Sebastian Wernicke: How to use data to make a hit TV show
세바스찬 워닉 (Sebastian Wernicke): 히트작 TV 쇼를 만들기 위한 데이터 사용법
After making a splash in the field of bioinformatics, Sebastian Wernicke moved on to the corporate sphere, where he motivates and manages multidimensional projects. Full bio
Double-click the English transcript below to play the video.
have probably never heard about,
아시는 분이 얼마 되지 않을 거예요.
minutes of your life on April 19, 2013.
수도 있지만 말입니다.
for 22 very entertaining minutes,
22분을 보내게 하기도 했지만
결정으로 되돌아 갑니다.
about three years ago.
is a senior executive with Amazon Studios.
고위 간부입니다.
company of Amazon.
뾰족한 머리를 했으며
as "movies, TV, technology, tacos."
묘사했습니다. "영화, TV, 기술, 타코"
because it's his responsibility
시작 컨텐츠를 선택하는 것이니까요.
that Amazon is going to make.
a highly competitive space.
TV shows already out there,
that are really, really great.
있는 것들이어야 한다는 뜻이죠.
of this curve here.
is the rating distribution
2,500 여개의 TV 쇼를
on the website IMDB,
how many shows get that rating.
받은 쇼의 개수를 보여주죠.
of nine points or higher, that's a winner.
"Game of Thrones," "The Wire,"
"더 와이어" 처럼요.
your brain is basically like,
라고 생각할 거예요.
here on that end,
뭐가 있는지 알려드리자면요.
"Toddlers and Tiaras" --
on that end of the curve.
예측할 수 있을 거예요.
getting on the left end of the curve,
머물게 되는 것에 신경쓰지 않아요.
some serious brainpower
뇌를 좀 많이 쓰셔야 할테니까요.
is this middle bulge here,
that aren't really good or really bad,
나쁘지도 않은 쇼들이죠.
that he's really on the right end of this.
있도록 해야 해요.
doing something like this,
to take any chances.
싶어 할 거예요.
he holds a competition.
아이디어를 모은 다음에
through an evaluation,
of each one of these shows
for everyone to watch.
무료로 제공해요.
is giving out free stuff,
are watching those episodes.
첫 번째 에피소드를 볼 것입니다.
while they're watching their shows,
by Roy Price and his team,
when somebody presses pause,
언제 정지하는지 기록하죠.
what parts they watch again.
어디를 다시 보는지를요.
데이터 포인트를 수집해요.
to have those data points
데이터 포인트거든요.
which show they should make.
만들어야 할지를 결정하죠.
so they collect all the data,
and an answer emerges,
about four Republican US Senators."
시트콤을 만들어야 한다" 입니다.
remember that show, actually,
계시지는 않은 것 같아요.
the average of this curve here is at 7.4,
and his team were aiming for.
그의 팀이 목표한 것은 아니었죠.
at about the same time,
to land a top show using data analysis,
탑 쇼 하나를 배출했습니다.
the Chief Content Officer of Netflix,
부문 최고 경영자예요.
he's on a constant mission
데이터를 이용하는데
a little bit differently.
what he did -- and his team of course --
they already had about Netflix viewers,
기존의 데이터를 봅니다.
they give their shows,
what shows people like, and so on.
좋아하는지 등을요.
about the audience:
모든 것들을 발견해 나갑니다.
what kind of actors.
좋아하는지 말이에요.
all of these pieces together,
시트콤이 아니라
드라마였습니다.
of course, nailed it with that show,
최소 두 번째 시즌까진 성공적인
a 9.1 rating on this curve,
9.1점을 받았어요.
where they wanted it to be.
what happened here?
무슨 일이 일어난 걸까요?
data-savvy companies.
다루는 회사들이 있다고 합시다.
millions of data points,
포인트들을 연결시켜요.
beautifully for one of them,
that this should be working all the time.
작동하는 것이 맞을 것이기 때문입니다.
millions of data points
포인트를 수집한다면
to make a pretty good decision.
마땅할 것입니다.
of statistics to rely on.
통계 자료가 있어요.
with very powerful computers.
이를 증폭시킵니다.
is good TV, right?
does not work that way,
where we're turning to data more and more
더 많은 정보 수집을 통하여
that go far beyond TV.
결정을 내리는 사회거든요.
Multi-Health Systems?
회사에 대해 들어 보신 분 계신가요?
is a software company,
소프트웨어 회사입니다.
with that software,
않으시길 바래요.
it means you're in prison.
감옥에 있다는 뜻이니까요.
and they apply for parole,
가석방을 요청하면
data analysis software from that company
소프트 웨어를 통해
whether to grant that parole.
가능성이 높습니다.
as Amazon and Netflix,
a TV show is going to be good or bad,
나쁜지를 판단하는 대신에
is going to be good or bad.
나쁜지를 결정하게 될 거예요.
that can be pretty bad,
보는 것은 별로죠.
I guess, even worse.
훨씬 나쁜 일일 것입니다.
some evidence that this data analysis,
does not always produce optimum results.
결과를 얻는 것은 아니라는 증거가 있습니다.
like Multi-Health Systems
몰라서 그러는게 아니에요.
companies get it wrong.
회사들도 틀리는 걸요.
that they were able, with data analysis,
the nasty kind of flu,
예측할 수 있다고 주장했었어요.
on their Google searches.
and it made a big splash in the news,
뉴스에 크게 보도 됐어요.
of scientific success:
for year after year after year,
확실한 이유를 규명하지 못해요.
from the journal "Nature."
Amazon and Google,
데이터를 잘 다루는 회사들도
into real-life decision-making --
의사결정에 이용되고 있습니다.
that data is helping.
도움이 되도록 해야겠죠.
a lot of this struggle with data myself,
고생한 경험이 많아요.
종사하고 있거든요.
where lots of very smart people
뛰어난 인재들이
to make pretty serious decisions
이용하여 중대한 결정을 내립니다.
or developing a drug.
등의 결정에 말입니다.
I've noticed a sort of pattern
패턴을 발견하였는데
about the difference
decision-making with data
차이에 대한 규칙 말입니다.
and it goes something like this.
그 내용은 다음과 같습니다.
solving a complex problem,
apart into its bits and pieces
여러 조각으로 쪼개서
those bits and pieces,
you do the second part.
back together again
have to do it over again,
back together again.
중요한 것이라는 겁니다.
no matter how powerful,
영향력이 있던 간에
and understanding its pieces.
이해하는 것에만 도움을 줄 뿐
back together again
and we all have it,
우리 모두는 그것을 가지고 있습니다.
back together again,
가지고 있을 때조차
that Netflix was so successful,
성공 비결이예요.
where they belong in the process.
일을 처리 했거든요.
lots of pieces about their audience
대중들에 관한 조각들을 이해했는데
been able to understand at that depth,
이해하지 못했을 것입니다.
to take all these bits and pieces
and make a show like "House of Cards,"
쇼를 만든 것은
made that decision to license that show,
그 쇼에 특허를 내기로 결정했어요.
that they were taking
with that decision.
감수한다는 뜻이죠.
they did it the wrong way around.
to drive their decision-making,
데이터를 사용했습니다.
their competition of TV ideas,
벌일 때 사용했고
to make as a show.
선택했을 때도 사용했습니다.
a very safe decision for them,
결정이었습니다.
point at the data, saying,
가르키면서 말할 수 있었으니까요.
results that they were hoping for.
결과에 이르지는 못했어요.
useful tool to make better decisions,
위한 매우 유용한 도구이지만
to drive those decisions.
이끌기 시작한다면 말이죠.
data is just a tool,
데이터는 도구일 뿐입니다.
I find this device here quite useful.
이 장치가 꽤 유용하다고 생각합니다.
device to use.
이용하셨을 것입니다.
a yes or no question,
예 또는 아니오 식의 문제일때요.
and then you get an answer --
답을 얻을 수 있습니다.
in this window in real time.
"아주 그렇다"이네요.
so I've made some decisions in my life
제 인생에서 결정들을 종종 내렸는데
I should have just listened to the ball.
들을걸 하고 깨달은 적이 있습니다.
if you have the data available,
있는 상태라면
much more sophisticated,
to come to a better decision.
내리는 것 처럼 말이예요.
바뀌지 않아요.
and smarter and smarter,
진화할지는 모르지만
to make the decisions
우리의 몫이 될꺼에요.
something extraordinary,
도달하고 싶을때요.
message, in fact,
메세지라고 생각하는데
of huge amounts of data,
on the right end of the curve.
오른쪽 끝으로 데려다 줄테니까요.
ABOUT THE SPEAKER
Sebastian Wernicke - Data scientistAfter making a splash in the field of bioinformatics, Sebastian Wernicke moved on to the corporate sphere, where he motivates and manages multidimensional projects.
Why you should listen
Dr. Sebastian Wernicke is the Chief Data Scientist of ONE LOGIC, a data science boutique that supports organizations across industries to make sense of their vast data collections to improve operations and gain strategic advantages. Wernicke originally studied bioinformatics and previously led the strategy and growth of Seven Bridges Genomics, a Cambridge-based startup that builds platforms for genetic analysis.
Before his career in statistics began, Wernicke worked stints as both a paramedic and successful short animated filmmaker. He's also the author of the TEDPad app, an irreverent tool for creating an infinite number of "amazing and really bad" and mostly completely meaningless talks. He's the author of the statistically authoritative and yet completely ridiculous "How to Give the Perfect TEDTalk."
Sebastian Wernicke | Speaker | TED.com