem
ser somente ferramentas;
ser somente ferramentas;
elas podiam funcionar
como colaboradores não humanos.
como colaboradores não humanos.
05:17
but they can function
as nonhuman collaborators.
as nonhuman collaborators.
103
305680
3420
05:21
And even more than that,
104
309537
1547
Mais do que isso,
05:23
I thought maybe
the future of human creativity
the future of human creativity
105
311108
2429
pensei que talvez o futuro
da criatividade humana
da criatividade humana
05:25
isn't in what it makes
106
313561
1524
não estivesse na criação,
05:27
but how it comes together
to explore new ways of making.
to explore new ways of making.
107
315109
3436
mas na exploração
de novos métodos da criação.
de novos métodos da criação.
05:31
So if D.O.U.G._1 was the muscle,
108
319101
2190
Então se D.O.U.G._1 era o braço,
05:33
and D.O.U.G._2 was the brain,
109
321315
1762
e D.O.U.G._2 o cérebro,
05:35
then I like to think
of D.O.U.G._3 as the family.
of D.O.U.G._3 as the family.
110
323101
2928
então gosto de pensar
no D.O.U.G._3 como a família.
no D.O.U.G._3 como a família.
05:38
I knew I wanted to explore this idea
of human-nonhuman collaboration at scale.
of human-nonhuman collaboration at scale.
111
326482
4793
Queria explorar a ideia de colaboração
entre humano e máquina em escala,
entre humano e máquina em escala,
então, durante os últimos meses,
05:43
So over the past few months,
112
331299
1373
05:44
I worked with my team
to develop 20 custom robots
to develop 20 custom robots
113
332696
3135
tenho trabalhado com minha equipe
para desenvolver 20 robôs
para desenvolver 20 robôs
que trabalhariam comigo coletivamente.
05:47
that could work with me as a collective.
114
335855
1960
Trabalhariam como um grupo,
05:49
They would work as a group,
115
337839
1293
e juntos, colaboraríamos
com toda a cidade de Nova York.
com toda a cidade de Nova York.
05:51
and together, we would collaborate
with all of New York City.
with all of New York City.
116
339156
2889
Fui inspirada pela pesquisadora
Fei-Fei Li da Stanford, que disse:
Fei-Fei Li da Stanford, que disse:
05:54
I was really inspired
by Stanford researcher Fei-Fei Li,
by Stanford researcher Fei-Fei Li,
117
342069
2944
05:57
who said, "if we want to teach
machines how to think,
machines how to think,
118
345037
2515
"Se queremos ensinar as máquinas a pensar,
05:59
we need to first teach them how to see."
119
347576
1984
precisamos primeiro
ensiná-las a enxergar".
ensiná-las a enxergar".
06:01
It made me think of the past decade
of my life in New York,
of my life in New York,
120
349584
2785
Isso me fez pensar na última década
que passei em Nova York,
que passei em Nova York,
06:04
and how I'd been all watched over by these
surveillance cameras around the city.
surveillance cameras around the city.
121
352393
3993
e em como fui observada pelas câmeras
de segurança espalhadas pela cidade.
de segurança espalhadas pela cidade.
E pensei que seria interessante
06:08
And I thought it would be
really interesting
really interesting
122
356410
2056
se pudesse usá-las para ensinar
meus robôs a enxergar.
meus robôs a enxergar.
06:10
if I could use them
to teach my robots to see.
to teach my robots to see.
123
358490
2405
06:12
So with this project,
124
360919
1888
Então, com esse projeto,
06:14
I thought about the gaze of the machine,
125
362831
1967
pensei sobre a perspectiva da máquina
06:16
and I began to think about vision
as multidimensional,
as multidimensional,
126
364822
3226
e comecei a considerar a visão
como multidimensional,
como multidimensional,
06:20
as views from somewhere.
127
368072
1600
como pontos de vista.
06:22
We collected video
128
370151
1834
Coletamos vídeos
06:24
from publicly available
camera feeds on the internet
camera feeds on the internet
129
372009
3063
transmitidos publicamente na internet
de pessoas andando nas calçadas,
de pessoas andando nas calçadas,
06:27
of people walking on the sidewalks,
130
375096
1690
carros e táxis nas ruas,
06:28
cars and taxis on the road,
131
376810
1712
06:30
all kinds of urban movement.
132
378546
1817
todo tipo de movimento urbano.
06:33
We trained a vision algorithm
on those feeds
on those feeds
133
381188
2603
Com esses dados, treinamos
um algoritmo de visão
um algoritmo de visão
06:35
based on a technique
called "optical flow,"
called "optical flow,"
134
383815
2286
baseado em uma técnica
chamada "fluxo ótico"
chamada "fluxo ótico"
06:38
to analyze the collective density,
135
386125
1977
para analisar a densidade coletiva,
06:40
direction, dwell and velocity states
of urban movement.
of urban movement.
136
388126
3637
direção, repouso e velocidade
dos movimentos urbanos.
dos movimentos urbanos.
06:44
Our system extracted those states
from the feeds as positional data
from the feeds as positional data
137
392178
4269
Nosso sistema extraiu esses estados
das fontes como dados de posicionamento
das fontes como dados de posicionamento
06:48
and became pads for my
robotic units to draw on.
robotic units to draw on.
138
396471
3373
e se tornou a base
para meus robôs desenharem.
para meus robôs desenharem.
06:51
Instead of a collaboration of one-to-one,
139
399868
2534
Em vez de uma colaboração um para um,
06:54
we made a collaboration of many-to-many.
140
402426
3024
criamos uma colaboração
de muitos para muitos.
de muitos para muitos.
06:57
By combining the vision of human
and machine in the city,
and machine in the city,
141
405474
3587
Combinando a visão do ser humano
e da máquina na cidade,
e da máquina na cidade,
repensamos o que a pintura
de uma paisagem poderia ser.
de uma paisagem poderia ser.
07:01
we reimagined what
a landscape painting could be.
a landscape painting could be.
142
409085
2794
Em todos os meus experimentos
com o D.O.U.G.,
com o D.O.U.G.,
07:03
Throughout all of my
experiments with D.O.U.G.,
experiments with D.O.U.G.,
143
411903
2218
nunca tivemos performances idênticas,
07:06
no two performances
have ever been the same.
have ever been the same.
144
414145
2717
e através da colaboração
07:08
And through collaboration,
145
416886
1382
07:10
we create something that neither of us
could have done alone:
could have done alone:
146
418292
2864
criamos algo que nenhum de nós
poderia ter feito sozinho:
poderia ter feito sozinho:
07:13
we explore the boundaries
of our creativity,
of our creativity,
147
421180
2611
exploramos os limites
de nossa criatividade,
de nossa criatividade,
07:15
human and nonhuman working in parallel.
148
423815
2892
com humano e não humano
trabalhando paralelamente.
trabalhando paralelamente.
07:19
I think this is just the beginning.
149
427823
2334
Acho que estamos só começando.
07:22
This year, I've launched Scilicet,
150
430569
2183
Este ano inaugurei o Scilicet,
07:24
my new lab exploring human
and interhuman collaboration.
and interhuman collaboration.
151
432776
4245
meu novo laboratório, onde exploro
a colaboração humana e inter-humana.
a colaboração humana e inter-humana.
Estamos muito interessados
no ciclo de feedback
no ciclo de feedback
07:29
We're really interested
in the feedback loop
in the feedback loop
152
437339
2120
07:31
between individual, artificial
and ecological systems.
and ecological systems.
153
439483
4230
entre sistemas individuais,
artificiais e ecológicos,
artificiais e ecológicos,
Estamos conectando a produção
de humanos e máquinas
de humanos e máquinas
07:36
We're connecting human and machine output
154
444276
2269
07:38
to biometrics and other kinds
of environmental data.
of environmental data.
155
446569
2984
à biometria e a outros tipos
de dados ambientais.
de dados ambientais.
07:41
We're inviting anyone who's interested
in the future of work, systems
in the future of work, systems
156
449577
4079
Convidamos todos que têm interesse
no futuro do trabalho, dos sistemas
no futuro do trabalho, dos sistemas
07:45
and interhuman collaboration
157
453680
1595
e na colaboração inter-humana
a explorarem conosco.
a explorarem conosco.
07:47
to explore with us.
158
455299
1550
07:48
We know it's not just technologists
that have to do this work
that have to do this work
159
456873
3405
Sabemos que não são só tecnólogos
que devem fazer esse trabalho
que devem fazer esse trabalho
07:52
and that we all have a role to play.
160
460302
2103
e que todos nós temos um papel a cumprir.
Acreditamos que ao ensinar máquinas
07:54
We believe that by teaching machines
161
462429
2243
a como fazer o trabalho
tradicionalmente feito por humanos,
tradicionalmente feito por humanos,
07:56
how to do the work
traditionally done by humans,
traditionally done by humans,
162
464696
2730
07:59
we can explore and evolve our criteria
163
467450
2953
podemos explorar e expandir nosso critério
08:02
of what's made possible by the human hand.
164
470427
2443
do que é possível para a humanidade.
Parte dessa jornada
é aceitar as imperfeições
é aceitar as imperfeições
08:04
And part of that journey
is embracing the imperfections
is embracing the imperfections
165
472894
3493
08:08
and recognizing the fallibility
of both human and machine,
of both human and machine,
166
476411
3690
e reconhecer a falibilidade tanto
de humanos como de máquinas
de humanos como de máquinas
08:12
in order to expand the potential of both.
167
480125
2405
para expandir o potencial de ambos.
08:14
Today, I'm still in pursuit
of finding the beauty
of finding the beauty
168
482919
2301
Atualmente ainda estou buscando a beleza
na criatividade humana e não humana.
na criatividade humana e não humana.
08:17
in human and nonhuman creativity.
169
485244
2276
08:19
In the future, I have no idea
what that will look like,
what that will look like,
170
487865
2829
Não sei como ela será no futuro
08:23
but I'm pretty curious to find out.
171
491627
2024
mas estou muito curiosa em descobrir.
08:25
Thank you.
172
493675
1151
Obrigada.
08:26
(Applause)
173
494850
1884
(Aplausos)
ABOUT THE SPEAKER
Sougwen Chung - Artist, researcherSougwen 愫君 Chung is an artist and researcher whose work explores the dynamics between humans and systems.
Why you should listen
Sougwen Chung's work explores the mark-made-by-hand and the mark-made-by-machine as an approach to understanding the dynamics of humans and systems. Chung is a former research fellow at MIT’s Media Lab and a pioneer in the field of human-machine collaboration. In 2019, she was selected as the Woman of the Year in Monaco for achievement in the Arts & Sciences.
In 2018 she was an inaugural E.A.T. Artist in Resident in partnership with New Museum and Bell Labs, and was awarded a commission for her project Omnia per Omnia. In 2016, Chung received Japan Media Art’s Excellence Award in for her project, Drawing Operations. She is a former research fellow at MIT’s Media Lab. She has been awarded Artist in Residence positions at Google, Eyebeam, Japan Media Arts and Pier 9 Autodesk. Her speculative critical practice spans performance, installation and drawings which have been featured in numerous exhibitions at museums and galleries around the world.
Sougwen Chung | Speaker | TED.com