Allan Adams: The discovery that could rewrite physics
Allan Adams: De ontdekking die de fysica kan herschrijven
Allan Adams is a theoretical physicist working at the intersection of fluid dynamics, quantum field theory and string theory. Full bio
Double-click the English transcript below to play the video.
zie je meer sterren,
further, more galaxies.
verder meer sterrenstelsels.
verder en verder blijft kijken,
faint, fading afterglow,
flauw, uitdovend nagloeien.
in het vroege heelal
in de nachtelijke hemel
in een ongelooflijk kleine,
ongelooflijk kolkende massa,
is voortgekomen.
bedoel ik andere mensen dan ikzelf.
in kaart gebracht
naar de andere kant,
boven het absolute nulpunt.
to everyone in this room,
voor ons allemaal.
en clusters van sterrenstelsels
is nog veel cooler.
van de ruimte-tijd zelf zijn
zou de kwantummechanica zijn.
in de structuur van de ruimte
voor alle praktische doeleinden.
de nachtelijke hemel in te kijken -
three years on the South Pole
drie jaar op de Zuidpool
door de koudste, helderste
die ze konden vinden.
bestudeerden die gloed
al is dat al geweldig.
deep about the early universe.
over het vroege heelal.
en dit verklaart, zal er hetzelfde uitzien.
en met reden.
bewijs zouden zien, en hier is het.
kolkende pot universele materie.
and spending three years
en er drie jaar lang
van de nachtelijke hemel te kijken,
that looks kind of like that.
zitten dat er een beetje zo uitziet.
ABOUT THE SPEAKER
Allan Adams - Theoretical physicistAllan Adams is a theoretical physicist working at the intersection of fluid dynamics, quantum field theory and string theory.
Why you should listen
Allan Adams is a theoretical physicist working at the intersection of fluid dynamics, quantum field theory and string theory. His research in theoretical physics focuses on string theory both as a model of quantum gravity and as a strong-coupling description of non-gravitational systems.
Like water, string theory enjoys many distinct phases in which the low-energy phenomena take qualitatively different forms. In its most familiar phases, string theory reduces to a perturbative theory of quantum gravity. These phases are useful for studying, for example, the resolution of singularities in classical gravity, or the set of possibilities for the geometry and fields of spacetime. Along these lines, Adams is particularly interested in microscopic quantization of flux vacua, and in the search for constraints on low-energy physics derived from consistency of the stringy UV completion.
In other phases, when the gravitational interactions become strong and a smooth spacetime geometry ceases to be a good approximation, a more convenient description of string theory may be given in terms of a weakly-coupled non-gravitational quantum field theory. Remarkably, these two descriptions—with and without gravity—appear to be completely equivalent, with one remaining weakly-coupled when its dual is strongly interacting. This equivalence, known as gauge-gravity duality, allows us to study strongly-coupled string and quantum field theories by studying perturbative features of their weakly-coupled duals. Gauge-gravity duals have already led to interesting predictions for the quark-gluon plasma studied at RHIC. A major focus of Adams's present research is to use such dualities to find weakly-coupled descriptions of strongly-interacting condensed matter systems which can be realized in the lab.Allan Adams | Speaker | TED.com