ABOUT THE SPEAKER
Eugenia Cheng - Mathematician, pianist
Eugenia Cheng devotes her life to mathematics, the piano and helping people.

Why you should listen

Dr. Eugenia Cheng quit her tenured academic job for a portfolio career as a research mathematician, educator, author, columnist, public speaker, artist and pianist. Her aim is to rid the world of math phobia and develop, demonstrate and advocate for the role of mathematics in addressing issues of social justice.

Her first popular math book, How to Bake Pi, was published by Basic Books in 2015 to widespread acclaim including from the New York TimesNational GeographicScientific American, and she was interviewed around the world including on the BBCNPR and The Late Show with Stephen Colbert. Her second book, Beyond Infinity was published in 2017 and was shortlisted for the Royal Society Insight Investment ScienceBook Prize. Her most recent book, The Art of Logic in an Illogical World, was published in 2018 and was praised in the Guardian.

Cheng was an early pioneer of math on YouTube, and her most viewed video, about math and bagels, has been viewed more than 18 million times to date. She has also assisted with mathematics in elementary schools and high schools for 20 years. Cheng writes the "Everyday Math" column for the Wall Street Journal, is a concert pianist and founded the Liederstube, a not-for-profit organization in Chicago bringing classical music to a wider audience. In 2017 she completed her first mathematical art commission, for Hotel EMC2 in Chicago; her second was installed in 2018 in the Living Architecture exhibit at 6018 North.

Cheng is Scientist In Residence at the School of the Art Institute of Chicago and won tenure in Pure Mathematics at the University of Sheffield, UK. She is now Honorary Fellow at the University of Sheffield and Honorary Visiting Fellow at City University, London. She has previously taught at the universities of Cambridge, Chicago and Nice and holds a PhD in pure mathematics from the University of Cambridge. Her research is in the field of Category Theory, and to date she has published 16 research papers in international journals.
You can learn more about her in this in-depth biographic interview on the BBC's Life Scientific.

More profile about the speaker
Eugenia Cheng | Speaker | TED.com
TEDxLondon

Eugenia Cheng: An unexpected tool for understanding inequality: abstract math

尤吉妮亞 · 程: 誰想得到可以用這個工具來了解不平等:抽象數學

Filmed:
478,298 views

在這個不合理的世界上,我們要如何找出意義?數學家尤吉妮亞 · 程說,我們可以去試著看未預期的地方。她解釋如何把抽象數學的概念應用到日常生活中,引導我們更深入了解一些事物,比如憤怒的根源以及特權怎麼運作。來看看這場演說,進一步了解這項驚人的工具如何協助我們同理他人。
- Mathematician, pianist
Eugenia Cheng devotes her life to mathematics, the piano and helping people. Full bio

Double-click the English transcript below to play the video.

(掌聲)
00:13
The world世界 is awash充斥著
with divisive分裂 arguments參數,
0
1247
5613
這個世界被淹沒了,
充斥著造成不和的爭論、
00:18
conflict衝突,
1
6884
1873
衝突、
00:20
fake news新聞,
2
8781
1813
假新聞、
00:22
victimhood受害者,
3
10618
1586
受害、
00:25
exploitation開發, prejudice偏見,
bigotry偏執, blame, shouting叫喊
4
13146
5701
剝削、偏見、不容忍、責怪、叫喊,
00:30
and minuscule微不足道 attention注意 spans跨度.
5
18871
2923
以及短暫注意力。
00:34
It can sometimes有時 seem似乎
that we are doomed注定 to take sides雙方,
6
22859
5189
有時,似乎我們注定得要選邊站,
00:40
be stuck卡住 in echo迴聲 chambers
7
28072
2262
被困在回聲室裡,
00:42
and never agree同意 again.
8
30358
2317
永遠不會再有共識。
00:45
It can sometimes有時 seem似乎
like a race種族 to the bottom底部,
9
33342
3001
有時,感覺就像是逐底競爭,
00:48
where everyone大家 is calling調用 out
somebody else's別人的 privilege特權
10
36367
4018
每個人都在大聲指出別人的特權,
00:52
and vying百舸爭流 to show顯示 that they
are the most hard-done-by硬地比 person
11
40409
5114
在談話中搶著要展現出
他們是最受委屈的人。
00:57
in the conversation會話.
12
45547
1538
01:01
How can we make sense
13
49033
1830
在這個不合理的世界上,
我們要如何找出意義?
01:02
in a world世界 that doesn't?
14
50887
2404
01:07
I have a tool工具 for understanding理解
this confusing撲朔迷離 world世界 of ours我們的,
15
55604
4757
我有一個工具,能協助了解
我們這個讓人困惑的世界,
01:12
a tool工具 that you might威力 not expect期望:
16
60385
2908
這個工具可能是
你們未曾預期過的:
01:16
abstract抽象 mathematics數學.
17
64194
1654
抽象數學。
01:19
I am a pure mathematician數學家.
18
67268
2383
我是個純數學家。
01:22
Traditionally傳統, pure maths數學
is like the theory理論 of maths數學,
19
70063
4013
傳統上,純數學就像是數學理論,
01:26
where applied應用的 maths數學 is applied應用的
to real真實 problems問題 like building建造 bridges橋樑
20
74100
5169
而應用數學是被用在真實問題上,
比如建造橋樑、讓飛機飛行,
01:31
and flying飛行 planes飛機
21
79293
1515
01:32
and controlling控制 traffic交通 flow.
22
80832
2343
以及控制交通車流。
01:35
But I'm going to talk about a way
that pure maths數學 applies適用 directly
23
83894
4926
但我要談的,是將純數學
做為一種思考方式,
01:40
to our daily日常 lives生活
24
88844
1509
01:42
as a way of thinking思維.
25
90377
1845
直接應用到我們的日常生活中。
01:44
I don't solve解決 quadratic二次 equations方程
to help me with my daily日常 life,
26
92931
4188
我不用解二次方程來協助日常生活,
01:49
but I do use mathematical數學的 thinking思維
to help me understand理解 arguments參數
27
97143
5142
但我會用數學思维來幫我理解論點,
01:54
and to empathize同情 with other people.
28
102309
2509
及去同理他人。
01:57
And so pure maths數學 helps幫助 me
with the entire整個 human人的 world世界.
29
105501
5608
所以,純數學幫我
處理整個人類世界。
02:04
But before I talk about
the entire整個 human人的 world世界,
30
112434
3111
但在我談整個人類世界之前,
02:07
I need to talk about something
that you might威力 think of
31
115569
3060
我得要先談談你可能認為
02:10
as irrelevant不相干 schools學校 maths數學:
32
118653
2686
學了沒用的學校數學:
02:13
factors因素 of numbers數字.
33
121974
2079
數字的因數。
02:16
We're going to start開始
by thinking思維 about the factors因素 of 30.
34
124077
3556
我們從思考 30 的因數開始。
02:19
Now, if this makes品牌 you shudder不寒而栗
with bad memories回憶 of school學校 maths數學 lessons教訓,
35
127657
4716
如果這會引起你過去不好的
學校數學課回憶而讓你發抖,
02:24
I sympathize同情, because I found發現
school學校 maths數學 lessons教訓 boring無聊, too.
36
132397
4598
我感同身受,因為我也覺得
學校數學課很無聊。
02:29
But I'm pretty漂亮 sure we are going
to take this in a direction方向
37
137480
3883
但我很確定,我們今天
會走不同的方向,
02:33
that is very different不同
from what happened發生 at school學校.
38
141387
3441
絕對不是學校的那一套。
02:37
So what are the factors因素 of 30?
39
145718
1726
所以,30 的因數是什麼?
02:39
Well, they're the numbers數字 that go into 30.
40
147468
3225
就是能夠整除 30 的數字。
02:42
Maybe you can remember記得 them.
We'll work them out.
41
150717
2401
也許你能想起來。
我們來把它們解出來。
02:45
It's one, two, three,
42
153142
3814
答案是 1、2、3、
02:48
five, six,
43
156980
2092
5、6、
02:51
10, 15 and 30.
44
159096
2860
10、15,及 30。
02:53
It's not very interesting有趣.
45
161980
1477
這沒什麼樂趣。
02:55
It's a bunch of numbers數字
in a straight直行 line.
46
163957
2399
就只是一連串的數字。
02:58
We can make it more interesting有趣
47
166826
1523
我們可以讓它更有趣,
03:00
by thinking思維 about which哪一個 of these numbers數字
are also factors因素 of each other
48
168373
3690
想想看這些數字中,
有哪些也是彼此的因數?
03:04
and drawing畫畫 a picture圖片,
a bit like a family家庭 tree,
49
172087
2528
畫一張圖,有點像是家族樹狀圖,
03:06
to show顯示 those relationships關係.
50
174639
1706
把那些關係畫出來。
03:08
So 30 is going to be at the top最佳
like a kind of great-grandparent曾祖.
51
176369
4070
所以,最頂端是 30,
有點像是曾祖父。
03:12
Six, 10 and 15 go into 30.
52
180463
2597
30 可以分出 6、10,和 15。
03:15
Five goes into 10 and 15.
53
183689
2800
10 和 15 可以分出 5。
03:18
Two goes into six and 10.
54
186945
2687
6 和 10 則可以分出 2。
03:21
Three goes into six and 15.
55
189656
3287
6 和 15 能分出 3。
03:24
And one goes into two, three and five.
56
192967
4184
2、3、5 則能分出 1。
03:29
So now we see that 10
is not divisible整除 by three,
57
197175
3735
現在我們就能看到,
10 無法被 3 整除,
03:32
but that this is the corners角落 of a cube立方體,
58
200934
3180
但,這是立方體的一個角,
03:36
which哪一個 is, I think, a bit more interesting有趣
59
204138
2081
我認為,這樣會比
一連串的數字更有趣些。
03:38
than a bunch of numbers數字
in a straight直行 line.
60
206243
2124
03:41
We can see something more here.
There's a hierarchy等級制度 going on.
61
209756
2910
這裡還可以看出更多資訊。
有一種階層存在。
03:44
At the bottom底部 level水平 is the number one,
62
212690
1871
在最底層是數字 1,
03:46
then there's the numbers數字
two, three and five,
63
214585
2244
接著是數字 2、3、5。
除了 1 和它們本身之外,
無法分出其他數字。
03:48
and nothing goes into those
except one and themselves他們自己.
64
216853
2810
03:51
You might威力 remember記得
this means手段 they're prime主要.
65
219687
2430
你們可能記得,
這就表示它們是質數。
03:54
At the next下一個 level水平 up,
we have six, 10 and 15,
66
222141
3033
再向上一層,是 6、10、15,
03:57
and each of those is a product產品
of two prime主要 factors因素.
67
225198
3508
它們每一個都是
兩個質數因數的乘積。
04:00
So six is two times three,
68
228730
1942
6 就是 2 乘以 3,
04:02
10 is two times five,
69
230696
1671
10 就是 2 乘以 5,
04:04
15 is three times five.
70
232391
1961
15 就是 3 乘以 5。
04:06
And then at the top最佳, we have 30,
71
234376
1965
接著,最頂層是 30,
04:08
which哪一個 is a product產品
of three prime主要 numbers數字 --
72
236365
2495
它是三個質數的乘積——
04:10
two times three times five.
73
238884
2053
2 乘以 3 乘以 5。
04:12
So I could redraw重繪 this diagram
using運用 those numbers數字 instead代替.
74
240961
4619
所以,我用那些數字
把這張圖重新畫過。
04:18
We see that we've我們已經 got
two, three and five at the top最佳,
75
246335
3068
我們可以看見,
最頂層是 2、3、5,
04:21
we have pairs of numbers數字
at the next下一個 level水平,
76
249427
3072
下面一層則是成對的數字,
04:24
and we have single elements分子
at the next下一個 level水平
77
252523
2387
再下面一層是單一個元素,
04:26
and then the empty set at the bottom底部.
78
254934
1918
最底下則是一個空集合。
04:29
And each of those arrows箭頭 shows節目
losing失去 one of your numbers數字 in the set.
79
257271
5379
每一個箭頭表示
從集合中拿掉一個數字。
04:34
Now maybe it can be clear明確
80
262674
2617
也許這樣更清楚顯示,
04:37
that it doesn't really matter
what those numbers數字 are.
81
265315
2858
那些數字是什麼其實無所謂。
04:40
In fact事實, it doesn't matter what they are.
82
268197
1959
事實上,它們是什麼都無所謂。
04:42
So we could replace更換 them with
something like A, B and C instead代替,
83
270180
4396
我們可以用 a、b、c 來取代它們,
04:46
and we get the same相同 picture圖片.
84
274600
1735
我們還是會有同樣的圖。
04:49
So now this has become成為 very abstract抽象.
85
277025
2117
現在,它就變得非常抽象了。
04:51
The numbers數字 have turned轉身 into letters.
86
279626
1984
數字被轉成英文字。
04:54
But there is a point to this abstraction抽象化,
87
282091
3478
但,轉成這種抽象是有目的的,
04:57
which哪一個 is that it now suddenly突然
becomes very widely廣泛 applicable適用,
88
285593
4585
那就是,它的應用範圍
突然間就變得很廣,
05:02
because A, B and C could be anything.
89
290202
3674
因為 a、b、c 可是以任何東西。
05:06
For example, they could be
three types類型 of privilege特權:
90
294291
4318
比如,它們可能是三種特權:
05:10
rich豐富, white白色 and male.
91
298633
2693
富裕、白人、男性。
05:14
So then at the next下一個 level水平,
we have rich豐富 white白色 people.
92
302386
3190
接著,下一層,有富裕的白人。
05:18
Here we have rich豐富 male people.
93
306368
2481
這裡是富裕的男性。
05:20
Here we have white白色 male people.
94
308873
2049
這裡是白人男性。
05:22
Then we have rich豐富, white白色 and male.
95
310946
3615
接著有富裕白人男性。
05:27
And finally最後, people with none沒有
of those types類型 of privilege特權.
96
315209
3132
最後,是三種特權都沒有的人。
05:30
And I'm going to put back in
the rest休息 of the adjectives形容詞 for emphasis重點.
97
318365
3269
現在我要把其他的形容詞
也放回來供強調之用。
05:33
So here we have rich豐富, white白色
non-male非男 people,
98
321658
3030
這裡的是富裕白人非男性,
05:36
to remind提醒 us that there are
nonbinarynonbinary people we need to include包括.
99
324712
3049
以提醒我們納入那些無法
用男女二分法區分的人。
05:39
Here we have rich豐富, nonwhite非白人 male people.
100
327785
2653
這裡的是富裕非白人男性。
05:42
Here we have non-rich非富, white白色 male people,
101
330462
3296
這裡是非富裕白人男性、
05:45
rich豐富, nonwhite非白人, non-male非男,
102
333782
2702
富裕非白人非男性、
05:48
non-rich非富, white白色, non-male非男
103
336508
2551
非富裕白人非男性、
05:51
and non-rich非富, nonwhite非白人, male.
104
339083
2335
非富裕非白人男性。
05:53
And at the bottom底部,
with the least最小 privilege特權,
105
341442
2197
在最底下,特權最少的是
05:55
non-rich非富, nonwhite非白人, non-male非男 people.
106
343663
4043
非富裕非白人非男性。
05:59
We have gone走了 from a diagram
of factors因素 of 30
107
347730
3812
我們已經從 30 的因子圖,
06:03
to a diagram of interaction相互作用
of different不同 types類型 of privilege特權.
108
351566
3930
來到不同特權的交互作用圖。
06:08
And there are many許多 things
we can learn學習 from this diagram, I think.
109
356068
3622
我想,從這張圖中,
我們可以學到很多。
06:11
The first is that each arrow箭頭 represents代表
a direct直接 loss失利 of one type類型 of privilege特權.
110
359714
6811
首先,
每個箭頭代表
直接失去一種特權。
06:19
Sometimes有時 people mistakenly think
that white白色 privilege特權 means手段
111
367331
4483
有時,大家會誤以為
白人特權意味著
06:23
all white白色 people are better off
than all nonwhite非白人 people.
112
371838
4548
所有白人的境況都比非白人更好。
06:28
Some people point at superrich超級富豪
black黑色 sports體育 stars明星 and say,
113
376410
3712
有些人會指著超級富裕的
黑人運動明星,說:
06:32
"See? They're really rich豐富.
White白色 privilege特權 doesn't exist存在."
114
380146
3456
「看到了嗎?他們很富裕。
白人特權並不存在。」
06:36
But that's not what the theory理論
of white白色 privilege特權 says.
115
384116
3029
但白人特權的理論
並不是這樣說的。
06:39
It says that if that superrich超級富豪 sports體育 star
had all the same相同 characteristics特點
116
387169
5238
它說,如果超級富裕的運動明星
在所有的特性都不變的情況下,
06:44
but they were also white白色,
117
392431
1476
只是變成白人,
06:45
we would expect期望 them
to be better off in society社會.
118
393931
3432
我們會預期他們
在社會中有更好的境況。
06:51
There is something else其他
we can understand理解 from this diagram
119
399302
2785
從這張圖,我們還能
了解另外一件事,
06:54
if we look along沿 a row.
120
402111
1986
我們可以沿著橫列來看。
06:56
If we look along沿 the second-to-top從第二到頂 row,
where people have two types類型 of privilege特權,
121
404121
4281
如果看第二列的最上面一列,
也就是有兩種特權的人,
07:00
we might威力 be able能夠 to see
that they're not all particularly尤其 equal等於.
122
408426
3956
我們可能可以看到,
他們並非全都很平等。
07:04
For example, rich豐富 white白色 women婦女
are probably大概 much better off in society社會
123
412406
6079
比如,
在社會中,富裕白人女性的境況
07:10
than poor較差的 white白色 men男人,
124
418509
2195
可能會比貧窮白人男性更好,
07:12
and rich豐富 black黑色 men男人 are probably大概
somewhere某處 in between之間.
125
420728
3006
而富裕黑人男性的境況
可能會在兩者之間。
07:15
So it's really more skewed偏斜 like this,
126
423758
2777
所以它是有點偏斜的,像這樣,
07:18
and the same相同 on the bottom底部 level水平.
127
426559
1933
最下面一層亦是如此。
07:20
But we can actually其實 take it further進一步
128
428990
2091
但我們可以再進一步,
07:23
and look at the interactions互動
between之間 those two middle中間 levels水平.
129
431105
3571
去看中間兩層的交互作用。
07:27
Because rich豐富, nonwhite非白人 non-men非男性
might威力 well be better off in society社會
130
435076
5936
因為,在社會中,
富裕非白人非男性的境況可能會
好過貧窮白人男性。
07:33
than poor較差的 white白色 men男人.
131
441036
2093
07:35
Think about some extreme極端
examples例子, like Michelle米歇爾 Obama奧巴馬,
132
443153
3908
想想看極端的例子,
比如蜜雪兒歐巴馬,
07:39
Oprah奧普拉 Winfrey溫弗瑞.
133
447085
1418
歐普拉溫芙蕾。
07:40
They're definitely無疑 better off
than poor較差的, white白色, unemployed失業的 homeless無家可歸 men男人.
134
448527
5013
她們的境況肯定比貧窮沒工作
且無家可歸的白人男性更好。
07:46
So actually其實, the diagram
is more skewed偏斜 like this.
135
454164
2780
所以,其實,這張圖的
偏斜應該是像這樣。
07:49
And that tension張力 exists存在
136
457519
2703
且那種緊繃狀況存在於
07:52
between之間 the layers
of privilege特權 in the diagram
137
460246
3239
圖上各特權分層
07:55
and the absolute絕對 privilege特權
that people experience經驗 in society社會.
138
463509
3665
和社會中大家體驗到的
絕對特權之間。
07:59
And this has helped幫助 me to understand理解
why some poor較差的 white白色 men男人
139
467198
3674
這協助我了解,
為什麼有些貧窮白人男性
08:02
are so angry憤怒 in society社會 at the moment時刻.
140
470896
3409
此時對於社會感到如此憤怒。
08:06
Because they are considered考慮 to be high up
in this cuboid長方體 of privilege特權,
141
474329
4427
因為在這個特權立方體中,
他們被視為處在高位,
08:10
but in terms條款 of absolute絕對 privilege特權,
they don't actually其實 feel the effect影響 of it.
142
478780
4783
但就絕對特權來說,
他們其實沒有感覺到它的效應。
08:15
And I believe that understanding理解
the root of that anger憤怒
143
483587
3446
我相信,了解那憤怒的根源,
08:19
is much more productive生產的
than just being存在 angry憤怒 at them in return返回.
144
487057
4287
比起只是反過來對他們感到憤怒,
是更有建設性的做法,
08:25
Seeing眼見 these abstract抽象 structures結構
can also help us switch開關 contexts上下文
145
493289
4550
看這些抽象的結構
也能協助我們調換情境,
08:29
and see that different不同 people
are at the top最佳 in different不同 contexts上下文.
146
497863
3646
了解不同的人在頂端的
不同情境中會如何。
08:33
In our original原版的 diagram,
147
501533
1780
在我們原始的圖中,
08:35
rich豐富 white白色 men男人 were at the top最佳,
148
503337
2003
富裕白人男性是在頂端的人,
08:37
but if we restricted限制
our attention注意 to non-men非男性,
149
505364
3702
但如果我們把注意力侷限在非男性,
08:41
we would see that they are here,
150
509090
1690
他們在這些地方,
08:42
and now the rich豐富, white白色
non-men非男性 are at the top最佳.
151
510804
2731
現在,富裕白人非男性
變成是在頂端。
08:45
So we could move移動 to
a whole整個 context上下文 of women婦女,
152
513559
2845
我們可以改成完全
只看女性的情境,
08:48
and our three types類型 of privilege特權
could now be rich豐富, white白色 and cisgendered順性別.
153
516428
5144
現在我們的三種特權就變成是
富裕、白人、順性別。
08:53
Remember記得 that "cisgendered順性別" means手段
that your gender性別 identity身分 does match比賽
154
521596
3705
「順性別」的意思就是
你的性別認同確實符合
08:57
the gender性別 you were assigned分配 at birth分娩.
155
525325
1965
你出生時具有的性別。
09:00
So now we see that rich豐富, white白色 cisCis women婦女
occupy佔據 the analogous類似 situation情況
156
528021
6012
現在,我們看到富裕白人
順性別女性佔據的地位,
09:06
that rich豐富 white白色 men男人 did
in broader更廣泛 society社會.
157
534057
3174
和在更廣的社會中
富裕白人男性的地位類似。
09:09
And this has helped幫助 me understand理解
why there is so much anger憤怒
158
537255
3428
這協助我了解,
為什麼會有這麼多的怒火
09:12
towards rich豐富 white白色 women婦女,
159
540707
1653
是針對富裕白人女性,
09:14
especially特別 in some parts部分
of the feminist女權主義者 movement運動 at the moment時刻,
160
542384
3522
特別是在此時女權主義
運動的一些地方,
09:17
because perhaps也許 they're prone易於
to seeing眼看 themselves他們自己 as underprivileged弱勢
161
545930
3660
因為也許她們傾向會認為,
相對於白人男性,她們沒有特權,
09:21
relative相對的 to white白色 men男人,
162
549614
1813
09:23
and they forget忘記 how overprivileged過度特權
they are relative相對的 to nonwhite非白人 women婦女.
163
551451
5111
而她們忘記了相對於非白人女性,
她們其實有太多的特權。
09:30
We can all use these abstract抽象 structures結構
to help us pivot between之間 situations情況
164
558554
5440
我們都可以用這些
抽象結構來協助我們,
在我們比較有特權和比較
沒特權的不同情況中轉換。
09:36
in which哪一個 we are more privileged特權
and less privileged特權.
165
564018
2592
09:38
We are all more privileged特權 than somebody
166
566634
2523
我們都比某些人更有特權,
09:41
and less privileged特權 than somebody else其他.
167
569181
2438
也都有某些人比我們更有特權。
09:44
For example, I know and I feel
that as an Asian亞洲 person,
168
572738
4784
比如,身為亞洲人,
我知道也感覺得到
09:49
I am less privileged特權 than white白色 people
169
577546
2730
我的特權不如白人,
09:52
because of white白色 privilege特權.
170
580300
1475
因為白人特權。
09:53
But I also understand理解
171
581799
1648
但我也了解,
09:55
that I am probably大概 among其中
the most privileged特權 of nonwhite非白人 people,
172
583471
4129
在非白人當中,
我可能是最有特權的,
09:59
and this helps幫助 me pivot
between之間 those two contexts上下文.
173
587624
3119
這就協助我在兩種情境當中轉換。
10:03
And in terms條款 of wealth財富,
174
591595
1693
就財富來說,
10:05
I don't think I'm super rich豐富.
175
593312
1843
我不認為我超有錢。
10:07
I'm not as rich豐富 as the kind of people
who don't have to work.
176
595179
3045
我不像有些人有錢到不用工作。
10:10
But I am doing fine,
177
598248
1548
但我過得很好,
10:11
and that's a much better
situation情況 to be in
178
599820
2155
我的情況比很多人好很多了,
10:13
than people who are really struggling奮鬥的,
179
601999
1811
比如真的在掙扎的人,
10:15
maybe are unemployed失業的
or working加工 at minimum最低限度 wage工資.
180
603834
3061
沒有工作或是工作領最低薪資的人。
10:20
I perform演出 these pivots支點 in my head
181
608566
3426
我在我的腦中進行這些轉換,
10:24
to help me understand理解 experiences經驗
from other people's人們 points of view視圖,
182
612016
5239
來協助我了解從他人的觀點
看到的是什麼,
10:30
which哪一個 brings帶來 me to this
possibly或者 surprising奇怪 conclusion結論:
183
618412
3989
這讓我得到了這個
或許非常驚人的結論:
10:35
that abstract抽象 mathematics數學
is highly高度 relevant相應 to our daily日常 lives生活
184
623242
6834
抽象數學
和我們的日常生活息息相關,
10:42
and can even help us to understand理解
and empathize同情 with other people.
185
630100
6720
甚至能夠協助我們
了解並同情他人。
10:50
My wish希望 is that everybody每個人 would try
to understand理解 other people more
186
638584
5639
我的希望是每個人都能
嘗試對別人多一點了解,
10:56
and work with them together一起,
187
644247
1916
和他們一起合作,
10:58
rather than competing競爭 with them
188
646187
2021
而不是和他們競爭,
11:00
and trying to show顯示 that they're wrong錯誤.
189
648232
2611
試圖證明他們是錯的。
11:04
And I believe that abstract抽象
mathematical數學的 thinking思維
190
652031
4567
我相信抽象數學思考
能協助我們做到這個目標。
11:08
can help us achieve實現 that.
191
656622
2080
11:12
Thank you.
192
660265
1205
謝謝。
11:13
(Applause掌聲)
193
661494
4155
(掌聲)
Translated by Lilian Chiu
Reviewed by Bruce Sung

▲Back to top

ABOUT THE SPEAKER
Eugenia Cheng - Mathematician, pianist
Eugenia Cheng devotes her life to mathematics, the piano and helping people.

Why you should listen

Dr. Eugenia Cheng quit her tenured academic job for a portfolio career as a research mathematician, educator, author, columnist, public speaker, artist and pianist. Her aim is to rid the world of math phobia and develop, demonstrate and advocate for the role of mathematics in addressing issues of social justice.

Her first popular math book, How to Bake Pi, was published by Basic Books in 2015 to widespread acclaim including from the New York TimesNational GeographicScientific American, and she was interviewed around the world including on the BBCNPR and The Late Show with Stephen Colbert. Her second book, Beyond Infinity was published in 2017 and was shortlisted for the Royal Society Insight Investment ScienceBook Prize. Her most recent book, The Art of Logic in an Illogical World, was published in 2018 and was praised in the Guardian.

Cheng was an early pioneer of math on YouTube, and her most viewed video, about math and bagels, has been viewed more than 18 million times to date. She has also assisted with mathematics in elementary schools and high schools for 20 years. Cheng writes the "Everyday Math" column for the Wall Street Journal, is a concert pianist and founded the Liederstube, a not-for-profit organization in Chicago bringing classical music to a wider audience. In 2017 she completed her first mathematical art commission, for Hotel EMC2 in Chicago; her second was installed in 2018 in the Living Architecture exhibit at 6018 North.

Cheng is Scientist In Residence at the School of the Art Institute of Chicago and won tenure in Pure Mathematics at the University of Sheffield, UK. She is now Honorary Fellow at the University of Sheffield and Honorary Visiting Fellow at City University, London. She has previously taught at the universities of Cambridge, Chicago and Nice and holds a PhD in pure mathematics from the University of Cambridge. Her research is in the field of Category Theory, and to date she has published 16 research papers in international journals.
You can learn more about her in this in-depth biographic interview on the BBC's Life Scientific.

More profile about the speaker
Eugenia Cheng | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee