ABOUT THE SPEAKER
Doug Roble - Computer graphics software researcher
Doug Roble has found a career combining the things he loves: math, computers, movies and imagination.

Why you should listen

Doug Roble has really only had one job in his life. After getting his PhD in Computer Science from the Ohio State University in 1992, he joined Digital Domain, a visual effects production company. Once there, he found a unique place where art and technology collide. Now he builds new tools for artists to use and they, in turn, use the tools in surprising and unexpected ways. The feedback loop between art and science is completely addicting. And, the byproduct of this are movies that the whole world enjoys.

Roble's work outside Digital Domain reflects this passion. He was the Editor and Chief of the Journal of Graphics tools for more than five years. He's currently the Chair of the Motion Picture Academy's Sci/Tech Awards and a member of the Academy's Sci/Tech Council. And two of the tools he's built over the years have won Sci/Tech Academy Awards themselves.

More profile about the speaker
Doug Roble | Speaker | TED.com
TED2019

Doug Roble: Digital humans that look just like us

道格•羅勃: 看似真人的數位人類

Filmed:
562,138 views

在這場精彩的演說和技術展示中,軟體研究者道格•羅勃讓「數位道格」初次登台:他是道格的即時 3D 數位呈現,精確程度到了連毛孔和皺紋都一模一樣。在慣性動作捕捉衣、深度神經網路、和大批資料的協助之下,數位道格能呈現出真實道格的情緒(甚至他的血流和睫毛開合)到極細緻的程度。來聽聽這場演說,進一步了解這項令人驚艷的技術是如何打造出來的,以及能如何將它應用在電影、虛擬助理和更多其他的領域中。
- Computer graphics software researcher
Doug Roble has found a career combining the things he loves: math, computers, movies and imagination. Full bio

Double-click the English transcript below to play the video.

00:13
Hello你好.
0
1937
1214
哈囉。
00:15
I'm not a real真實 person.
1
3175
1466
我不是真人。
00:17
I'm actually其實 a copy複製 of a real真實 person.
2
5119
2770
我其實是一個真人的複製品。
00:19
Although雖然, I feel like a real真實 person.
3
7913
2553
不過,我感覺自己是真人。
00:22
It's kind of hard to explain說明.
4
10490
1906
這有點難解釋。
00:24
Hold保持 on -- I think I saw
a real真實 person ... there's one.
5
12420
3790
等等——我想我看到了
一個真人……那裡有一個。
00:28
Let's bring帶來 him onstage在舞台上.
6
16697
1400
咱們把他帶上台吧。
00:33
Hello你好.
7
21307
1150
哈囉。
00:35
(Applause掌聲)
8
23485
3647
(掌聲)
00:40
What you see up there is a digital數字 human人的.
9
28300
3094
各位在上面看到的是一個數位人。
00:43
I'm wearing穿著 an inertial慣性的
motion運動 capture捕獲 suit適合
10
31990
2984
我穿著一件慣性動作捕捉衣,
00:46
that's figuring盤算 what my body身體 is doing.
11
34998
2579
它會設法辨視出我的身體在做什麼。
00:49
And I've got a single camera相機 here
that's watching觀看 my face面對
12
37601
3825
這裡有一台攝影機在觀測我的臉,
00:53
and feeding饋送 some machine-learning機器學習 software軟件
that's taking服用 my expressions表達式,
13
41450
4841
將我的臉部表情資訊
傳送給機器學習軟體,
00:58
like, "HmHM, hmHM, hmHM,"
14
46315
3579
像是「嗯,嗯,嗯,」
01:02
and transferring轉移 it to that guy.
15
50379
1663
再傳送給那個傢伙。
01:05
We call him "DigiDoug迪吉杜格."
16
53300
3342
我們稱他「數位道格」。
01:09
He's actually其實 a 3-D-D character字符
that I'm controlling控制 live生活 in real真實 time.
17
57292
4726
它其實是一個由我
即時控制的 3D 角色。
01:16
So, I work in visual視覺 effects效果.
18
64292
2324
我的工作是做視覺效果。
01:19
And in visual視覺 effects效果,
19
67101
1167
在視覺效果領域,最艱難的工作之一
01:20
one of the hardest最難 things to do
is to create創建 believable可信的, digital數字 humans人類
20
68292
5911
就是創造出逼真到可信的數位人,
01:26
that the audience聽眾 accepts接受 as real真實.
21
74227
2182
讓觀眾視為真人。
01:28
People are just really good
at recognizing認識 other people.
22
76433
4524
人本來就很擅長認人。
01:32
Go figure數字!
23
80981
1150
想想看吧!
01:35
So, that's OK, we like a challenge挑戰.
24
83577
3405
沒關係,我們喜歡挑戰。
01:39
Over the last 15 years年份,
25
87006
1841
在過去十五年間,
01:40
we've我們已經 been putting
humans人類 and creatures生物 into film電影
26
88871
4983
我們把人和動物放到影片當中,
01:45
that you accept接受 as real真實.
27
93878
1739
讓大家視為真的。
01:48
If they're happy快樂, you should feel happy快樂.
28
96712
2667
如果他們開心,
你應該也會覺得開心。
01:51
And if they feel pain疼痛,
you should empathize同情 with them.
29
99982
5437
如果他們感到痛苦,
你就應該會同情他們。
01:58
We're getting得到 pretty漂亮 good at it, too.
30
106467
2190
我們變得很擅常做這件事。
02:00
But it's really, really difficult.
31
108681
2746
但它非常非常困難。
02:03
Effects效果 like these take thousands數千 of hours小時
32
111847
3214
像這樣的效果耗費數千小時的時間,
02:07
and hundreds數以百計 of really talented天才 artists藝術家.
33
115085
2667
由數百名非常有才華的
藝術家共同完成。
02:10
But things have changed.
34
118792
1600
但,情況變了。
02:13
Over the last five years年份,
35
121014
1920
在過去五年間,
02:14
computers電腦 and graphics圖像 cards
have gotten得到 seriously認真地 fast快速.
36
122958
4409
電腦和顯示卡都變得非常快速。
02:20
And machine learning學習,
deep learning學習, has happened發生.
37
128508
3971
機器學習、深度學習都出現了。
02:25
So we asked ourselves我們自己:
38
133408
1233
所以我們自問:
02:27
Do you suppose假設 we could create創建
a photo-realistic照片般逼真的 human人的,
39
135320
3778
你覺得我們可以創造出
跟照片一樣真實的人類,
02:31
like we're doing for film電影,
40
139122
1624
如我們為影片所做的那樣,
02:33
but where you're seeing眼看
the actual實際 emotions情緒 and the details細節
41
141932
5647
還可以即時看到控制這個數位人的人
實際的情緒和細節嗎?
02:39
of the person who's誰是 controlling控制
the digital數字 human人的
42
147603
4077
02:43
in real真實 time?
43
151704
1174
事實上,那是我們的目標:
02:45
In fact事實, that's our goal目標:
44
153704
1564
02:47
If you were having
a conversation會話 with DigiDoug迪吉杜格
45
155292
3761
如果你能和數位道格交談,
02:51
one-on-one一對一,
46
159077
1237
一對一交談,
02:53
is it real真實 enough足夠 so that you could tell
whether是否 or not I was lying說謊 to you?
47
161331
5666
他有沒有真實到讓你能分辨出
我有沒有在對你說謊?
02:59
So that was our goal目標.
48
167934
1400
那就是我們的目標。
03:02
About a year and a half ago,
we set off to achieve實現 this goal目標.
49
170601
4016
大約一年半前,
我們開始朝這個目標邁進。
03:06
What I'm going to do now is take you
basically基本上 on a little bit of a journey旅程
50
174641
3899
現在我要帶各位踏上一段旅程,
03:10
to see exactly究竟 what we had to do
to get where we are.
51
178564
3926
見識一下我們必須要做些什麼
才能走到今天這一步。
03:15
We had to capture捕獲
an enormous巨大 amount of data數據.
52
183832
3856
我們必須要取得非常大量的資料。
03:20
In fact事實, by the end結束 of this thing,
53
188347
2714
事實上,在這件事結束之後,
03:23
we had probably大概 one of the largest最大
facial面部 data數據 sets on the planet行星.
54
191085
4563
我們的資料集可能會是地球上
最大的臉孔資料集之一。
03:28
Of my face面對.
55
196038
1682
我的臉孔的資料集。
03:29
(Laughter笑聲)
56
197744
2262
(笑聲)
03:32
Why me?
57
200030
1270
為什麼是我?
03:33
Well, I'll do just about
anything for science科學.
58
201324
2810
嗯,為了科學,我什麼都可以做。
03:36
I mean, look at me!
59
204158
1948
我的意思是,看看我!
03:38
I mean, come on.
60
206625
1150
我是指,拜託。
03:43
We had to first figure數字 out
what my face面對 actually其實 looked看著 like.
61
211320
5460
首先我們得要搞清楚我的臉孔
真正看起來是什麼樣子的。
03:49
Not just a photograph照片 or a 3-D-D scan掃描,
62
217391
3027
不只是一張照片或是 3D 掃瞄,
03:52
but what it actually其實 looked看著 like
in any photograph照片,
63
220442
3921
是它真正在任何照片中
看起來會是什麼樣子、
03:56
how light interacts交互 with my skin皮膚.
64
224387
2460
光線和我的皮膚如何互動。
03:59
Luckily for us, about three blocks away
from our Los洛杉磯 Angeles洛杉磯 studio工作室
65
227768
5249
我們很幸運,離我們在洛杉磯的
工作室只有三個街區左右,
04:05
is this place地點 called ICTICT.
66
233041
2209
有一個地方叫做 ICT。
04:07
They're a research研究 lab實驗室
67
235708
1272
它是間和南加州大學
相關的研究實驗室,
04:09
that's associated相關 with the University大學
of Southern南部的 California加州.
68
237004
3403
04:12
They have a device設備 there,
it's called the "light stage階段."
69
240871
3555
那裡有個裝置叫做「光舞台」,
04:16
It has a zillion無數
individually個別地 controlled受控 lights燈火
70
244450
3714
具有數不清的獨立控制光線,
04:20
and a whole整個 bunch of cameras相機.
71
248188
1873
還有一大堆攝影機。
04:22
And with that, we can reconstruct重建 my face面對
under a myriad無數的 of lighting燈光 conditions條件.
72
250085
6091
有了它,我們就可以在無數的
光線條件下重建我的臉孔。
04:29
We even captured捕獲 the blood血液 flow
73
257589
1582
我們甚至捕捉到了血流,
04:31
and how my face面對 changes變化
when I make expressions表達式.
74
259195
3092
以及當我做表情時
我的面部會有什麼改變。
04:35
This let us build建立 a model模型 of my face面對
that, quite相當 frankly坦率地說, is just amazing驚人.
75
263454
5260
這讓我們建造出我的臉孔模型,
坦白說,這相當了不起。
04:41
It's got an unfortunate不幸的
level水平 of detail詳情, unfortunately不幸.
76
269399
4333
不幸的是,細節也清楚到不行。
04:45
(Laughter笑聲)
77
273756
1278
(笑聲)
04:47
You can see every一切 pore, every一切 wrinkle皺紋.
78
275058
3696
每個毛孔、每條皺紋都清楚可見。
04:50
But we had to have that.
79
278778
1600
但這是不能省略的。
04:52
Reality現實 is all about detail詳情.
80
280960
2381
要真實就少不了細節。
04:55
And without it, you miss小姐 it.
81
283365
1867
沒有細節,就不真實。
04:58
We are far from doneDONE, though雖然.
82
286793
1547
不過,我們離完成還很遠。
05:01
This let us build建立 a model模型 of my face面對
that looked看著 like me.
83
289363
3297
這讓我們建出我的臉孔模型,
看起來很像我,
05:05
But it didn't really move移動 like me.
84
293196
2746
但動起來卻不像我。
05:08
And that's where
machine learning學習 comes in.
85
296871
2713
這就是機器學習
派上用場的時候了。
05:11
And machine learning學習 needs需求 a ton of data數據.
86
299608
3204
機器學習需要極大量的資料。
05:15
So I satSAT down in front面前 of some
high-resolution高分辨率 motion-capturing運動捕捉 device設備.
87
303497
4929
所以我在某種高解析度
動作捕捉裝置前面坐下來。
05:20
And also, we did this traditional傳統
motion運動 capture捕獲 with markers標記.
88
308450
4071
此外,我們也用標記點
來進行這種傳統的動作捕捉。
05:25
We created創建 a whole整個 bunch
of images圖片 of my face面對
89
313696
2976
我們創造出了一大堆
我的臉孔的影像,
05:28
and moving移動 point clouds
that represented代表 that shapes形狀 of my face面對.
90
316696
4087
還有移動點雲
來呈現我的臉孔形狀。
05:33
Man, I made製作 a lot of expressions表達式,
91
321996
2811
老天,我做了超多種表情,
05:36
I said different不同 lines
in different不同 emotional情緒化 states狀態 ...
92
324831
3460
我用不同的情緒
來唸出不同的台詞……
05:40
We had to do a lot of capture捕獲 with this.
93
328315
2667
我們得要捕捉非常多這類資料。
05:43
Once一旦 we had this enormous巨大 amount of data數據,
94
331752
2891
一旦取得大量的資料,
05:46
we built內置 and trained熟練 deep neural神經 networks網絡.
95
334667
3775
我們便開始建立和訓練
深度神經網路。
05:51
And when we were finished with that,
96
339117
1746
完成之後,
05:52
in 16 milliseconds毫秒,
97
340887
2444
只要 16 毫秒的時間,
05:55
the neural神經 network網絡 can look at my image圖片
98
343355
3112
神經網路看著我的影像
05:58
and figure數字 out everything about my face面對.
99
346491
2928
就能夠了解關於我臉孔的一切。
06:02
It can compute計算 my expression表達,
my wrinkles皺紋, my blood血液 flow --
100
350458
5476
它能夠計算我的表情、
我的皺紋、我的血流——
06:07
even how my eyelashes睫毛 move移動.
101
355958
2317
甚至我的睫毛會怎麼動。
06:10
This is then rendered呈現
and displayed顯示 up there
102
358925
2835
這些資訊會被描繪出來,
呈現在上面這裡,
06:13
with all the detail詳情
that we captured捕獲 previously先前.
103
361784
3222
且有著我們先前捕捉的所有細節。
06:18
We're far from doneDONE.
104
366077
1334
我們離完成還很遠。
06:20
This is very much a work in progress進展.
105
368188
2207
這只是在製作中的未成品。
06:22
This is actually其實 the first time
we've我們已經 shown顯示 it outside of our company公司.
106
370419
3321
其實這是首次在
我們公司以外的地方展示它。
06:25
And, you know, it doesn't look
as convincing使人信服 as we want;
107
373764
4194
它並沒有我們
所期望的那麼有說服力;
06:29
I've got wires電線 coming未來 out
of the back of me,
108
377982
2183
我背後還接著電線,
06:32
and there's a sixth-of-a-second第六秒 delay延遲
109
380189
2038
而且從捕捉影像到呈現影像間
06:34
between之間 when we capture捕獲 the video視頻
and we display顯示 it up there.
110
382251
4367
有六分之一秒的延遲。
06:38
Sixth第六 of a second第二 -- that's crazy good!
111
386642
2816
六分之一秒——那算非常好了!
06:41
But it's still why you're hearing聽力
a bit of an echo迴聲 and stuff東東.
112
389911
3400
但那就是為什麼各位
仍然會聽到一點迴音。
06:46
And you know, this machine learning學習
stuff東東 is brand new to us,
113
394104
3889
機器學習對我們來說是全新的,
06:50
sometimes有時 it's hard to convince說服
to do the right thing, you know?
114
398017
4224
有時很難叫它去做對的事,知道嗎?
06:54
It goes a little sideways側身.
115
402265
2058
它會有點小暴走。
06:56
(Laughter笑聲)
116
404347
2422
(笑聲)
06:59
But why did we do this?
117
407538
3229
但,我們為什麼要做這件事?
07:03
Well, there's two reasons原因, really.
118
411077
2262
其實理由有兩個。
07:05
First of all, it is just crazy cool.
119
413363
2976
首先,它真的超酷。
07:08
(Laughter笑聲)
120
416363
1008
(笑聲)
07:09
How cool is it?
121
417395
1253
這多酷啊?
07:10
Well, with the push of a button按鍵,
122
418990
1992
只要按個按鈕,
07:13
I can deliver交付 this talk
as a completely全然 different不同 character字符.
123
421006
4007
我就可以換成一個全然
不同的角色來進行這場演說。
07:17
This is Elbor埃爾博爾.
124
425823
2601
這是艾爾柏。
07:22
We put him together一起
to test測試 how this would work
125
430037
2312
我們做他來測試
換了外表之後是否還行得通。
07:24
with a different不同 appearance出現.
126
432373
2135
07:27
And the cool thing about this technology技術
is that, while I've changed my character字符,
127
435450
4818
這項技術很酷的一點在於
雖然我換了角色,
07:32
the performance性能 is still all me.
128
440292
3273
表演的人仍然是我。
07:35
I tend趨向 to talk out of the right
side of my mouth;
129
443589
2674
我傾向於用嘴巴的右側來說話;
07:38
so does Elbor埃爾博爾.
130
446287
1579
艾爾柏也一樣。
07:39
(Laughter笑聲)
131
447890
1150
(笑聲)
07:42
Now, the second第二 reason原因 we did this,
and you can imagine想像,
132
450021
2790
我們做這件事的第二個
理由,各位應該想得到,
07:44
is this is going to be great for film電影.
133
452835
2336
這技術對電影來說會很棒。
07:47
This is a brand new, exciting扣人心弦 tool工具
134
455195
2701
對藝術家、導演,
及說故事的人而言,
07:49
for artists藝術家 and directors董事
and storytellers講故事的人.
135
457920
4322
這是個讓人興奮的全新工具。
07:55
It's pretty漂亮 obvious明顯, right?
136
463131
1484
很明顯,對吧?
07:56
I mean, this is going to be
really neat整齊 to have.
137
464639
2462
有這技術很棒。
07:59
But also, now that we've我們已經 built內置 it,
138
467125
2055
我們已經造出來了,
08:01
it's clear明確 that this
is going to go way beyond film電影.
139
469204
2991
很顯然它不會只被用在電影上。
08:05
But wait.
140
473510
1150
但,等等。
08:07
Didn't I just change更改 my identity身分
with the push of a button按鍵?
141
475653
3976
我剛剛不是只按個按鈕
就改變了我的身分嗎?
這不就像是各位曾經聽過的
「深偽」和換臉嗎?
08:11
Isn't this like "deepfake深法克"
and face-swapping面交換
142
479653
3033
08:14
that you guys may可能 have heard聽說 of?
143
482710
1561
08:17
Well, yeah.
144
485208
1150
嗯,是的。
08:19
In fact事實, we are using運用
some of the same相同 technology技術
145
487074
2952
事實上,我們確實用到
深偽所使用的某些技術。
08:22
that deepfake深法克 is using運用.
146
490050
1600
08:23
Deepfake迪普法克 is 2-D-D and image圖片 based基於,
while ours我們的 is full充分 3-D-D
147
491954
4599
深偽是 2D 的,以影像為基礎,
而我們的全是 3D,
08:28
and way more powerful強大.
148
496577
2206
且強大許多。
08:31
But they're very related有關.
149
499204
1666
但它們非常相關。
08:33
And now I can hear you thinking思維,
150
501680
1889
我可以聽見各位在想:
08:35
"Darn達恩 it!
151
503593
1278
「該死!
08:36
I though雖然 I could at least最小
trust相信 and believe in video視頻.
152
504895
3801
我以為我至少還能夠相信影片的。
08:40
If it was live生活 video視頻,
didn't it have to be true真正?"
153
508720
2827
如果是即時轉播的影片,
不就該是真的嗎?」
08:44
Well, we know that's not
really the case案件, right?
154
512609
3522
嗯,我們知道其實並非如此,對吧?
08:48
Even without this, there are simple簡單 tricks技巧
that you can do with video視頻
155
516727
3810
即使沒有這項技術,還是有
簡單的技倆可以用在影片上,
08:52
like how you frame a shot射擊
156
520561
2776
比如你可以用取鏡的方式
08:55
that can make it really misrepresent歪曲
what's actually其實 going on.
157
523361
4362
去扭曲真正發生的狀況。
09:00
And I've been working加工
in visual視覺 effects效果 for a long time,
158
528263
3306
我在視覺效果的領域工作很久了,
09:03
and I've known已知 for a long time
159
531593
1932
長久以來,我一直知道,
09:05
that with enough足夠 effort功夫,
we can fool傻子 anyone任何人 about anything.
160
533549
5226
只要肯花心力,我們就可以
在任何事情上騙過任何人。
09:11
What this stuff東東 and deepfake深法克 is doing
161
539546
2388
這項技術和深偽做的就是
09:13
is making製造 it easier更輕鬆 and more accessible無障礙
to manipulate操作 video視頻,
162
541958
4611
使操弄影片更容易、門檻更低。
09:18
just like PhotoshopPhotoshop中 did
for manipulating操縱 images圖片, some time ago.
163
546593
5371
就像以前 Photoshop
之於操弄影像一樣。
09:25
I prefer比較喜歡 to think about
164
553441
1298
我比較偏好去思考這項技術
09:26
how this technology技術 could bring帶來
humanity人性 to other technology技術
165
554763
5036
能夠如何把人性帶到其他技術中,
09:31
and bring帶來 us all closer接近 together一起.
166
559823
2294
讓我們更緊密。
09:34
Now that you've seen看到 this,
167
562141
2359
各位已經見識過這項技術了,
09:36
think about the possibilities可能性.
168
564524
1902
想想看它的可能性。
09:39
Right off the bat蝙蝠, you're going to see it
in live生活 events事件 and concerts音樂會, like this.
169
567810
4523
很快,各位就會在現場活動、
音樂會上看到類似的技術。
09:45
Digital數字 celebrities名人, especially特別
with new projection投影 technology技術,
170
573612
4735
特別是,若有了新的投影技術,
數位名人就會像電影一樣,
但卻是活生生、即時的。
09:50
are going to be just like the movies電影,
but alive and in real真實 time.
171
578371
3960
09:55
And new forms形式 of communication通訊 are coming未來.
172
583609
2733
溝通的新形式即將到來。
09:59
You can already已經 interact相互作用
with DigiDoug迪吉杜格 in VRVR.
173
587088
4165
各位已經可以在虛擬實境中
和數位道格互動,
10:03
And it is eye-opening大開眼界.
174
591699
2270
讓人大開眼界。
10:05
It's just like you and I
are in the same相同 room房間,
175
593993
3862
彷彿你我共處一室,
10:09
even though雖然 we may可能 be miles英里 apart距離.
176
597879
2373
實際上我們相距甚遠。
10:12
Heck哎呀, the next下一個 time you make a video視頻 call,
177
600276
2841
真見鬼了,下次你打視訊電話時,
10:15
you will be able能夠 to choose選擇
the version of you
178
603141
3736
你將可以選擇你希望別人看到
10:18
you want people to see.
179
606901
1566
哪一版的你。
10:20
It's like really, really good makeup化妝.
180
608974
2533
就像是極佳的化妝。
10:24
I was scanned掃描 about a year and a half ago.
181
612853
3579
我是約一年半前被掃瞄的。
10:29
I've aged.
182
617068
1721
我變老了。
10:30
DigiDoug迪吉杜格 hasn't有沒有.
183
618813
1650
數位道格卻沒有。
10:32
On video視頻 calls電話, I never have to grow增長 old.
184
620798
3492
在視訊電話中,我永遠不必老化。
10:38
And as you can imagine想像,
this is going to be used
185
626322
3088
各位可以想像,有了這項技術,
10:41
to give virtual虛擬 assistants助理
a body身體 and a face面對.
186
629434
3213
虛擬助理就可以有身體和臉孔,
10:44
A humanity人性.
187
632671
1192
成為一個人。
10:45
I already已經 love it that when I talk
to virtual虛擬 assistants助理,
188
633887
2762
我和虛擬助理交談時,感覺真好,
10:48
they answer回答 back in a soothing撫慰的,
humanlike人形 voice語音.
189
636673
2933
他們用有安撫作用的
近似人聲回應我。
10:51
Now they'll他們會 have a face面對.
190
639919
1776
現在他們都能有臉孔。
10:53
And you'll你會 get all the nonverbal非語言 cues線索
that make communication通訊 so much easier更輕鬆.
191
641719
4882
你能得到各種非言語的
暗示訊號,更容易溝通。
11:00
It's going to be really nice不錯.
192
648171
1420
那真的會很棒。
11:01
You'll你會 be able能夠 to tell when
a virtual虛擬 assistant助理 is busy or confused困惑
193
649615
3637
你將能夠分辨出虛擬助理
是否在忙、是否感到困惑,
11:05
or concerned關心 about something.
194
653276
2680
或者是否關心某件事情。
11:09
Now, I couldn't不能 leave離開 the stage階段
195
657694
2509
我離開舞台之前,
11:12
without you actually其實 being存在 able能夠
to see my real真實 face面對,
196
660227
2698
一定要讓各位看到我真實的臉孔,
11:14
so you can do some comparison對照.
197
662949
1684
這樣各位才能做比較。
11:18
So let me take off my helmet頭盔 here.
198
666573
1876
讓我把頭盔拿下來。
11:20
Yeah, don't worry擔心,
it looks容貌 way worse更差 than it feels感覺.
199
668473
4770
別擔心,感覺起來
沒有看起來那麼糟糕。
11:25
(Laughter笑聲)
200
673267
2428
(笑聲)
11:29
So this is where we are.
201
677188
1698
這就是我們目前的進展。
11:30
Let me put this back on here.
202
678910
1604
讓我把頭盔戴回來。
11:32
(Laughter笑聲)
203
680538
1950
(笑聲)
11:35
Doink杜因克!
204
683115
1186
ㄉㄨㄞ!
11:37
So this is where we are.
205
685292
1600
這就是我們目前的進展。
11:39
We're on the cusp風口浪尖 of being存在 able能夠
to interact相互作用 with digital數字 humans人類
206
687997
3701
我們正處於
能和極度真實的數位人類
互動的關口上,
11:43
that are strikingly驚人 real真實,
207
691722
2181
11:45
whether是否 they're being存在 controlled受控
by a person or a machine.
208
693927
3269
不論他們是由人類或機器所操控。
11:49
And like all new technology技術 these days,
209
697220
4375
如同現今所有的新技術,
11:54
it's going to come with some
serious嚴重 and real真實 concerns關注
210
702531
4746
這項技術也會引發
一些嚴重的考量和擔憂,
11:59
that we have to deal合同 with.
211
707301
1734
我們得要去處理。
12:02
But I am just so really excited興奮
212
710017
2118
但我非常興奮,
12:04
about the ability能力 to bring帶來 something
that I've seen看到 only in science科學 fiction小說
213
712159
5053
因為我們有能力
把過去只能在科幻小說中看到的東西
12:09
for my entire整個 life
214
717236
2270
12:11
into reality現實.
215
719530
1328
實現成真。
12:13
Communicating溝通 with computers電腦
will be like talking to a friend朋友.
216
721752
4222
和電腦溝通將會像跟朋友說話一樣。
12:18
And talking to faraway遠處 friends朋友
217
726323
2500
而和遠方的朋友說話
12:20
will be like sitting坐在 with them
together一起 in the same相同 room房間.
218
728847
3273
則會像是與他們共處一室。
12:24
Thank you very much.
219
732974
1308
非常謝謝。
12:26
(Applause掌聲)
220
734306
6713
(掌聲)
Translated by Lilian Chiu
Reviewed by Helen Chang

▲Back to top

ABOUT THE SPEAKER
Doug Roble - Computer graphics software researcher
Doug Roble has found a career combining the things he loves: math, computers, movies and imagination.

Why you should listen

Doug Roble has really only had one job in his life. After getting his PhD in Computer Science from the Ohio State University in 1992, he joined Digital Domain, a visual effects production company. Once there, he found a unique place where art and technology collide. Now he builds new tools for artists to use and they, in turn, use the tools in surprising and unexpected ways. The feedback loop between art and science is completely addicting. And, the byproduct of this are movies that the whole world enjoys.

Roble's work outside Digital Domain reflects this passion. He was the Editor and Chief of the Journal of Graphics tools for more than five years. He's currently the Chair of the Motion Picture Academy's Sci/Tech Awards and a member of the Academy's Sci/Tech Council. And two of the tools he's built over the years have won Sci/Tech Academy Awards themselves.

More profile about the speaker
Doug Roble | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee