ABOUT THE SPEAKER
Eugenia Cheng - Mathematician, pianist
Eugenia Cheng devotes her life to mathematics, the piano and helping people.

Why you should listen

Dr. Eugenia Cheng quit her tenured academic job for a portfolio career as a research mathematician, educator, author, columnist, public speaker, artist and pianist. Her aim is to rid the world of math phobia and develop, demonstrate and advocate for the role of mathematics in addressing issues of social justice.

Her first popular math book, How to Bake Pi, was published by Basic Books in 2015 to widespread acclaim including from the New York TimesNational GeographicScientific American, and she was interviewed around the world including on the BBCNPR and The Late Show with Stephen Colbert. Her second book, Beyond Infinity was published in 2017 and was shortlisted for the Royal Society Insight Investment ScienceBook Prize. Her most recent book, The Art of Logic in an Illogical World, was published in 2018 and was praised in the Guardian.

Cheng was an early pioneer of math on YouTube, and her most viewed video, about math and bagels, has been viewed more than 18 million times to date. She has also assisted with mathematics in elementary schools and high schools for 20 years. Cheng writes the "Everyday Math" column for the Wall Street Journal, is a concert pianist and founded the Liederstube, a not-for-profit organization in Chicago bringing classical music to a wider audience. In 2017 she completed her first mathematical art commission, for Hotel EMC2 in Chicago; her second was installed in 2018 in the Living Architecture exhibit at 6018 North.

Cheng is Scientist In Residence at the School of the Art Institute of Chicago and won tenure in Pure Mathematics at the University of Sheffield, UK. She is now Honorary Fellow at the University of Sheffield and Honorary Visiting Fellow at City University, London. She has previously taught at the universities of Cambridge, Chicago and Nice and holds a PhD in pure mathematics from the University of Cambridge. Her research is in the field of Category Theory, and to date she has published 16 research papers in international journals.
You can learn more about her in this in-depth biographic interview on the BBC's Life Scientific.

More profile about the speaker
Eugenia Cheng | Speaker | TED.com
TEDxLondon

Eugenia Cheng: An unexpected tool for understanding inequality: abstract math

Eugenia Cheng: Uma ferramenta inesperada para entender a desigualdade: matemática abstrata

Filmed:
478,298 views

Como entendermos um mundo que não faz sentido? "Olhando em lugares inesperados", diz a matemática Eugenia Cheng. Ela explica como aplicar conceitos da matemática abstrata no cotidiano pode nos fazer entender coisas como a origem da raiva e o papel do privilégio. Saiba mais como esta ferramenta surpreendente pode nos ajudar a ser mais empáticos.
- Mathematician, pianist
Eugenia Cheng devotes her life to mathematics, the piano and helping people. Full bio

Double-click the English transcript below to play the video.

00:13
The world is awash
with divisive arguments,
0
1247
5613
O mundo está inundado
de discussões polêmicas,
00:18
conflict,
1
6884
1873
conflitos,
00:20
fake news,
2
8781
1813
notícias falsas,
00:22
victimhood,
3
10618
1586
vitimização,
00:25
exploitation, prejudice,
bigotry, blame, shouting
4
13146
5701
exploração, preconceito,
intolerância, acusações, gritarias
00:30
and minuscule attention spans.
5
18871
2923
e défice de atenção.
00:34
It can sometimes seem
that we are doomed to take sides,
6
22859
5189
Às vezes, parece que estamos
destinados a tomar partido,
00:40
be stuck in echo chambers
7
28072
2262
a estarmos presos em câmaras de eco
00:42
and never agree again.
8
30358
2317
e a nunca mais concordar.
00:45
It can sometimes seem
like a race to the bottom,
9
33342
3001
Às vezes, parece uma corrida
ao fundo do poço,
00:48
where everyone is calling out
somebody else's privilege
10
36367
4018
em que todo mundo chama atenção
ao privilégio do outro
00:52
and vying to show that they
are the most hard-done-by person
11
40409
5114
e compete para se mostrar
o mais injustiçado na discussão.
00:57
in the conversation.
12
45547
1538
01:01
How can we make sense
13
49033
1830
Como entendermos um mundo
que não faz sentido?
01:02
in a world that doesn't?
14
50887
2404
01:07
I have a tool for understanding
this confusing world of ours,
15
55604
4757
Tenho uma ferramenta para entender
esse nosso mundo confuso
01:12
a tool that you might not expect:
16
60385
2908
que, para vocês, talvez seja inesperada:
01:16
abstract mathematics.
17
64194
1654
matemática abstrata.
01:19
I am a pure mathematician.
18
67268
2383
Sou estudiosa da matemática pura.
01:22
Traditionally, pure maths
is like the theory of maths,
19
70063
4013
Tradicionalmente, matemática pura
é como se fosse a teoria da matemática,
01:26
where applied maths is applied
to real problems like building bridges
20
74100
5169
enquanto a matemática aplicada é usada
em problemas reais, como construir pontes,
01:31
and flying planes
21
79293
1515
pilotar aviões e controlar
o fluxo de tráfego.
01:32
and controlling traffic flow.
22
80832
2343
01:35
But I'm going to talk about a way
that pure maths applies directly
23
83894
4926
Mas irei falar sobre como
a matemática pura é usada diretamente
01:40
to our daily lives
24
88844
1509
em nosso cotidiano
como um modo de pensar.
01:42
as a way of thinking.
25
90377
1845
01:44
I don't solve quadratic equations
to help me with my daily life,
26
92931
4188
Resolver equações de segundo grau
não me ajuda no dia a dia,
01:49
but I do use mathematical thinking
to help me understand arguments
27
97143
5142
mas eu uso o raciocínio matemático
para me ajudar a entender argumentos
01:54
and to empathize with other people.
28
102309
2509
e ser empática com outras pessoas.
01:57
And so pure maths helps me
with the entire human world.
29
105501
5608
Então, a matemática pura
me ajuda com todo o mundo.
02:04
But before I talk about
the entire human world,
30
112434
3111
Mas antes de falar sobre todo o mundo,
02:07
I need to talk about something
that you might think of
31
115569
3060
preciso falar sobre algo
que vocês possam achar
02:10
as irrelevant schools maths:
32
118653
2686
tão irrelevante quanto matemática escolar:
02:13
factors of numbers.
33
121974
2079
fatores de números.
02:16
We're going to start
by thinking about the factors of 30.
34
124077
3556
Comecemos com os fatores de 30.
02:19
Now, if this makes you shudder
with bad memories of school maths lessons,
35
127657
4716
Se isso lhes faz tremer com memórias ruins
das aulas de matemática,
02:24
I sympathize, because I found
school maths lessons boring, too.
36
132397
4598
compadeço-me, pois também achava
as aulas de matemática chatas.
02:29
But I'm pretty sure we are going
to take this in a direction
37
137480
3883
Mas tenho certeza que abordaremos isso
de modo bem diferente
de como o fizemos na escola.
02:33
that is very different
from what happened at school.
38
141387
3441
02:37
So what are the factors of 30?
39
145718
1726
O que são fatores de 30?
02:39
Well, they're the numbers that go into 30.
40
147468
3225
São os divisores de 30.
02:42
Maybe you can remember them.
We'll work them out.
41
150717
2401
Talvez se lembrem deles, vejamos:
um, dois, três,
02:45
It's one, two, three,
42
153142
3814
02:48
five, six,
43
156980
2092
cinco, seis,
02:51
10, 15 and 30.
44
159096
2860
10, 15 e 30.
02:53
It's not very interesting.
45
161980
1477
Não é muito interessante.
02:55
It's a bunch of numbers
in a straight line.
46
163957
2399
São vários números em uma linha reta.
02:58
We can make it more interesting
47
166826
1523
Podemos torná-los mais interessantes
03:00
by thinking about which of these numbers
are also factors of each other
48
168373
3690
ao analisar quais desses números
também são fatores entre si
03:04
and drawing a picture,
a bit like a family tree,
49
172087
2528
e desenhar uma figura,
quase uma árvore genealógica,
03:06
to show those relationships.
50
174639
1706
para mostrar essas relações.
03:08
So 30 is going to be at the top
like a kind of great-grandparent.
51
176369
4070
Então, o 30 fica no topo
como se fosse o tataravô.
03:12
Six, 10 and 15 go into 30.
52
180463
2597
Seis, 10 e 15 são divisores de 30.
03:15
Five goes into 10 and 15.
53
183689
2800
Cinco é divisor de 10 e 15.
03:18
Two goes into six and 10.
54
186945
2687
Dois é divisor de 6 e 10.
03:21
Three goes into six and 15.
55
189656
3287
Três é divisor de 6 e 15.
03:24
And one goes into two, three and five.
56
192967
4184
Um é divisor de dois, três e cinco.
03:29
So now we see that 10
is not divisible by three,
57
197175
3735
Agora, vemos que dez
não é divisível por três,
03:32
but that this is the corners of a cube,
58
200934
3180
mas que estes são vértices de um cubo,
03:36
which is, I think, a bit more interesting
59
204138
2081
o que é um pouco mais interessante
03:38
than a bunch of numbers
in a straight line.
60
206243
2124
do que vários números em uma linha reta.
03:41
We can see something more here.
There's a hierarchy going on.
61
209756
2910
Podemos perceber algo mais:
há uma hierarquia aqui.
03:44
At the bottom level is the number one,
62
212690
1871
No nível de baixo está o número um,
03:46
then there's the numbers
two, three and five,
63
214585
2244
em seguida os números dois, três e cinco,
03:48
and nothing goes into those
except one and themselves.
64
216853
2810
que só são divisíveis
por eles mesmos e por um,
03:51
You might remember
this means they're prime.
65
219687
2430
o que significa que são números primos.
03:54
At the next level up,
we have six, 10 and 15,
66
222141
3033
No nível seguinte, temos 6, 10 e 15,
03:57
and each of those is a product
of two prime factors.
67
225198
3508
que são produtos da multiplicação
de dois fatores primos.
04:00
So six is two times three,
68
228730
1942
Seis é dois vezes três,
04:02
10 is two times five,
69
230696
1671
dez é dois vezes cinco,
04:04
15 is three times five.
70
232391
1961
quinze é três vezes cinco.
04:06
And then at the top, we have 30,
71
234376
1965
No topo, temos 30,
que é o produto da multiplicação
de três números primos:
04:08
which is a product
of three prime numbers --
72
236365
2495
04:10
two times three times five.
73
238884
2053
dois vezes três vezes cinco.
04:12
So I could redraw this diagram
using those numbers instead.
74
240961
4619
Poderia redesenhar esse diagrama
usando esses números.
04:18
We see that we've got
two, three and five at the top,
75
246335
3068
Temos dois, três e cinco no topo.
04:21
we have pairs of numbers
at the next level,
76
249427
3072
Temos pares de números no nível seguinte.
04:24
and we have single elements
at the next level
77
252523
2387
Temos unidades no próximo nível
04:26
and then the empty set at the bottom.
78
254934
1918
e um conjunto vazio na base.
04:29
And each of those arrows shows
losing one of your numbers in the set.
79
257271
5379
Cada seta mostra a perda
de um número no conjunto.
04:34
Now maybe it can be clear
80
262674
2617
Talvez agora esteja claro
04:37
that it doesn't really matter
what those numbers are.
81
265315
2858
que não importa quais sejam esses números.
04:40
In fact, it doesn't matter what they are.
82
268197
1959
Na verdade, não importa o que sejam.
04:42
So we could replace them with
something like A, B and C instead,
83
270180
4396
Poderíamos substituí-los por A, B e C,
04:46
and we get the same picture.
84
274600
1735
e teríamos a mesma imagem.
04:49
So now this has become very abstract.
85
277025
2117
Isso se tornou muito abstrato.
04:51
The numbers have turned into letters.
86
279626
1984
Números viraram letras.
04:54
But there is a point to this abstraction,
87
282091
3478
Mas há um objetivo nessa abstração,
04:57
which is that it now suddenly
becomes very widely applicable,
88
285593
4585
pois agora isso se tornou
amplamente aplicável,
05:02
because A, B and C could be anything.
89
290202
3674
porque A, B e C podem ser qualquer coisa.
05:06
For example, they could be
three types of privilege:
90
294291
4318
Poderiam ser três tipos de privilégio:
05:10
rich, white and male.
91
298633
2693
rico, branco e homem.
05:14
So then at the next level,
we have rich white people.
92
302386
3190
No nível seguinte temos
pessoas ricas e brancas.
05:18
Here we have rich male people.
93
306368
2481
Aqui, temos homens ricos.
05:20
Here we have white male people.
94
308873
2049
Aqui, temos homens brancos.
05:22
Then we have rich, white and male.
95
310946
3615
Depois, temos ricos, brancos e homens.
05:27
And finally, people with none
of those types of privilege.
96
315209
3132
Ao fim, temos pessoas
sem nenhum desses privilégios.
05:30
And I'm going to put back in
the rest of the adjectives for emphasis.
97
318365
3269
Colocarei o restante
dos adjetivos para dar ênfase.
05:33
So here we have rich, white
non-male people,
98
321658
3030
Aqui temos pessoas ricas,
brancas e não-homens,
para nos lembrar de que há pessoas
não-binárias que precisamos incluir.
05:36
to remind us that there are
nonbinary people we need to include.
99
324712
3049
05:39
Here we have rich, nonwhite male people.
100
327785
2653
Aqui, temos homens, não-brancos e ricos.
05:42
Here we have non-rich, white male people,
101
330462
3296
Aqui, temos homens, brancos e não-ricos.
05:45
rich, nonwhite, non-male,
102
333782
2702
Ricos, não-brancos e não-homens.
05:48
non-rich, white, non-male
103
336508
2551
Não-ricos, brancos e não-homens.
05:51
and non-rich, nonwhite, male.
104
339083
2335
E não-ricos, não-brancos e homens.
05:53
And at the bottom,
with the least privilege,
105
341442
2197
Na base temos as pessoas
menos privilegiadas:
05:55
non-rich, nonwhite, non-male people.
106
343663
4043
não-ricas, não-brancas e não-homens.
05:59
We have gone from a diagram
of factors of 30
107
347730
3812
Partimos de um diagrama de fatores de 30
06:03
to a diagram of interaction
of different types of privilege.
108
351566
3930
para um diagrama de interações
entre diferentes tipos de privilégio.
06:08
And there are many things
we can learn from this diagram, I think.
109
356068
3622
E há muito a se aprender
com esse diagrama.
06:11
The first is that each arrow represents
a direct loss of one type of privilege.
110
359714
6811
Primeiro, cada seta representa
a perda direta de um tipo de privilégio.
06:19
Sometimes people mistakenly think
that white privilege means
111
367331
4483
Às vezes, erroneamente se pensa
que o privilégio de ser branco significa
06:23
all white people are better off
than all nonwhite people.
112
371838
4548
que todos os brancos estão em melhores
condições que todos os não-brancos.
06:28
Some people point at superrich
black sports stars and say,
113
376410
3712
Alguns apontam para os astros
esportistas negros e dizem:
06:32
"See? They're really rich.
White privilege doesn't exist."
114
380146
3456
"Está vendo? Eles são ricos.
Privilégio de ser branco não existe".
06:36
But that's not what the theory
of white privilege says.
115
384116
3029
Mas não é isso que a teoria
do privilégio de ser branco diz.
06:39
It says that if that superrich sports star
had all the same characteristics
116
387169
5238
Ela diz que se aquele astro esportista
super-rico tivesse essas características
06:44
but they were also white,
117
392431
1476
e também fosse branco,
06:45
we would expect them
to be better off in society.
118
393931
3432
é de se esperar que estivesse
em melhores condições na sociedade.
06:51
There is something else
we can understand from this diagram
119
399302
2785
Há algo mais que podemos
compreender com este diagrama
06:54
if we look along a row.
120
402111
1986
se olharmos as linhas.
06:56
If we look along the second-to-top row,
where people have two types of privilege,
121
404121
4281
Ao olhar a segunda linha, na qual pessoas
têm dois tipos de privilégio,
07:00
we might be able to see
that they're not all particularly equal.
122
408426
3956
perceberemos que elas
não são totalmente iguais.
07:04
For example, rich white women
are probably much better off in society
123
412406
6079
Por exemplo: mulheres brancas e ricas
provavelmente estão em melhores condições
07:10
than poor white men,
124
418509
2195
do que homens brancos e pobres.
07:12
and rich black men are probably
somewhere in between.
125
420728
3006
E homens negros e ricos estão
entre os dois grupos.
07:15
So it's really more skewed like this,
126
423758
2777
Na verdade, é assim mais inclinado.
07:18
and the same on the bottom level.
127
426559
1933
E o mesmo ocorre no nível abaixo.
07:20
But we can actually take it further
128
428990
2091
Mas podemos ir além
07:23
and look at the interactions
between those two middle levels.
129
431105
3571
e analisar as interações
entre os dois níveis do meio.
07:27
Because rich, nonwhite non-men
might well be better off in society
130
435076
5936
Pessoas ricas, não-brancas e não-homens
podem estar em melhores condições
07:33
than poor white men.
131
441036
2093
do que homens brancos e pobres.
07:35
Think about some extreme
examples, like Michelle Obama,
132
443153
3908
Pensem em exemplos flagrantes
como a Michelle Obama
07:39
Oprah Winfrey.
133
447085
1418
e a Oprah Winfrey.
07:40
They're definitely better off
than poor, white, unemployed homeless men.
134
448527
5013
Elas estão melhores do que homens
brancos, pobres, desempregados e sem-teto.
07:46
So actually, the diagram
is more skewed like this.
135
454164
2780
Então, na verdade, o diagrama
é assim mais inclinado.
07:49
And that tension exists
136
457519
2703
E essa tensão existe
07:52
between the layers
of privilege in the diagram
137
460246
3239
entre as camadas de privilégio no diagrama
07:55
and the absolute privilege
that people experience in society.
138
463509
3665
e o privilégio absoluto que pessoas
vivenciam na sociedade.
07:59
And this has helped me to understand
why some poor white men
139
467198
3674
Isso me ajudou a entender por que alguns
homens brancos e pobres
08:02
are so angry in society at the moment.
140
470896
3409
estão com tanta raiva
da sociedade atualmente.
08:06
Because they are considered to be high up
in this cuboid of privilege,
141
474329
4427
É porque são vistos como se estivessem
no alto desse cubo de privilégio,
08:10
but in terms of absolute privilege,
they don't actually feel the effect of it.
142
478780
4783
mas, em termos de privilégio absoluto,
eles não sentem os efeitos.
08:15
And I believe that understanding
the root of that anger
143
483587
3446
Acredito que entender a origem dessa raiva
08:19
is much more productive
than just being angry at them in return.
144
487057
4287
é muito mais produtivo do que simplesmente
retribuir-lhes o sentimento.
08:25
Seeing these abstract structures
can also help us switch contexts
145
493289
4550
Analisar essas estruturas abstratas
também nos ajuda a mudar cenários
08:29
and see that different people
are at the top in different contexts.
146
497863
3646
e ver que pessoas diversas
estão no topo em cenários distintos.
08:33
In our original diagram,
147
501533
1780
No diagrama original,
08:35
rich white men were at the top,
148
503337
2003
homens brancos e ricos estavam no topo,
08:37
but if we restricted
our attention to non-men,
149
505364
3702
mas, se atentarmos para os não-homens,
08:41
we would see that they are here,
150
509090
1690
veremos que estão aqui,
08:42
and now the rich, white
non-men are at the top.
151
510804
2731
e, agora, não-homens
ricos e brancos estão no topo.
08:45
So we could move to
a whole context of women,
152
513559
2845
Poderíamos mudar
para um cenário de mulheres,
08:48
and our three types of privilege
could now be rich, white and cisgendered.
153
516428
5144
e nossos três tipos de privilégio
seriam rica, branca e "cisgênero".
08:53
Remember that "cisgendered" means
that your gender identity does match
154
521596
3705
Lembrem-se que cisgênero significa
que sua identidade de gênero corresponde
ao gênero que lhe foi
atribuído no nascimento.
08:57
the gender you were assigned at birth.
155
525325
1965
09:00
So now we see that rich, white cis women
occupy the analogous situation
156
528021
6012
Agora vemos que mulheres cisgênero,
brancas e ricas ocupam situação análoga
09:06
that rich white men did
in broader society.
157
534057
3174
a de homens brancos e ricos
em uma sociedade mais ampla.
09:09
And this has helped me understand
why there is so much anger
158
537255
3428
Isso me ajudou a entender
por que há tanta raiva
direcionada a mulheres brancas e ricas,
09:12
towards rich white women,
159
540707
1653
09:14
especially in some parts
of the feminist movement at the moment,
160
542384
3522
especialmente em algumas partes
do movimento feminista atual,
09:17
because perhaps they're prone
to seeing themselves as underprivileged
161
545930
3660
porque elas talvez estejam propensas
a se verem como desprivilegiadas
09:21
relative to white men,
162
549614
1813
em comparação a homens brancos
09:23
and they forget how overprivileged
they are relative to nonwhite women.
163
551451
5111
que esquecem o quão privilegiadas são
em comparação com mulheres não-brancas.
09:30
We can all use these abstract structures
to help us pivot between situations
164
558554
5440
Podemos utilizar essas estruturas
abstratas para nos colocar em situações
09:36
in which we are more privileged
and less privileged.
165
564018
2592
em que somos mais privilegiados
ou menos privilegiados.
09:38
We are all more privileged than somebody
166
566634
2523
Todos somos mais privilegiados que alguém
09:41
and less privileged than somebody else.
167
569181
2438
e menos privilegiados que outrem.
09:44
For example, I know and I feel
that as an Asian person,
168
572738
4784
Eu sei, e sinto, que, como asiática,
09:49
I am less privileged than white people
169
577546
2730
sou menos privilegiada que pessoas brancas
pelo privilégio de serem brancas.
09:52
because of white privilege.
170
580300
1475
09:53
But I also understand
171
581799
1648
Mas também entendo
09:55
that I am probably among
the most privileged of nonwhite people,
172
583471
4129
que sou uma das mais privilegiadas,
provavelmente, dentre os não-brancos,
09:59
and this helps me pivot
between those two contexts.
173
587624
3119
e isso ajuda a me orientar
entre esses dois cenários.
10:03
And in terms of wealth,
174
591595
1693
Em termos de riqueza,
10:05
I don't think I'm super rich.
175
593312
1843
não me considero super-rica.
10:07
I'm not as rich as the kind of people
who don't have to work.
176
595179
3045
Não sou tão rica quanto as pessoas
que não precisam trabalhar.
10:10
But I am doing fine,
177
598248
1548
Mas estou bem,
10:11
and that's a much better
situation to be in
178
599820
2155
e é uma situação bem melhor
do que quem passa por dificuldades,
10:13
than people who are really struggling,
179
601999
1811
10:15
maybe are unemployed
or working at minimum wage.
180
603834
3061
esteja desempregado
ou ganhando um salário mínimo.
10:20
I perform these pivots in my head
181
608566
3426
Faço esse exercício mental
10:24
to help me understand experiences
from other people's points of view,
182
612016
5239
para tentar entender os acontecimentos
do ponto de vista de outras pessoas,
10:30
which brings me to this
possibly surprising conclusion:
183
618412
3989
o que me leva a esta possivelmente
inesperada conclusão:
10:35
that abstract mathematics
is highly relevant to our daily lives
184
623242
6834
matemática abstrata é altamente
relevante para nossa vida diária
10:42
and can even help us to understand
and empathize with other people.
185
630100
6720
e pode nos ajudar a entender
e a ser solidários com outras pessoas.
10:50
My wish is that everybody would try
to understand other people more
186
638584
5639
Desejo que todos tentassem
cada vez mais entender uns aos outros
10:56
and work with them together,
187
644247
1916
e trabalhassem juntos
10:58
rather than competing with them
188
646187
2021
em vez de competir entre si
11:00
and trying to show that they're wrong.
189
648232
2611
e tentar mostrar o erro dos outros.
11:04
And I believe that abstract
mathematical thinking
190
652031
4567
E acredito que o raciocínio
matemático abstrato
11:08
can help us achieve that.
191
656622
2080
pode nos levar a esse objetivo.
11:12
Thank you.
192
660265
1205
Obrigada.
11:13
(Applause)
193
661494
4155
(Aplausos)

▲Back to top

ABOUT THE SPEAKER
Eugenia Cheng - Mathematician, pianist
Eugenia Cheng devotes her life to mathematics, the piano and helping people.

Why you should listen

Dr. Eugenia Cheng quit her tenured academic job for a portfolio career as a research mathematician, educator, author, columnist, public speaker, artist and pianist. Her aim is to rid the world of math phobia and develop, demonstrate and advocate for the role of mathematics in addressing issues of social justice.

Her first popular math book, How to Bake Pi, was published by Basic Books in 2015 to widespread acclaim including from the New York TimesNational GeographicScientific American, and she was interviewed around the world including on the BBCNPR and The Late Show with Stephen Colbert. Her second book, Beyond Infinity was published in 2017 and was shortlisted for the Royal Society Insight Investment ScienceBook Prize. Her most recent book, The Art of Logic in an Illogical World, was published in 2018 and was praised in the Guardian.

Cheng was an early pioneer of math on YouTube, and her most viewed video, about math and bagels, has been viewed more than 18 million times to date. She has also assisted with mathematics in elementary schools and high schools for 20 years. Cheng writes the "Everyday Math" column for the Wall Street Journal, is a concert pianist and founded the Liederstube, a not-for-profit organization in Chicago bringing classical music to a wider audience. In 2017 she completed her first mathematical art commission, for Hotel EMC2 in Chicago; her second was installed in 2018 in the Living Architecture exhibit at 6018 North.

Cheng is Scientist In Residence at the School of the Art Institute of Chicago and won tenure in Pure Mathematics at the University of Sheffield, UK. She is now Honorary Fellow at the University of Sheffield and Honorary Visiting Fellow at City University, London. She has previously taught at the universities of Cambridge, Chicago and Nice and holds a PhD in pure mathematics from the University of Cambridge. Her research is in the field of Category Theory, and to date she has published 16 research papers in international journals.
You can learn more about her in this in-depth biographic interview on the BBC's Life Scientific.

More profile about the speaker
Eugenia Cheng | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee