ABOUT THE SPEAKER
Sougwen Chung - Artist, researcher
Sougwen 愫君 Chung is an artist and researcher whose work explores the dynamics between humans and systems.

Why you should listen
Sougwen Chung's work explores the mark-made-by-hand and the mark-made-by-machine as an approach to understanding the dynamics of humans and systems. Chung is a former research fellow at MIT’s Media Lab and a pioneer in the field of human-machine collaboration. In 2019, she was selected as the Woman of the Year in Monaco for achievement in the Arts & Sciences.
 
In 2018 she was an inaugural E.A.T. Artist in Resident in partnership with New Museum and Bell Labs, and was awarded a commission for her project Omnia per Omnia. In 2016, Chung received Japan Media Art’s Excellence Award in for her project, Drawing Operations. She is a former research fellow at MIT’s Media Lab. She has been awarded Artist in Residence positions at Google, Eyebeam, Japan Media Arts and Pier 9 Autodesk. Her speculative critical practice spans performance, installation and drawings which have been featured in numerous exhibitions at museums and galleries around the world.
More profile about the speaker
Sougwen Chung | Speaker | TED.com
TED@BCG Mumbai

Sougwen Chung: Why I draw with robots

鍾愫君: 與機器人共同作畫

Filmed:
160,983 views

當人類和機器人共同創造藝術時,會發生什麼?在這場令人歎為觀止的演講中,藝術家鍾愫君(Sougwen Chung)展示了她如何將自己的藝術風格「傳授」給機器,並在意外發現機器人也犯錯誤後,分享了他們的合作成果。她說:「人機系統的優點之一就是他們固有的、共同的失誤。」
- Artist, researcher
Sougwen 愫君 Chung is an artist and researcher whose work explores the dynamics between humans and systems. Full bio

Double-click the English transcript below to play the video.

00:12
Many許多 of us here use technology技術
in our day-to-day日復一日.
0
937
3165
在座的各位大多在日常中使用科技,
00:16
And some of us rely依靠
on technology技術 to do our jobs工作.
1
4126
3247
有些人的工作離不開科技。
00:19
For a while, I thought of machines
and the technologies技術 that drive駕駛 them
2
7397
3950
有一陣子,我認為機器、科技
00:23
as perfect完善 tools工具 that could make my work
more efficient高效 and more productive生產的.
3
11371
4505
只是實現工作高產、高效的工具。
00:28
But with the rise上升 of automation自動化
across橫過 so many許多 different不同 industries行業,
4
16403
3254
但隨着自動化技術滲透各產業,
00:31
it led me to wonder奇蹟:
5
19681
1372
我不禁思考,
00:33
If machines are starting開始
to be able能夠 to do the work
6
21077
2341
如果機器能夠做人類的傳統工作,
00:35
traditionally傳統 doneDONE by humans人類,
7
23442
1667
00:37
what will become成為 of the human人的 hand?
8
25133
2333
那人類的手用來做什麼?
00:40
How does our desire慾望 for perfection完美,
precision精確 and automation自動化
9
28133
4093
對完美、精確和自動化的追求
00:44
affect影響 our ability能力 to be creative創作的?
10
32250
1922
如何影響我們的創造力?
00:46
In my work as an artist藝術家 and researcher研究員,
I explore探索 AIAI and robotics機器人
11
34553
4087
作為藝術家和研究者,
我研究運用人工智慧和機器人
來開發人類的創造力。
00:50
to develop發展 new processes流程
for human人的 creativity創造力.
12
38664
3005
00:54
For the past過去 few少數 years年份,
13
42077
1286
過去幾年裡,
00:55
I've made製作 work alongside並肩 machines,
data數據 and emerging新興 technologies技術.
14
43387
4376
我運用機器、數據
和新型技術進行創作。
01:00
It's part部分 of a lifelong終身 fascination魅力
15
48143
1861
其中永恆的魅力
01:02
about the dynamics動力學
of individuals個人 and systems系統
16
50028
2735
在於人與技術間奇妙的動力學,
01:04
and all the messiness雜亂 that that entails限嗣繼承.
17
52787
2381
還有其中不可避免的混亂。
01:07
It's how I'm exploring探索 questions問題 about
where AIAI ends結束 and we begin開始
18
55192
4808
我借此來探索 AI 與人類的邊界
01:12
and where I'm developing發展 processes流程
19
60024
1642
以及探索未來感官融合的可能。
01:13
that investigate調查 potential潛在
sensory感覺的 mixes混合 of the future未來.
20
61690
3326
01:17
I think it's where philosophy哲學
and technology技術 intersect相交.
21
65675
2857
我覺得這是哲學與技術的交匯。
01:20
Doing this work
has taught me a few少數 things.
22
68992
2239
這項工作教會了我一些道理,
01:23
It's taught me how embracing擁抱 imperfection缺陷
23
71642
2824
它教會我,坦然接受不完美
01:26
can actually其實 teach us
something about ourselves我們自己.
24
74490
2489
有助於更認識自己。
01:29
It's taught me that exploring探索 art藝術
25
77428
2336
它教會我,探索藝術,
01:31
can actually其實 help shape形狀
the technology技術 that shapes形狀 us.
26
79788
2931
能夠更好地構建科技,然後構建生活。
01:35
And it's taught me
that combining結合 AIAI and robotics機器人
27
83148
3261
它教會我,將 AI 和機器人
01:38
with traditional傳統 forms形式 of creativity創造力 --
visual視覺 arts藝術 in my case案件 --
28
86433
3532
結合到傳統創作中,
01:41
can help us think a little bit more deeply
29
89989
2302
能幫助我們更深入理解
何為人類,何為機器。
01:44
about what is human人的
and what is the machine.
30
92315
2897
01:47
And it's led me to the realization實現
31
95942
1707
它讓我意識到,
在前行路上,
01:49
that collaboration合作 is the key
to creating創建 the space空間 for both
32
97673
3055
合作是創造人機生存空間的關機。
01:52
as we move移動 forward前鋒.
33
100752
1267
01:54
It all started開始 with a simple簡單
experiment實驗 with machines,
34
102387
2746
這一切都緣起於
一個簡單的機器實驗,
01:57
called "Drawing畫畫 Operations操作
Unit單元: Generation 1."
35
105157
2826
那個機器叫「第一代繪畫器」
(Drawing Operations Unit: Generation 1)
02:00
I call the machine "D.O.U.G." for short.
36
108434
2516
我叫它「道格」(D.O.U.G.)。
02:02
Before I built內置 D.O.U.G,
37
110974
1326
在「道格」之前,
02:04
I didn't know anything
about building建造 robots機器人.
38
112324
2365
我對製造機器人一無所知。
02:07
I took some open-source開源
robotic機器人 arm designs設計,
39
115220
2897
我參照了一些開源的機械臂設計,
02:10
I hacked砍死 together一起 a system系統
where the robot機器人 would match比賽 my gestures手勢
40
118141
3341
編成了一個系統,來實現匹配手勢,
02:13
and follow跟隨 [them] in real真實 time.
41
121506
1639
並實時模仿。
02:15
The premise前提 was simple簡單:
42
123169
1448
方式很簡單:
02:16
I would lead, and it would follow跟隨.
43
124641
2200
我畫,它模仿。
02:19
I would draw a line,
and it would mimic模仿者 my line.
44
127403
2936
我畫一條線,它也畫一條線。
02:22
So back in 2015, there we were,
drawing畫畫 for the first time,
45
130363
3698
2015 年,我們第一次
02:26
in front面前 of a small audience聽眾
in New York紐約 City.
46
134085
2619
在紐約市的一小群觀衆前作畫。
02:28
The process處理 was pretty漂亮 sparse --
47
136728
2555
整個過程很冷清,
02:31
no lights燈火, no sounds聲音,
nothing to hide隱藏 behind背後.
48
139307
3487
沒有燈光,沒有音樂,什麼都沒有,
02:35
Just my palms手掌 sweating出汗
and the robot's機器人 new servos舵機 heating加熱 up.
49
143241
3395
只有手掌冒出的汗,
和機械臂升高的溫度。
02:38
(Laughs) Clearly明確地, we were
not built內置 for this.
50
146950
2441
(笑)顯然這不是最理想的效果。
02:41
But something interesting有趣 happened發生,
something I didn't anticipate預料.
51
149820
3233
但我不曾預料到,
一些有趣的事情發生了。
02:45
See, D.O.U.G., in its primitive原始 form形成,
wasn't tracking追踪 my line perfectly完美.
52
153077
4802
初代的「道格」並沒有
完美地模仿我的線條,
02:49
While in the simulation模擬
that happened發生 onscreen在屏幕上
53
157903
2333
在計算機模擬中
02:52
it was pixel-perfect圖元完美,
54
160260
1357
它的模仿是精準完美的,
02:53
in physical物理 reality現實,
it was a different不同 story故事.
55
161641
2531
但到了現實世界,
就是另一番景象了。
02:56
It would slip and slide滑動
and punctuate圈點 and falter動搖,
56
164196
2817
它會滑動,會卡頓,會晃動,
02:59
and I would be forced被迫 to respond響應.
57
167037
2068
於是我不得不應和它的線條。
03:01
There was nothing pristine質樸 about it.
58
169525
1778
它的狀態並不完美,
03:03
And yet然而, somehow不知何故, the mistakes錯誤
made製作 the work more interesting有趣.
59
171327
3238
然而這些失誤讓作品更加有趣,
03:06
The machine was interpreting解讀
my line but not perfectly完美.
60
174589
2754
機器模仿我的線條,但並不完美,
03:09
And I was forced被迫 to respond響應.
61
177367
1372
於是我必須應和它,
03:10
We were adapting適應
to each other in real真實 time.
62
178763
2709
我們不斷實時地熟悉彼此。
03:13
And seeing眼看 this taught me a few少數 things.
63
181496
1937
我領悟到了一些事情,
03:15
It showed顯示 me that our mistakes錯誤
actually其實 made製作 the work more interesting有趣.
64
183457
4880
我們的失誤實際上讓創作更加有趣,
03:20
And I realized實現 that, you know,
through通過 the imperfection缺陷 of the machine,
65
188663
4249
透過機器的不完美,
03:24
our imperfections缺陷 became成為
what was beautiful美麗 about the interaction相互作用.
66
192936
3705
我們的不完美成就了人機交流之美。
03:29
And I was excited興奮,
because it led me to the realization實現
67
197650
3087
我激動地意識到,
03:32
that maybe part部分 of the beauty美女
of human人的 and machine systems系統
68
200761
3650
或許人機系統的美妙之處,
03:36
is their shared共享 inherent固有 fallibility易錯.
69
204435
2738
有一部分來自共同的、固有的失誤。
03:39
For the second第二 generation of D.O.U.G.,
70
207197
1820
到了「道格」第二代,
03:41
I knew知道 I wanted to explore探索 this idea理念.
71
209041
2307
我知道我要探索這個想法。
03:43
But instead代替 of an accident事故 produced生成
by pushing推動 a robotic機器人 arm to its limits範圍,
72
211372
4418
我並不打算放大機器的失誤,
03:47
I wanted to design設計 a system系統
that would respond響應 to my drawings圖紙
73
215814
2897
而是設計能夠以意料之外的方式
03:50
in ways方法 that I didn't expect期望.
74
218735
1833
回應我筆畫的系統。
03:52
So, I used a visual視覺 algorithm算法
to extract提取 visual視覺 information信息
75
220592
3849
於是,我運用機器視覺算法
03:56
from decades幾十年 of my digital數字
and analog類似物 drawings圖紙.
76
224465
2978
來提取我幾十年來的數字繪畫。
03:59
I trained熟練 a neural神經 net on these drawings圖紙
77
227467
2055
我以此訓練了一個神經網路,
04:01
in order訂購 to generate生成
recurring經常性 patterns模式 in the work
78
229546
2865
優化機器的遞歸模式
需要大量的樣本,
04:04
that were then fed美聯儲 through通過 custom習慣 software軟件
back into the machine.
79
232435
3476
這些樣本經過專門軟件
處理後導入機器。
04:07
I painstakingly精心 collected
as many許多 of my drawings圖紙 as I could find --
80
235935
4386
於是我使盡渾身解數
彙集我的畫作,
04:12
finished works作品, unfinished未完成 experiments實驗
and random隨機 sketches素描 --
81
240345
4215
成品、未完成的實驗品、隨筆畫——
04:16
and tagged標記 them for the AIAI system系統.
82
244584
1999
把它們標記給 AI 系統。
04:18
And since以來 I'm an artist藝術家,
I've been making製造 work for over 20 years年份.
83
246607
3684
作為藝術家,我作畫超過二十年,
04:22
Collecting收集 that many許多 drawings圖紙 took months個月,
84
250315
2024
所以彙集這些畫作花了幾個月的時間,
04:24
it was a whole整個 thing.
85
252363
1389
這是個大工程。
04:25
And here's這裡的 the thing
about training訓練 AIAI systems系統:
86
253776
2595
說到訓練人工智慧,
04:28
it's actually其實 a lot of hard work.
87
256395
2200
這其實要費一番功夫,
04:31
A lot of work goes on behind背後 the scenes場景.
88
259022
2191
背後有很多工作要做。
04:33
But in doing the work,
I realized實現 a little bit more
89
261237
2681
但過程中,我對人工智慧的結構
04:35
about how the architecture建築
of an AIAI is constructed.
90
263942
3421
瞭解得更深入了一點。
04:39
And I realized實現 it's not just made製作
of models楷模 and classifiers分類
91
267387
2947
我意識到這不僅是
神經網路的模型和分類器,
04:42
for the neural神經 network網絡.
92
270358
1322
04:43
But it's a fundamentally從根本上
malleable可鍛鑄 and shapable沙布 system系統,
93
271704
3532
更是可延展、可塑的系統,
04:47
one in which哪一個 the human人的 hand
is always present當下.
94
275260
3111
人類的手始終參與其中。
04:50
It's far from the omnipotent無所不能 AIAI
we've我們已經 been told to believe in.
95
278395
4000
它不再是我們認為
無所不能的人工智慧。
04:54
So I collected these drawings圖紙
for the neural神經 net.
96
282419
2515
用畫作訓練神經網路後,
04:56
And we realized實現 something
that wasn't previously先前 possible可能.
97
284958
3929
前所未有的事情發生了——
05:00
My robot機器人 D.O.U.G. became成為
a real-time即時的 interactive互動 reflection反射
98
288911
4091
我的機器人道格
在實時交互的創作中,
呼應了我過去人生幾十年的作品。
05:05
of the work I'd doneDONE
through通過 the course課程 of my life.
99
293026
2627
05:07
The data數據 was personal個人,
but the results結果 were powerful強大.
100
295677
3865
輸入的數據僅來源於我,
輸出的結果卻遠超於我。
05:11
And I got really excited興奮,
101
299566
1484
我感到非常興奮,
05:13
because I started開始 thinking思維 maybe
machines don't need to be just tools工具,
102
301074
4582
或許機器不該只是工具,
05:17
but they can function功能
as nonhuman非人 collaborators合作者.
103
305680
3420
它還可以是非人的合作者。
05:21
And even more than that,
104
309537
1547
更進一步想,
05:23
I thought maybe
the future未來 of human人的 creativity創造力
105
311108
2429
也許未來的人類創作
不在於作品本身,
05:25
isn't in what it makes品牌
106
313561
1524
05:27
but how it comes together一起
to explore探索 new ways方法 of making製造.
107
315109
3436
而在於人機共同探索藝術的方式。
05:31
So if D.O.U.G._1 was the muscle肌肉,
108
319101
2190
如果說一代「道格」是肌肉,
05:33
and D.O.U.G._2 was the brain,
109
321315
1762
二代「道格」是大腦,
05:35
then I like to think
of D.O.U.G._3 as the family家庭.
110
323101
2928
三代「道格」便是家人。
05:38
I knew知道 I wanted to explore探索 this idea理念
of human-nonhuman人-非人類 collaboration合作 at scale規模.
111
326482
4793
我想要將人機合作的想法放大。
05:43
So over the past過去 few少數 months個月,
112
331299
1373
於是在過去幾個月裡,
05:44
I worked工作 with my team球隊
to develop發展 20 custom習慣 robots機器人
113
332696
3135
我和團隊造出了 20 個定製的機器人
05:47
that could work with me as a collective集體.
114
335855
1960
與我集體創作。
05:49
They would work as a group,
115
337839
1293
它們會像團隊一樣協作,
05:51
and together一起, we would collaborate合作
with all of New York紐約 City.
116
339156
2889
我和它們一起,
與整個紐約市攜手合作。
05:54
I was really inspired啟發
by Stanford斯坦福 researcher研究員 Fei-Fei菲菲 Li,
117
342069
2944
史丹佛大學的李飛飛教授
激勵了我的靈感,她說:
05:57
who said, "if we want to teach
machines how to think,
118
345037
2515
「要想教機器如何思考,
05:59
we need to first teach them how to see."
119
347576
1984
先要教它如何看見。」
06:01
It made製作 me think of the past過去 decade
of my life in New York紐約,
120
349584
2785
這讓我想起了
過去幾十年的紐約生活,
06:04
and how I'd been all watched看著 over by these
surveillance監控 cameras相機 around the city.
121
352393
3993
城市上空的攝像頭一直俯視著我。
06:08
And I thought it would be
really interesting有趣
122
356410
2056
如果我用它們來訓練機器視覺,
06:10
if I could use them
to teach my robots機器人 to see.
123
358490
2405
那一定很有趣。
06:12
So with this project項目,
124
360919
1888
在這個專案中,
06:14
I thought about the gaze凝視 of the machine,
125
362831
1967
我思考著機器對我們的凝視。
06:16
and I began開始 to think about vision視力
as multidimensional多維,
126
364822
3226
於是我開始將視覺看成多元的,
06:20
as views意見 from somewhere某處.
127
368072
1600
看成某處來的觀點。
06:22
We collected video視頻
128
370151
1834
我們從各處收集影片,
06:24
from publicly公然 available可得到
camera相機 feeds供稿 on the internet互聯網
129
372009
3063
網路上的公眾攝影機拍的影片,
06:27
of people walking步行 on the sidewalks人行道,
130
375096
1690
人行道上的行人,
車道上的轎車、計程車……
06:28
cars汽車 and taxis出租車 on the road,
131
376810
1712
城市中的各類運動軌跡。
06:30
all kinds of urban城市的 movement運動.
132
378546
1817
06:33
We trained熟練 a vision視力 algorithm算法
on those feeds供稿
133
381188
2603
基於一種叫「光流法」的技術,
06:35
based基於 on a technique技術
called "optical光纖 flow,"
134
383815
2286
我們訓練了一個視覺算法,
06:38
to analyze分析 the collective集體 density密度,
135
386125
1977
來分析收集到的人流密度,
06:40
direction方向, dwell and velocity速度 states狀態
of urban城市的 movement運動.
136
388126
3637
都市中軌跡的方向、速度,
以及生活方式。
06:44
Our system系統 extracted提取 those states狀態
from the feeds供稿 as positional位置 data數據
137
392178
4269
系統從海量的位置數據中
提取出這些參數,
06:48
and became成為 pads for my
robotic機器人 units單位 to draw on.
138
396471
3373
我的機器人依靠這些數據來作畫。
06:51
Instead代替 of a collaboration合作 of one-to-one一到一個,
139
399868
2534
與之前的一對一合作不同,
06:54
we made製作 a collaboration合作 of many-to-many許多一對多.
140
402426
3024
我們實現了多對多的合作。
06:57
By combining結合 the vision視力 of human人的
and machine in the city,
141
405474
3587
透過結合城市中
人類與機器的視界,
07:01
we reimagined重新想像 what
a landscape景觀 painting繪畫 could be.
142
409085
2794
我們重構了景觀繪畫。
07:03
Throughout始終 all of my
experiments實驗 with D.O.U.G.,
143
411903
2218
在與「道格」共同作畫的經歷中,
07:06
no two performances演出
have ever been the same相同.
144
414145
2717
沒有哪兩次是完全相同的。
07:08
And through通過 collaboration合作,
145
416886
1382
透過合作,
07:10
we create創建 something that neither也不 of us
could have doneDONE alone單獨:
146
418292
2864
我們完成了無法獨自做到的事,
07:13
we explore探索 the boundaries邊界
of our creativity創造力,
147
421180
2611
我們共同探索了創作的邊界、
07:15
human人的 and nonhuman非人 working加工 in parallel平行.
148
423815
2892
人類與非人類的平行工作。
07:19
I think this is just the beginning開始.
149
427823
2334
我想這才剛剛開始。
07:22
This year, I've launched推出 Scilicet西利塞特,
150
430569
2183
今年, 我創辦了 Scilicet 實驗室,
07:24
my new lab實驗室 exploring探索 human人的
and interhuman人間 collaboration合作.
151
432776
4245
以探索人類和人類間的合作。
07:29
We're really interested有興趣
in the feedback反饋 loop循環
152
437339
2120
我們對人類、AI 與生態系統之間的
07:31
between之間 individual個人, artificial人造
and ecological生態 systems系統.
153
439483
4230
反饋關係很感興趣。
07:36
We're connecting human人的 and machine output產量
154
444276
2269
我們將人類和 AI
07:38
to biometrics生物識別技術 and other kinds
of environmental環境的 data數據.
155
446569
2984
與生物特徵識別數據
和其他環境數據相聯繫,
07:41
We're inviting誘人的 anyone任何人 who's誰是 interested有興趣
in the future未來 of work, systems系統
156
449577
4079
我們邀請所有
對未來的作品、系統、
07:45
and interhuman人間 collaboration合作
157
453680
1595
人類合作感興趣的人
07:47
to explore探索 with us.
158
455299
1550
加入我們,一同探索。
07:48
We know it's not just technologists技術專家
that have to do this work
159
456873
3405
這項事業不僅屬於科技工作者,
07:52
and that we all have a role角色 to play.
160
460302
2103
每個人都能作出貢獻。
07:54
We believe that by teaching教學 machines
161
462429
2243
我們相信
透過教授機器
完成人類的傳統工作,
07:56
how to do the work
traditionally傳統 doneDONE by humans人類,
162
464696
2730
07:59
we can explore探索 and evolve發展 our criteria標準
163
467450
2953
我們就能探索和更新
08:02
of what's made製作 possible可能 by the human人的 hand.
164
470427
2443
對人類創造可能性的認知。
08:04
And part部分 of that journey旅程
is embracing擁抱 the imperfections缺陷
165
472894
3493
這段旅程的一部分是悅納不完美,
08:08
and recognizing認識 the fallibility易錯
of both human人的 and machine,
166
476411
3690
發現人機共有的缺陷,
08:12
in order訂購 to expand擴大 the potential潛在 of both.
167
480125
2405
以此更好地發掘兩者的潛能。
08:14
Today今天, I'm still in pursuit追求
of finding發現 the beauty美女
168
482919
2301
今天,我仍追求著人機創作的美妙。
08:17
in human人的 and nonhuman非人 creativity創造力.
169
485244
2276
08:19
In the future未來, I have no idea理念
what that will look like,
170
487865
2829
我還不知道未來這會變得怎樣,
08:23
but I'm pretty漂亮 curious好奇 to find out.
171
491627
2024
但我滿懷好奇,探索不止。
08:25
Thank you.
172
493675
1151
謝謝大家。
08:26
(Applause掌聲)
173
494850
1884
(掌聲)
Translated by Harper Zhang
Reviewed by Helen Chang

▲Back to top

ABOUT THE SPEAKER
Sougwen Chung - Artist, researcher
Sougwen 愫君 Chung is an artist and researcher whose work explores the dynamics between humans and systems.

Why you should listen
Sougwen Chung's work explores the mark-made-by-hand and the mark-made-by-machine as an approach to understanding the dynamics of humans and systems. Chung is a former research fellow at MIT’s Media Lab and a pioneer in the field of human-machine collaboration. In 2019, she was selected as the Woman of the Year in Monaco for achievement in the Arts & Sciences.
 
In 2018 she was an inaugural E.A.T. Artist in Resident in partnership with New Museum and Bell Labs, and was awarded a commission for her project Omnia per Omnia. In 2016, Chung received Japan Media Art’s Excellence Award in for her project, Drawing Operations. She is a former research fellow at MIT’s Media Lab. She has been awarded Artist in Residence positions at Google, Eyebeam, Japan Media Arts and Pier 9 Autodesk. Her speculative critical practice spans performance, installation and drawings which have been featured in numerous exhibitions at museums and galleries around the world.
More profile about the speaker
Sougwen Chung | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee