ABOUT THE SPEAKER
Nate Silver - Statistician
Math whiz and baseball fan Nate Silver was mainly known for predicting outcomes in fantasy ballgames -- until his technique hit a home run calling the outcome of the 2008 election primaries.

Why you should listen

In the 2008 election season's closing weeks, throngs of wonks and laypeople alike were glued to FiveThirtyEight.com, a habitforming political blog. Red and blue bar charts crowded the scrollbars as the pulse of exit polls crept along the site's latest projections. It seemed almost miraculous: In a year of acute turns of favor, the site's owner and mouthpiece, Nate Silver (who blogged anonymously as "Poblano" until outing himself on May 30, 2008, as a baseball numberhead), managed to predict the winners of every U.S. Senate contest -- and the general Presidential election.

Besides being just-damn-fascinating, Silver's analysis is a decidedly contrarian gauntlet thrown before an unrepentant, spectacle-driven media. The up-and-coming pundit, who cut his teeth forecasting the performance of Major League Baseball players, has a fairly direct explanation of why most projections fail: "Polls are cherry-picked based on their brand name or shock value rather than their track record of accuracy."

Silver's considerable smarts are already helping local campaigns build constituencies and strategize. He is the author of The Signal and the Noise: Why So Many Predictions Fail - but Some Don't

More profile about the speaker
Nate Silver | Speaker | TED.com
TED2009

Nate Silver: Does racism affect how you vote?

納特希爾弗:種族背景會影響選票嗎?

Filmed:
498,847 views

納特希爾弗探討種族背景在政治上扮演的角色,這是頗富爭議性的話題。究竟歐巴馬的種族背景是否為選舉帶來負面影響?在這場精彩的演講,數據與迷思互相衝擊。最後,以好的城市規劃會帶來和諧的社會,為結論。
- Statistician
Math whiz and baseball fan Nate Silver was mainly known for predicting outcomes in fantasy ballgames -- until his technique hit a home run calling the outcome of the 2008 election primaries. Full bio

Double-click the English transcript below to play the video.

00:15
I want to talk about the election選舉.
0
0
3000
我要跟大家聊聊有關選舉
00:18
For the first time in the United聯合的 States狀態, a predominantly主要 white白色 group of voters選民
1
3000
3000
美國有史以來,大多數白人選民
00:21
voted for an African-American非裔美國人 candidate候選人 for President主席.
2
6000
3000
首次投票給一位非洲裔候選人
00:24
And in fact事實 Barack巴拉克 Obama奧巴馬 did quite相當 well.
3
9000
2000
事實上,歐巴馬取得不錯的成績
00:26
He won韓元 375 electoral votes.
4
11000
2000
獲得了375張選舉人票
00:28
And he won韓元 about 70 million百萬 popular流行 votes
5
13000
3000
與此同時,還獲得7,000萬張民眾選票
00:31
more than any other presidential總統 candidate候選人 --
6
16000
2000
是歷屆總統選舉中,獲得票數最高
00:33
of any race種族, of any party派對 -- in history歷史.
7
18000
3000
比任何族裔和黨派的候選人都要出色
00:36
If you compare比較 how Obama奧巴馬 did against反對 how John約翰 Kerry黑色的小乳牛 had doneDONE four years年份 earlier --
8
21000
4000
比起歐巴馬與四年前凱利的選舉
00:40
Democrats民主黨 really like seeing眼看 this transition過渡 here,
9
25000
3000
民主黨應該很欣然看到當中的改變
00:43
where almost幾乎 every一切 state becomes bluer更藍, becomes more democratic民主的 --
10
28000
4000
幾乎每個州,對民主黨的支持度均上升
00:47
even states狀態 Obama奧巴馬 lost丟失, like out west西,
11
32000
2000
就連歐巴馬輸掉的州份,比如美國西岸
00:49
those states狀態 became成為 more blue藍色.
12
34000
2000
也是如此
00:51
In the south, in the northeast東北, almost幾乎 everywhere到處
13
36000
3000
相同情形也出現在南部和東北部
00:54
but with a couple一對 of exceptions例外 here and there.
14
39000
3000
當然,也有一些例外
00:57
One exception例外 is in Massachusetts馬薩諸塞.
15
42000
2000
其中一個例外是麻薩諸塞州
00:59
That was John約翰 Kerry's克里 home state.
16
44000
2000
那是凱利的家鄉
01:01
No big surprise, Obama奧巴馬 couldn't不能 do better than Kerry黑色的小乳牛 there.
17
46000
2000
理所當然,歐巴馬的成績不可能勝過凱利
01:03
Or in Arizona亞利桑那, which哪一個 is John約翰 McCain's麥凱恩 home,
18
48000
2000
還有亞利桑那州,那是對手麥肯的家鄉
01:05
Obama奧巴馬 didn't have much improvement起色.
19
50000
2000
歐巴馬很難有所突破
01:07
But there is also this part部分 of the country國家, kind of in the middle中間 region地區 here.
20
52000
2000
在中部地區也有類似情況,如
01:09
This kind of Arkansas阿肯色州, Tennessee田納西, Oklahoma俄克拉何馬州, West西 Virginia弗吉尼亞州 region地區.
21
54000
4000
阿肯色州、田納西州、俄克拉荷馬州、西佛吉尼亞州
01:13
Now if you look at '96, Bill法案 Clinton克林頓 --
22
58000
2000
比較1996年克林頓
01:15
the last Democrat民主黨人 to actually其實 win贏得 -- how he did in '96,
23
60000
3000
上一位代表民主黨獲勝總統的票選
01:18
you see real真實 big differences分歧 in this part部分 of the country國家 right here,
24
63000
3000
會發現驚人的改變
01:21
the kind of Appalachians阿巴拉契亞, Ozarks奧沙克, highlands高地 region地區, as I call it:
25
66000
4000
地區如:阿巴拉契亞山區(Appalachinas)、歐扎克斯(Ozarks)、高原地區
01:25
20 or 30 point swings波動
26
70000
2000
有20至30點的調整
01:27
from how Bill法案 Clinton克林頓 did in '96 to how Obama奧巴馬 did
27
72000
2000
這是從1996克林頓到歐巴馬
01:29
in 2008.
28
74000
2000
2008年
01:31
Yes Bill法案 Clinton克林頓 was from Arkansas阿肯色州, but these are very, very profound深刻 differences分歧.
29
76000
5000
雖然阿肯色州是克林頓的家鄉,但當中的差距未免也太大!
01:36
So, when we think about parts部分 of the country國家 like Arkansas阿肯色州, you know.
30
81000
2000
讓我們探討一下地區,如阿肯色州
01:38
There is a book written書面 called, "What's the Matter with Kansas堪薩斯?"
31
83000
3000
有本書叫《 堪薩斯州到底怎麼了?》
01:41
But really the question here -- Obama奧巴馬 did relatively相對 well in Kansas堪薩斯.
32
86000
3000
但問題是,歐巴馬在堪薩斯州的成績不算差
01:44
He lost丟失 badly but every一切 Democrat民主黨人 does.
33
89000
2000
他雖然輸了這個州,但每位民主黨候選人都這樣
01:46
He lost丟失 no worse更差 than most people do.
34
91000
2000
他沒有不如他人
01:48
But yeah, what's the matter with Arkansas阿肯色州?
35
93000
4000
所以囉,阿肯色州到底怎麼了?
01:52
(Laughter笑聲)
36
97000
1000
(笑聲)
01:53
And when we think of Arkansas阿肯色州 we tend趨向 to have pretty漂亮 negative connotations內涵.
37
98000
3000
想到阿肯色州,難免有些負面的想法
01:56
We think of a bunch of rednecks紅脖子, quote引用, unquote引文結束, with guns槍砲.
38
101000
3000
一群拿著槍的鄉下人
01:59
And we think people like this probably大概 don't want to vote投票
39
104000
3000
想也知道這些人不會支持
02:02
for people who look like this and are named命名 Barack巴拉克 Obama奧巴馬.
40
107000
3000
歐巴馬這類型,甚至聽到這名字就不想理了
02:05
We think it's a matter of race種族. And is this fair公平?
41
110000
3000
歸根究底,就是種族問題在作怪
02:08
Are we kind of stigmatizing污名化 people from Arkansas阿肯色州, and this part部分 of the country國家?
42
113000
3000
如此形容阿肯色州人,是否太武斷了?
02:11
And the answer回答 is: it is at least最小 partially部分 fair公平.
43
116000
3000
其實不然,起碼有一部份說得對
02:14
We know that race種族 was a factor因子, and the reason原因 why we know that
44
119000
2000
種族問題的確有影響,如此說
02:16
is because we asked those people.
45
121000
2000
是因為有經過查證
02:18
Actually其實 we didn't ask them, but when they conducted進行
46
123000
2000
雖然沒有直接詢問原因
02:20
exit出口 polls民意調查 in every一切 state,
47
125000
2000
但曾在投票站
02:22
in 37 states狀態, out of the 50,
48
127000
2000
50個州中,就訪問了30個州
02:24
they asked a question, that was pretty漂亮 direct直接, about race種族.
49
129000
3000
有關種族的問題
02:27
They asked this question.
50
132000
2000
內容是
02:29
In deciding決定 your vote投票 for President主席 today今天, was the race種族
51
134000
2000
在今天的總統選舉中,候選人的種族背景
02:31
of the candidate候選人 a factor因子?
52
136000
2000
是否考量因素之一?
02:33
We're looking for people that said, "Yes, race種族 was a factor因子;
53
138000
3000
我們特別針對承認候選人種族背景
02:36
moreover此外 it was an important重要 factor因子, in my decision決定,"
54
141000
2000
或多或少影響到投票決定的選民
02:38
and people who voted for John約翰 McCain麥凱恩
55
143000
3000
尤其支持麥肯
02:41
as a result結果 of that factor因子,
56
146000
2000
其真正原因
02:43
maybe in combination組合 with other factors因素, and maybe alone單獨.
57
148000
2000
或許只有一個原因,有或許更多
02:45
We're looking for this behavior行為 among其中 white白色 voters選民
58
150000
3000
特別著重白人選民
02:48
or, really, non-black非黑 voters選民.
59
153000
3000
喔,正確說是非黑人選民做研究
02:51
So you see big differences分歧 in different不同 parts部分
60
156000
2000
大家可以看到,差距其實很大
02:53
of the country國家 on this question.
61
158000
2000
尤其訪問者來自不同地區
02:55
In Louisiana路易斯安那州, about one in five white白色 voters選民
62
160000
3000
路易斯安那州,每五個白人選民,就有一位
02:58
said, "Yes, one of the big reasons原因 why I voted against反對 Barack巴拉克 Obama奧巴馬
63
163000
3000
承認不選歐巴馬
03:01
is because he was an African-American非裔美國人."
64
166000
2000
因為他是非裔美國人
03:03
If those people had voted for Obama奧巴馬,
65
168000
2000
假如這群選民原意支持歐巴馬
03:05
even half of them, Obama奧巴馬 would have won韓元 Louisiana路易斯安那州 safely安然.
66
170000
4000
即使只有一半,也必成歐巴馬的囊中物
03:09
Same相同 is true真正 with, I think, all of these states狀態 you see on the top最佳 of the list名單.
67
174000
2000
同樣道理,可以用於以上州份
03:11
Meanwhile與此同時, California加州, New York紐約, we can say, "Oh we're enlightened開明"
68
176000
4000
再看看加州、紐約,所謂見過世面的州份
03:15
but you know, certainly當然 a much lower降低 incidence發生率 of this
69
180000
2000
相對受種族影響較少
03:17
admitted承認, I suppose假設,
70
182000
2000
起碼我如此認為
03:19
manifestation表現 of racially-based種族為基礎的 voting表決.
71
184000
3000
這是顯而易見
03:22
Here is the same相同 data數據 on a map地圖.
72
187000
2000
地圖顯示同樣的數據
03:24
You kind of see the relationship關係 between之間
73
189000
2000
更容易看出當中的關係
03:26
the redder更紅 states狀態 of where more people responded回應 and said,
74
191000
2000
紅色州份就有很多人承認
03:28
"Yes, Barack巴拉克 Obama's奧巴馬 race種族 was a problem問題 for me."
75
193000
3000
介意歐巴馬的種族背景
03:31
You see, comparing比較 the map地圖 to '96, you see an overlap交疊 here.
76
196000
3000
再對照1996年,看到當中的重疊嗎?
03:34
This really seems似乎 to explain說明
77
199000
2000
這就解釋了
03:36
why Barack巴拉克 Obama奧巴馬 did worse更差
78
201000
2000
為甚麼歐巴馬未能獲得某些選民支持
03:38
in this one part部分 of the country國家.
79
203000
2000
尤其是這些區域
03:40
So we have to ask why.
80
205000
2000
為甚麼有這樣的現象?
03:42
Is racism種族主義 predictable可預測 in some way?
81
207000
2000
種族歧視有跡可尋嗎?
03:44
Is there something driving主動 this?
82
209000
2000
又是甚麼因素致使種族歧視?
03:46
Is it just about some weird奇怪的 stuff東東 that goes on in Arkansas阿肯色州
83
211000
2000
難道這些怪現象只發生在阿肯色州和肯德基州?
03:48
that we don't understand理解, and Kentucky肯塔基?
84
213000
2000
讓人難以理解
03:50
Or are there more systematic系統的 factors因素 at work?
85
215000
2000
還是有更多其他原因?
03:52
And so we can look at a bunch of different不同 variables變量.
86
217000
2000
就讓我們深入地了解一下
03:54
These are things that economists經濟學家 and political政治 scientists科學家們 look at all the time --
87
219000
3000
經濟學家和政治學家早已對此展開調查
03:57
things like income收入, and religion宗教, education教育.
88
222000
3000
收入多寡、宗教信仰、教育程度等等
04:00
Which哪一個 of these seem似乎 to drive駕駛
89
225000
2000
究竟那項導致
04:02
this manifestation表現 of racism種族主義
90
227000
2000
種族歧視
04:04
in this big national國民 experiment實驗 we had on November十一月 4th?
91
229000
3000
試圖在11月4日選舉中找出答案
04:07
And there are a couple一對 of these that have
92
232000
2000
當中有幾個因素
04:09
strong強大 predictive預測 relationships關係,
93
234000
2000
扮演著舉足輕重的影響地位
04:11
one of which哪一個 is education教育,
94
236000
3000
其中一個便是教育程度
04:14
where you see the states狀態 with the fewest最少 years年份 of schooling教育
95
239000
2000
大家可以看到教育程度較低的州份
04:16
per adult成人 are in red,
96
241000
2000
以紅色顯示
04:18
and you see this part部分 of the country國家, the kind of Appalachians阿巴拉契亞 region地區,
97
243000
3000
可以看到阿巴拉契亞山區
04:21
is less educated博學. It's just a fact事實.
98
246000
2000
教育程度較低
04:23
And you see the relationship關係 there
99
248000
2000
教育程度直接影響選民
04:25
with the racially-based種族為基礎的 voting表決 patterns模式.
100
250000
3000
是否以種族背景為選舉的考慮因素
04:28
The other variable變量 that's important重要 is
101
253000
2000
另一個影響選民的重要因素
04:30
the type類型 of neighborhood鄰里 that you live生活 in.
102
255000
3000
就是左鄰右舍
04:33
States狀態 that are more rural鄉村 --
103
258000
2000
比較鄉下的州份
04:35
even to some extent程度 of the states狀態 like New Hampshire漢普郡 and Maine緬因州 --
104
260000
2000
如罕布什爾州和緬因
04:37
they exhibit展示 a little bit of
105
262000
2000
也有如此現象
04:39
this racially-based種族為基礎的 voting表決 against反對 Barack巴拉克 Obama奧巴馬.
106
264000
3000
因為歐巴馬的種族背景,不願支持
04:42
So it's the combination組合 of these two things: it's education教育
107
267000
2000
因此,兩個因素影響了結果。那就是教育程度
04:44
and the type類型 of neighbors鄰居 that you have,
108
269000
2000
還有左鄰右舍
04:46
which哪一個 we'll talk about more in a moment時刻.
109
271000
2000
稍後我會再詳細分析
04:48
And the thing about states狀態 like Arkansas阿肯色州 and Tennessee田納西
110
273000
2000
阿肯色州和田納西州就是鮮明的例子
04:50
is that they're both very rural鄉村,
111
275000
2000
都是鄉下地方
04:52
and they are educationally教育上 impoverished貧困.
112
277000
4000
居民所受的教育也較貧乏
04:56
So yes, racism種族主義 is predictable可預測.
113
281000
2000
所以說種族歧視是有跡可尋
04:58
These things, among其中 maybe other variables變量,
114
283000
2000
透過以上這些,再加其他因素
05:00
but these things seem似乎 to predict預測 it.
115
285000
2000
幫助我們了解
05:02
We're going to drill鑽頭 down a little bit more now,
116
287000
2000
現在,讓我們再深入看看
05:04
into something called the General一般 Social社會 Survey調查.
117
289000
2000
社會概況調查
05:06
This is conducted進行 by the University大學 of Chicago芝加哥
118
291000
2000
由芝加哥大學發起
05:08
every一切 other year.
119
293000
2000
每隔一年舉辦一次
05:10
And they ask a series系列 of really interesting有趣 questions問題.
120
295000
2000
當中包括一系列有趣問題
05:12
In 2000 they had particularly尤其 interesting有趣 questions問題
121
297000
2000
2000年的調查
05:14
about racial種族 attitudes態度.
122
299000
2000
特別針對種族觀念
05:16
One simple簡單 question they asked is,
123
301000
2000
其中一個簡單的問題
05:18
"Does anyone任何人 of the opposite對面 race種族 live生活 in your neighborhood鄰里?"
124
303000
4000
「在所居住的社區,有沒有其他種族」?
05:22
We can see in different不同 types類型 of communities社區 that the results結果 are quite相當 different不同.
125
307000
3000
不同社區所得到的答案也迥然不同
05:25
In cites引用, about 80 percent百分 of people
126
310000
3000
在市區,80%受訪者
05:28
have someone有人 whom they consider考慮 a neighbor鄰居 of another另一個 race種族,
127
313000
3000
表示有其他種族的鄰居
05:31
but in rural鄉村 communities社區, only about 30 percent百分.
128
316000
3000
在鄉村地區,只有約30%
05:34
Probably大概 because if you live生活 on a farm農場, you might威力 not have a lot of neighbors鄰居, period.
129
319000
3000
或許是因為鄉村,農場遼闊,沒有太多鄰居
05:37
But nevertheless雖然, you're not having a lot of interaction相互作用 with people
130
322000
3000
因此沒機會與背景不同的人來往
05:40
who are unlike不像 you.
131
325000
2000
尤其那種跟自己完全不同
05:42
So what we're going to do now is take the white白色 people in the survey調查
132
327000
3000
現在,我們要一份調查
05:45
and split分裂 them between之間 those who have black黑色 neighbors鄰居 --
133
330000
3000
將白人分成兩組,一組是有黑人鄰居
05:48
or, really, some neighbor鄰居 of another另一個 race種族 --
134
333000
2000
喔,正確說法是與其他種族為鄰
05:50
and people who have only white白色 neighbors鄰居.
135
335000
3000
另一組則只有白人鄰居
05:53
And we see in some variables變量
136
338000
2000
仔細分析數據
05:55
in terms條款 of political政治 attitudes態度, not a lot of difference區別.
137
340000
2000
所持政治立場,兩組分別並不大
05:57
This was eight years年份 ago, some people were more Republican共和黨人 back then.
138
342000
3000
雖說這是八年前的數據,較多人支持共和黨
06:00
But you see Democrats民主黨 versus Republican共和黨人,
139
345000
2000
比較民主黨和共和黨
06:02
not a big difference區別 based基於 on who your neighbors鄰居 are.
140
347000
3000
與誰為鄰,並沒有直接影響政治立場
06:05
And even some questions問題 about race種族 -- for example
141
350000
2000
在針對族裔的調查,例如
06:07
affirmative肯定 action行動, which哪一個 is kind of a political政治 question,
142
352000
2000
一些如權益平等促進法的問題
06:09
a policy政策 question about race種族, if you will --
143
354000
2000
此類有關政治的問題
06:11
not much difference區別 here.
144
356000
2000
答案也沒有太大分別
06:13
Affirmative肯定 action行動 is not very popular流行 frankly坦率地說, with white白色 voters選民, period.
145
358000
3000
坦白說,權益平等促進法在白人選民中,並不受歡迎
06:16
But people with black黑色 neighbors鄰居 and people with mono-racial單種族 neighborhoods社區
146
361000
3000
有黑人的社區,或單一種族的社區
06:19
feel no differently不同 about it really.
147
364000
3000
則沒有太大的分別
06:22
But if you probe探測 a bit deeper更深 and get a bit more personal個人 if you will,
148
367000
4000
不過,如果更深入,針對個人調查
06:26
"Do you favor偏愛 a law banning取締 interracial異族 marriage婚姻?"
149
371000
2000
問題如「是否支持反異族通婚法?」
06:28
There is a big difference區別.
150
373000
2000
所得的答案則完全不同
06:30
People who don't have neighbors鄰居 of a different不同 race種族
151
375000
2000
來自單一種族社區的民眾
06:32
are about twice兩次 as likely容易
152
377000
2000
對這問題的支持率是另一組的兩倍
06:34
to oppose反對 interracial異族 marriage婚姻 as people who do.
153
379000
3000
反對異族通婚
06:37
Just based基於 on who lives生活 in your immediate即時 neighborhood鄰里 around you.
154
382000
3000
這單單只是受鄰居影響
06:40
And likewise同樣 they asked, not in 2000, but in the same相同 survey調查 in 1996,
155
385000
4000
1996年,也做過相同調查
06:44
"Would you not vote投票 for a qualified合格 black黑色 president主席?"
156
389000
4000
問:「是否支持非裔美國人當選總統?」
06:48
You see people without neighbors鄰居 who are African-American非裔美國人 who
157
393000
2000
調查發現,那些未曾與非裔為鄰
06:50
were much more likely容易 to say, "That would give me a problem問題."
158
395000
3000
多會表示不願意支持
06:53
So it's really not even about urban城市的 versus rural鄉村.
159
398000
2000
所以說,這根本不是攸關城市與鄉村
06:55
It's about who you live生活 with.
160
400000
2000
與誰為鄰才是關鍵
06:57
Racism種族主義 is predictable可預測. And it's predicted預料到的 by
161
402000
2000
種族歧視是有跡可尋
06:59
interaction相互作用 or lack缺乏 thereof with people unlike不像 you, people of other races比賽.
162
404000
4000
透過所接觸的人,甚至交友狀況而得知
07:03
So if you want to address地址 it,
163
408000
2000
簡單來說
07:05
the goal目標 is to facilitate促進 interaction相互作用 with people of other races比賽.
164
410000
3000
我們的目標就是促進各種族互動
07:08
I have a couple一對 of very obvious明顯, I suppose假設,
165
413000
2000
我心中有一些想法
07:10
ideas思路 for maybe how to do that.
166
415000
3000
希望能推動這個目標
07:13
I'm a big fan風扇 of cities城市.
167
418000
2000
我非常熱愛城市
07:15
Especially特別 if we have cites引用 that are diverse多種 and sustainable可持續發展,
168
420000
3000
尤其我們的城市如此多元化
07:18
and can support支持 people of different不同 ethnicities種族 and different不同 income收入 groups.
169
423000
3000
融匯了各族裔群體,各社會階層
07:21
I think cities城市 facilitate促進 more of the kind of networking聯網,
170
426000
3000
城市裡有很多機會擴展社交圈
07:24
the kind of casual隨便 interaction相互作用 than you might威力 have on a daily日常 basis基礎.
171
429000
3000
每天都可以接觸不同的人
07:27
But also not everyone大家 wants to live生活 in a city, certainly當然 not a city like New York紐約.
172
432000
3000
當然,不是每個人都喜歡住城市,尤其是紐約
07:30
So we can think more about things like street grids網格.
173
435000
3000
讓我們看看這類如棋盤式格局的街道
07:33
This is the neighborhood鄰里 where I grew成長 up in East Lansing蘭辛, Michigan密歇根州.
174
438000
2000
我在芝加哥的東蘭莘長大
07:35
It's a traditional傳統 Midwestern中西部 community社區, which哪一個 means手段 you have real真實 grid.
175
440000
3000
一個典型中西部社區,街道都是整整齊齊
07:38
You have real真實 neighborhoods社區 and real真實 trees樹木, and real真實 streets街道 you can walk步行 on.
176
443000
3000
可以看到實實在在的社區、樹木、街道
07:41
And you interact相互作用 a lot with your neighbors鄰居 --
177
446000
3000
在這裡,可以跟許多鄰居來往、互動
07:44
people you like, people you might威力 not know.
178
449000
2000
儘管有些人我們未必喜歡,甚至不了解
07:46
And as a result結果 it's a very tolerant寬容 community社區,
179
451000
3000
卻是一個可包容彼此的社區
07:49
which哪一個 is different不同, I think, than something like this,
180
454000
2000
另外一種城市就不一樣
07:51
which哪一個 is in Schaumburg紹姆堡, Illinois伊利諾伊,
181
456000
2000
如伊利諾州的紹姆堡
07:53
where every一切 little set of houses房屋 has their own擁有 cul-de-sac死路
182
458000
3000
每家都有私家路
07:56
and drive-through駕車通過 Starbucks星巴克 and stuff東東 like that.
183
461000
2000
甚至大到可容納一家星巴客等等
07:58
I think that actually其實 this type類型 of urban城市的 design設計,
184
463000
3000
這類社區
08:01
which哪一個 became成為 more prevalent流行 in the 1970s and 1980s --
185
466000
3000
在70、80年代特別流行
08:04
I think there is a relationship關係 between之間 that and the country國家 becoming變得
186
469000
3000
我個人認為美國會變得
08:07
more conservative保守 under Ronald羅納德 Reagan裡根.
187
472000
2000
如此保守,是在雷根總統任職的時候
08:09
But also here is another另一個 idea理念 we have --
188
474000
3000
還有另一個想法
08:12
is an intercollegiate校際 exchange交換 program程序
189
477000
2000
就是交換生計畫
08:14
where you have students學生們 going from New York紐約 abroad國外.
190
479000
3000
例如將紐約學生送往海外
08:17
But frankly坦率地說 there are enough足夠 differences分歧 within the country國家 now
191
482000
2000
老實說,就算在美國,各州縣差距也很大
08:19
where maybe you can take a bunch of kids孩子 from NYUNYU,
192
484000
3000
或許可以將紐約大學生
08:22
have them go study研究 for a semester學期 at the University大學 of Arkansas阿肯色州,
193
487000
2000
送到阿肯色大學
08:24
and vice versa反之亦然. Do it at the high school學校 level水平.
194
489000
3000
反之亦然。還可以將此延伸至高中
08:27
Literally按照字面 there are people who might威力 be in school學校 in Arkansas阿肯色州 or Tennessee田納西
195
492000
3000
其實,生長在阿肯色州或田納西州的學生
08:30
and might威力 never interact相互作用 in a positive affirmative肯定 way
196
495000
3000
可能從未有機會與其他種族交流
08:33
with someone有人 from another另一個 part部分 of the country國家, or of another另一個 racial種族 group.
197
498000
4000
尤其是來自另一個地區或種族
08:37
I think part部分 of the education教育 variable變量 we talked about before
198
502000
3000
教育的其中一個目的
08:40
is the networking聯網 experience經驗 you get when you go to college學院
199
505000
2000
就是在大學時期建立人際網絡
08:42
where you do get a mix混合 of people that you might威力 not interact相互作用 with otherwise除此以外.
200
507000
4000
與不同種族的同學交流互動
08:46
But the point is, this is all good news新聞,
201
511000
2000
總結,這可是一個好消息
08:48
because when something is predictable可預測,
202
513000
3000
事情有跡可循
08:51
it is what I call designable可設計.
203
516000
2000
就代表有相關對策
08:53
You can start開始 thinking思維 about solutions解決方案 to solving that problem問題,
204
518000
2000
大家可以開始想想有甚麼解決方法
08:55
even if the problem問題 is pernicious有害 and as intractable棘手 as racism種族主義.
205
520000
3000
儘管不容易解決,如種族歧視,非常棘手
08:58
If we understand理解 the root causes原因 of the behavior行為
206
523000
2000
但如果我們能夠揪出問題的根源
09:00
and where it manifests艙單 itself本身 and where it doesn't,
207
525000
2000
將之抽絲剝繭
09:02
we can start開始 to design設計 solutions解決方案 to it.
208
527000
3000
必能找出相對應辦法
09:05
So that's all I have to say. Thank you very much.
209
530000
2000
以上是我想與大家分享的。謝謝!
09:07
(Applause掌聲)
210
532000
1000
(掌聲)
Translated by Sarah Sau
Reviewed by Brenda Yuan

▲Back to top

ABOUT THE SPEAKER
Nate Silver - Statistician
Math whiz and baseball fan Nate Silver was mainly known for predicting outcomes in fantasy ballgames -- until his technique hit a home run calling the outcome of the 2008 election primaries.

Why you should listen

In the 2008 election season's closing weeks, throngs of wonks and laypeople alike were glued to FiveThirtyEight.com, a habitforming political blog. Red and blue bar charts crowded the scrollbars as the pulse of exit polls crept along the site's latest projections. It seemed almost miraculous: In a year of acute turns of favor, the site's owner and mouthpiece, Nate Silver (who blogged anonymously as "Poblano" until outing himself on May 30, 2008, as a baseball numberhead), managed to predict the winners of every U.S. Senate contest -- and the general Presidential election.

Besides being just-damn-fascinating, Silver's analysis is a decidedly contrarian gauntlet thrown before an unrepentant, spectacle-driven media. The up-and-coming pundit, who cut his teeth forecasting the performance of Major League Baseball players, has a fairly direct explanation of why most projections fail: "Polls are cherry-picked based on their brand name or shock value rather than their track record of accuracy."

Silver's considerable smarts are already helping local campaigns build constituencies and strategize. He is the author of The Signal and the Noise: Why So Many Predictions Fail - but Some Don't

More profile about the speaker
Nate Silver | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee