Sebastian Wernicke: How to use data to make a hit TV show
セバスチャン・ワーニック: データから人気テレビ番組を作るには
After making a splash in the field of bioinformatics, Sebastian Wernicke moved on to the corporate sphere, where he motivates and manages multidimensional projects. Full bio
Double-click the English transcript below to play the video.
have probably never heard about,
ほとんどいないでしょう
minutes of your life on April 19, 2013.
退屈させたであろう張本人です
for 22 very entertaining minutes,
いるかもしれませんが
about three years ago.
ある決定にさかのぼります
is a senior executive with Amazon Studios.
アマゾン・スタジオ すなわち
company of Amazon.
髪を逆立てた 47歳
as "movies, TV, technology, tacos."
テクノロジーとタコス 好き」です
because it's his responsibility
選ぶのが彼の仕事ですから
that Amazon is going to make.
a highly competitive space.
TV shows already out there,
that are really, really great.
見出さなければならないんです
of this curve here.
is the rating distribution
on the website IMDB,
約2,500番組の評価の分布です
how many shows get that rating.
of nine points or higher, that's a winner.
評価を得れば 成功と言えます
"Game of Thrones," "The Wire,"
『ゲーム・オブ・スローンズ』『ザ・ワイヤー』が
your brain is basically like,
「どこで もっと見られる?」と
here on that end,
"Toddlers and Tiaras" --
『Toddlers & Tiaras』が来ます
on that end of the curve.
getting on the left end of the curve,
左端のことは 心配していません
some serious brainpower
is this middle bulge here,
グラフのピーク付近です
that aren't really good or really bad,
特に見たいとも思わない
that he's really on the right end of this.
行かなくてはなりません
doing something like this,
to take any chances.
賭けに出る気はありません
he holds a competition.
through an evaluation,
of each one of these shows
オンラインで公開し
for everyone to watch.
is giving out free stuff,
are watching those episodes.
番組を見ることになります
while they're watching their shows,
番組を見ている間
by Roy Price and his team,
when somebody presses pause,
どこを飛ばし
what parts they watch again.
記録するんです
データポイントを集めます
to have those data points
which show they should make.
so they collect all the data,
and an answer emerges,
答えが見えてきました
about four Republican US Senators."
上院議員が主役のホームコメディである」
remember that show, actually,
the average of this curve here is at 7.4,
『アルファ・ハウス』は7.5でしたから
and his team were aiming for.
狙いとはかけ離れています
at about the same time,
to land a top show using data analysis,
ヒット番組を作ろうとしていました
the Chief Content Officer of Netflix,
Netflix社のコンテンツ部門代表です
he's on a constant mission
a little bit differently.
what he did -- and his team of course --
コンテストを開くのではなく
they already had about Netflix viewers,
全データを分析しました
they give their shows,
what shows people like, and so on.
といったデータです
about the audience:
探っていくのです
what kind of actors.
俳優についてです
all of these pieces together,
ドラマシリーズでした
of course, nailed it with that show,
野望の階段』で Netflixは
a 9.1 rating on this curve,
9.1の評価を得ていて
where they wanted it to be.
what happened here?
data-savvy companies.
2つの会社があり
millions of data points,
組み合わせていますが
beautifully for one of them,
that this should be working all the time.
millions of data points
to make a pretty good decision.
of statistics to rely on.
with very powerful computers.
力を貸してくれます
is good TV, right?
ないでしょう
does not work that way,
思い通りにならなかったら
where we're turning to data more and more
様々な重要な決断を下す時
that go far beyond TV.
私たちは生きているんですから
Multi-Health Systems?
知っている方はいますか?
is a software company,
ソフトウェア会社ですが
いないといいですね
with that software,
その人は
it means you're in prison.
and they apply for parole,
仮釈放を申請すると
data analysis software from that company
この会社のデータ分析ソフトが
whether to grant that parole.
as Amazon and Netflix,
a TV show is going to be good or bad,
決めるのではなく
is going to be good or bad.
that can be pretty bad,
苦痛かもしれませんが
I guess, even worse.
ずっときついでしょう
some evidence that this data analysis,
大量のデータがあったとしても
does not always produce optimum results.
限らないという証拠があります
like Multi-Health Systems
companies get it wrong.
that they were able, with data analysis,
the nasty kind of flu,
感染力の強いインフルエンザの
on their Google searches.
and it made a big splash in the news,
大きなニュースになりました
of scientific success:
for year after year after year,
うまくいっていましたが
from the journal "Nature."
Amazon and Google,
極めてデータに強い企業でさえ
into real-life decision-making --
日常の意思決定にも
that data is helping.
役立っているか 確認すべきです
a lot of this struggle with data myself,
目の当たりにしてきました
where lots of very smart people
to make pretty serious decisions
がんの治療や
or developing a drug.
重大な決断を下しています
I've noticed a sort of pattern
データを使った意思決定が
about the difference
decision-making with data
規則性のようなものが
and it goes something like this.
伝える価値があると思います
solving a complex problem,
apart into its bits and pieces
those bits and pieces,
you do the second part.
back together again
have to do it over again,
繰り返す場合もありますが
back together again.
no matter how powerful,
and understanding its pieces.
要素を理解するところまでです
back together again
結論に至るには
and we all have it,
別のツールがあります
back together again,
that Netflix was so successful,
where they belong in the process.
利用したからでしょう
lots of pieces about their audience
視聴者に関する情報を理解しました
been able to understand at that depth,
深く理解できなかったでしょう
to take all these bits and pieces
and make a show like "House of Cards,"
データからは出てこない
made that decision to license that show,
テッド・サランドスのチームです
that they were taking
with that decision.
they did it the wrong way around.
Amazonは方法を誤りました
to drive their decision-making,
their competition of TV ideas,
to make as a show.
制作した時もそうでした
a very safe decision for them,
point at the data, saying,
results that they were hoping for.
並外れた成果は上げられませんでした
useful tool to make better decisions,
データはとても役立つツールです
to drive those decisions.
問題が起きてくると思います
data is just a tool,
データは単なる道具です
I find this device here quite useful.
この装置が役立つことに気づきました
device to use.
これのことでした
a yes or no question,
何か決定しなければならない時
and then you get an answer --
答えが出ます
in this window in real time.
こんな風に リアルタイムで出ます
so I've made some decisions in my life
これまでの私の決断には
I should have just listened to the ball.
よかったものもあります
if you have the data available,
こんな おもちゃではなく
much more sophisticated,
より洗練された手段を使って
to come to a better decision.
思うはずです
基本的な仕組みは変わりません
and smarter and smarter,
賢くなっていくかもしれませんが
to make the decisions
something extraordinary,
成し遂げたいなら
message, in fact,
それでもなお 自分で決定すること
of huge amounts of data,
リスクを負うことが
達するために必要なのは
on the right end of the curve.
ABOUT THE SPEAKER
Sebastian Wernicke - Data scientistAfter making a splash in the field of bioinformatics, Sebastian Wernicke moved on to the corporate sphere, where he motivates and manages multidimensional projects.
Why you should listen
Dr. Sebastian Wernicke is the Chief Data Scientist of ONE LOGIC, a data science boutique that supports organizations across industries to make sense of their vast data collections to improve operations and gain strategic advantages. Wernicke originally studied bioinformatics and previously led the strategy and growth of Seven Bridges Genomics, a Cambridge-based startup that builds platforms for genetic analysis.
Before his career in statistics began, Wernicke worked stints as both a paramedic and successful short animated filmmaker. He's also the author of the TEDPad app, an irreverent tool for creating an infinite number of "amazing and really bad" and mostly completely meaningless talks. He's the author of the statistically authoritative and yet completely ridiculous "How to Give the Perfect TEDTalk."
Sebastian Wernicke | Speaker | TED.com