Sebastian Wernicke: How to use data to make a hit TV show
Hvordan man bruger data til at lave en populær TV-serie: How to use data to make a hit TV show
After making a splash in the field of bioinformatics, Sebastian Wernicke moved on to the corporate sphere, where he motivates and manages multidimensional projects. Full bio
Double-click the English transcript below to play the video.
have probably never heard about,
nok aldrig har hørt om,
minutes of your life on April 19, 2013.
minutter af jeres liv den 19. april 2013.
for 22 very entertaining minutes,
meget underholdende minutter,
about three years ago.
omkring tre år siden.
is a senior executive with Amazon Studios.
er en overordnet leder hos Amazon Studios.
company of Amazon.
as "movies, TV, technology, tacos."
som "film, TV, teknologi, taco."
because it's his responsibility
fordi det er hans ansvar
that Amazon is going to make.
som Amazon skal producere.
a highly competitive space.
et meget konkurrerende miljø.
TV shows already out there,
så mange TV-serier,
that are really, really great.
som er rigtig, rigtig gode.
of this curve here.
is the rating distribution
fordeling af bedømmelser
on the website IMDB,
på hjemmesiden IMDB,
how many shows get that rating.
der får den bedømmelse.
of nine points or higher, that's a winner.
ni point eller højere er det en vinder.
"Game of Thrones," "The Wire,"
"Game of Thrones," "The Wire,"
som er vanedannende,
your brain is basically like,
siger din hjerne bare,
here on that end,
i den her side,
"Toddlers and Tiaras" --
"Toddlers and Tiaras" -
on that end of the curve.
af kurven.
getting on the left end of the curve,
på den venstre side af kurven,
some serious brainpower
skal have noget tankevirksomhed
"Toddlers and Tiaras."
is this middle bulge here,
er bulen her i midten,
that aren't really good or really bad,
rigtig gode eller rigtig dårlige
that he's really on the right end of this.
at han er på den rigtige side af denne.
doing something like this,
to take any chances.
he holds a competition.
through an evaluation,
of each one of these shows
første episode til hver serie
for everyone to watch.
så alle kan se dem gratis.
is giving out free stuff,
are watching those episodes.
while they're watching their shows,
at mens de ser deres serie
by Roy Price and his team,
og hans hold
when somebody presses pause,
når nogen trykker pause,
what parts they watch again.
hvilke dele de ser igen.
to have those data points
which show they should make.
so they collect all the data,
de samlede al data,
and an answer emerges,
og et svar dukkede op,
about four Republican US Senators."
om fire republikanske senatorer."
remember that show, actually,
mange af jer som faktisk husker den serie,
at blive så god.
en gennemsnitlig serie
the average of this curve here is at 7.4,
fordi gennemsnittet på denne kurve er 7,4
and his team were aiming for.
og hans hold gik efter.
at about the same time,
to land a top show using data analysis,
top serie ved hjælp af data analysering,
the Chief Content Officer of Netflix,
Chief Content Officer hos Netflix.
he's on a constant mission
en konstant mission
a little bit differently.
at han gør det lidt anderledes.
what he did -- and his team of course --
han - og hans hold selvfølgelig -
they already had about Netflix viewers,
de allerede havde om Netflix seere.
they give their shows,
de giver deres serier,
what shows people like, and so on.
hvilke serier folk kan lide, osv.
about the audience:
af informationer om seererne:
what kind of actors.
all of these pieces together,
of course, nailed it with that show,
selvfølgelig ramte rigtig med den serie,
a 9.1 rating on this curve,
where they wanted it to be.
de gerne ville have den skulle være.
what happened here?
hvad skete der her?
data-savvy companies.
data-kløgtige firmaer.
millions of data points,
millioner af data point,
beautifully for one of them,
that this should be working all the time.
egentlig fungerer hver gang.
millions of data points
to make a pretty good decision.
en ret god beslutning.
of statistics to rely on.
at falde tilbage på.
with very powerful computers.
med kraftfulde computere.
is good TV, right?
er vel god TV, ikke?
does not work that way,
ikke virker på den måde,
where we're turning to data more and more
hvor vi bruger data mere og mere
that go far beyond TV.
Multi-Health Systems?
Multi-Health Systems?
is a software company,
er et software firma,
with that software,
med den software,
it means you're in prison.
and they apply for parole,
ansøger om prøveløsladelse,
data analysis software from that company
at data analyse software fra det firma
whether to grant that parole.
der skal gives prøveløsladelse.
as Amazon and Netflix,
som Amazon og Netflix,
a TV show is going to be good or bad,
en TV-serie bliver god eller dårlig,
is going to be good or bad.
bliver god eller dårlig.
that can be pretty bad,
det kan være ret dårligt,
I guess, even worse.
går jeg udfra, er endnu værre.
some evidence that this data analysis,
at denne data analyse,
does not always produce optimum results.
ikke altid producerer optimale resultater.
like Multi-Health Systems
som Multi-Health Systems
companies get it wrong.
firmaer fejler.
that they were able, with data analysis,
at de var i stand til, med data analyse,
the nasty kind of flu,
den slemme slags,
on their Google searches.
på deres Google søgninger.
and it made a big splash in the news,
blev en stor historie i nyhederne,
of scientific success:
i videnskabelig succes:
for year after year after year,
år efter år efter år,
from the journal "Nature."
Amazon and Google,
Amazon og Google,
into real-life decision-making --
beslutningstagen -
that data is helping.
at data hjælper.
a lot of this struggle with data myself,
kamp med data selv,
where lots of very smart people
hvor mange meget smart folk
to make pretty serious decisions
at træffe nogle ret seriøse beslutninger,
or developing a drug.
eller udvikle et medikament.
I've noticed a sort of pattern
har jeg lagt mærke til et mønster
about the difference
om forskellen
decision-making with data
beslutningstagen med data
and it goes something like this.
og det er sådan her.
solving a complex problem,
et kompleks problem,
apart into its bits and pieces
op i mindre stykker
those bits and pieces,
you do the second part.
den anden del.
back together again
for at komme
have to do it over again,
back together again.
og samle det igen.
no matter how powerful,
uanset hvor stærk,
and understanding its pieces.
og forstå stykkerne.
back together again
stykkerne igen
and we all have it,
og alle har det,
back together again,
that Netflix was so successful,
at Netflix var så succesfulde
where they belong in the process.
der hvor de passede i processen.
lots of pieces about their audience
en masse stykker af deres seere
been able to understand at that depth,
forstået på sådan et niveau,
to take all these bits and pieces
alle disse stykker
and make a show like "House of Cards,"
og lave en serie som "House of Cards,"
made that decision to license that show,
tog beslutningen om at lave den serie,
that they were taking
at de løb
with that decision.
med den beslutning.
they did it the wrong way around.
de gjorde det på den forkerte led.
to drive their decision-making,
i deres beslutningstagen,
their competition of TV ideas,
med TV idéer
to make as a show.
"Alpha House" til en serie.
a very safe decision for them,
en sikker beslutning for dem
point at the data, saying,
pege på dataen og sige:
results that they were hoping for.
resultat som de håbede på.
useful tool to make better decisions,
værktøj til at tage bedre valg
to drive those decisions.
data is just a tool,
er det kun et værktøj
I find this device here quite useful.
finder jeg denne her meget brugbar.
device to use.
man brugte.
a yes or no question,
et ja/nej spørgsmål,
and then you get an answer --
at ryste kuglen og så får du et svar -
in this window in real time.
i dette vindue i realtid.
so I've made some decisions in my life
nogle valg i mit liv
I should have just listened to the ball.
til kuglen, set i bakspejlet.
if you have the data available,
much more sophisticated,
med noget langt mere sofistikeret,
to come to a better decision.
for at komme frem til en bedre beslutning.
and smarter and smarter,
og klogere og klogere,
to make the decisions
at vi skal tage beslutningerne
something extraordinary,
message, in fact,
er en meget opmuntrende besked,
of huge amounts of data,
at tage beslutninger,
er det ikke data
on the right end of the curve.
til den højre ende af kurven.
ABOUT THE SPEAKER
Sebastian Wernicke - Data scientistAfter making a splash in the field of bioinformatics, Sebastian Wernicke moved on to the corporate sphere, where he motivates and manages multidimensional projects.
Why you should listen
Dr. Sebastian Wernicke is the Chief Data Scientist of ONE LOGIC, a data science boutique that supports organizations across industries to make sense of their vast data collections to improve operations and gain strategic advantages. Wernicke originally studied bioinformatics and previously led the strategy and growth of Seven Bridges Genomics, a Cambridge-based startup that builds platforms for genetic analysis.
Before his career in statistics began, Wernicke worked stints as both a paramedic and successful short animated filmmaker. He's also the author of the TEDPad app, an irreverent tool for creating an infinite number of "amazing and really bad" and mostly completely meaningless talks. He's the author of the statistically authoritative and yet completely ridiculous "How to Give the Perfect TEDTalk."
Sebastian Wernicke | Speaker | TED.com