ABOUT THE SPEAKER
Danny Hillis - Computer theorist
Inventor, scientist, author, engineer -- over his broad career, Danny Hillis has turned his ever-searching brain on an array of subjects, with surprising results.

Why you should listen

Danny Hillis is an inventor, scientist, author and engineer. While completing his doctorate at MIT, he pioneered the concept of parallel computers that is now the basis for graphics processors and cloud computing. He holds more than 300 US patents, covering parallel computers, disk arrays, forgery prevention methods, various electronic and mechanical devices, and the pinch-to-zoom display interface. He has recently been working on problems in medicine as well. He is also the designer of a 10,000-year mechanical clock, and he gave a TED Talk in 1994 that is practically prophetic. Throughout his career, Hillis has worked at places like Disney, and now MIT and Applied Invention, always looking for the next fascinating problem.

More profile about the speaker
Danny Hillis | Speaker | TED.com
TEDMED 2010

Danny Hillis: Understanding cancer through proteomics

丹尼 赫力斯:用蛋白质组学解读癌症

Filmed:
465,363 views

丹尼 赫力斯讲述癌症医学的前沿:蛋白质组学,研究身体内的蛋白质。赫力斯向我们解释:基因组学显示了我们身体里的“佐料”, 而蛋白质组学向我们显示了用这些“佐料”有什么效果。理解我们身体里时时变化的蛋白质水平或许能帮我们了解癌症是怎么发生的。
- Computer theorist
Inventor, scientist, author, engineer -- over his broad career, Danny Hillis has turned his ever-searching brain on an array of subjects, with surprising results. Full bio

Double-click the English transcript below to play the video.

00:15
I admit承认 that I'm a little bit nervous紧张 here
0
0
3000
我得承认我有点紧张,
00:18
because I'm going to say some radical激进 things,
1
3000
3000
因为我将要谈谈一个很是激进的观点
00:21
about how we should think about cancer癌症 differently不同,
2
6000
3000
关于我们应该怎么从新的角度看癌症这个东西
00:24
to an audience听众 that contains包含 a lot of people
3
9000
2000
尤其是你们中很多人
00:26
who know a lot more about cancer癌症 than I do.
4
11000
3000
都是癌症专家,比我懂得多了。
00:30
But I will also contest比赛 that I'm not as nervous紧张 as I should be
5
15000
3000
但我也得承认我的弦绷得还不够紧,
00:33
because I'm pretty漂亮 sure I'm right about this.
6
18000
2000
因为我挺自信我是对的。
00:35
(Laughter笑声)
7
20000
2000
(笑声)
00:37
And that this, in fact事实, will be
8
22000
2000
我相信,事实上,(我的观点)
00:39
the way that we treat对待 cancer癌症 in the future未来.
9
24000
3000
将会是未来我们治疗癌症的途经。
00:43
In order订购 to talk about cancer癌症,
10
28000
2000
要谈癌症前,
00:45
I'm going to actually其实 have to --
11
30000
3000
我其实得——
00:48
let me get the big slide滑动 here.
12
33000
3000
让我展示这张图。
00:53
First, I'm going to try to give you a different不同 perspective透视 of genomics基因组学.
13
38000
3000
首先,我得让你们从另一个角度看基因组学。
00:56
I want to put it in perspective透视 of the bigger picture图片
14
41000
2000
我希望把基因组学放在大环境中来看
00:58
of all the other things that are going on --
15
43000
3000
在不断变化的大环境中——
01:01
and then talk about something you haven't没有 heard听说 so much about, which哪一个 is proteomics蛋白质组学.
16
46000
3000
然后我会谈谈蛋白质组学,你们可能没怎么听过。
01:04
Having explained解释 those,
17
49000
2000
讲了这两个之后,
01:06
that will set up for what I think will be a different不同 idea理念
18
51000
3000
大家就好接受我的关于,
01:09
about how to go about treating治疗 cancer癌症.
19
54000
2000
怎么治疗癌症的新观点了。
01:11
So let me start开始 with genomics基因组学.
20
56000
2000
现在让我从基因组学开始。
01:13
It is the hot topic话题.
21
58000
2000
这可是热门科学。
01:15
It is the place地点 where we're learning学习 the most.
22
60000
2000
从中我们学到到最多,
01:17
This is the great frontier边境.
23
62000
2000
可谓科学前沿。
01:19
But it has its limitations限制.
24
64000
3000
但是它也有美中不足之处。
01:22
And in particular特定, you've probably大概 all heard听说 the analogy比喻
25
67000
3000
特别是你们可能听过的一个比喻,
01:25
that the genome基因组 is like the blueprint蓝图 of your body身体,
26
70000
3000
基因组学就像是你身体的蓝图,
01:28
and if that were only true真正, it would be great,
27
73000
2000
如果真是这样就太好了。
01:30
but it's not.
28
75000
2000
可惜不然。
01:32
It's like the parts部分 list名单 of your body身体.
29
77000
2000
基因组学好比你身体中的零件列表,
01:34
It doesn't say how things are connected连接的,
30
79000
2000
但并没有说明每件之间是怎么连接的。
01:36
what causes原因 what and so on.
31
81000
3000
什么是因,什么是果,等等。
01:39
So if I can make an analogy比喻,
32
84000
2000
允许我也打个比方,
01:41
let's say that you were trying to tell the difference区别
33
86000
2000
就好比你想比较
01:43
between之间 a good restaurant餐厅, a healthy健康 restaurant餐厅
34
88000
3000
好吃又健康的餐馆
01:46
and a sick生病 restaurant餐厅,
35
91000
2000
和差的餐馆,
01:48
and all you had was the list名单 of ingredients配料
36
93000
2000
但你手里只有它们的佐料清单,
01:50
that they had in their larder储藏室.
37
95000
3000
它们贮藏室里有什么。
01:53
So it might威力 be that, if you went to a French法国 restaurant餐厅
38
98000
3000
就好像你去一个法国餐厅,
01:56
and you looked看着 through通过 it and you found发现
39
101000
2000
你查一个遍最后发现
01:58
they only had margarine人造黄油 and they didn't have butter牛油,
40
103000
2000
它们只用人造黄油,不用天然黄油,
02:00
you could say, "Ah, I see what's wrong错误 with them.
41
105000
2000
你可能会说:“嗯,我知道问题在哪里了,
02:02
I can make them healthy健康."
42
107000
2000
我能让它变成健康的餐馆。”
02:04
And there probably大概 are special特别 cases of that.
43
109000
2000
恐怕有时确实是这种情况。
02:06
You could certainly当然 tell the difference区别
44
111000
2000
你可能很容易说出
02:08
between之间 a Chinese中文 restaurant餐厅 and a French法国 restaurant餐厅
45
113000
2000
中国餐馆和法国餐馆之间的区别,
02:10
by what they had in a larder储藏室.
46
115000
2000
就凭它们贮藏室里有什么。
02:12
So the list名单 of ingredients配料 does tell you something,
47
117000
3000
所以说佐料单确实提供一些信息,
02:15
and sometimes有时 it tells告诉 you something that's wrong错误.
48
120000
3000
有时它能告诉你问题出在哪里。
02:19
If they have tons of salt,
49
124000
2000
好比它们有很多食盐,
02:21
you might威力 guess猜测 they're using运用 too much salt, or something like that.
50
126000
3000
你恐怕能猜出他们用盐太多之类的。
02:24
But it's limited有限,
51
129000
2000
但是只是一些信息。
02:26
because really to know if it's a healthy健康 restaurant餐厅,
52
131000
2000
因为要确定一个餐馆是不是健康,
02:28
you need to taste味道 the food餐饮, you need to know what goes on in the kitchen厨房,
53
133000
3000
你得尝尝它们的食物,你得了解厨房里是怎么运作的,
02:31
you need the product产品 of all of those ingredients配料.
54
136000
3000
你需要接触用所有这些佐料做成的产品。
02:34
So if I look at a person
55
139000
2000
所以如果你看一个人(是不是健康),
02:36
and I look at a person's人的 genome基因组, it's the same相同 thing.
56
141000
3000
如果我只看这个人的基因组,就像(只看餐馆的佐料单)一样。
02:39
The part部分 of the genome基因组 that we can read
57
144000
2000
我们能够从基因组看出来的,
02:41
is the list名单 of ingredients配料.
58
146000
2000
也只是“佐料”列表而已。
02:43
And so indeed确实,
59
148000
2000
所以事实上,
02:45
there are times when we can find ingredients配料
60
150000
2000
有的时候我们能够看出
02:47
that [are] bad.
61
152000
2000
什么“佐料”不好。
02:49
Cystic囊性 fibrosis纤维化 is an example of a disease疾病
62
154000
2000
囊性纤维化就是这类病的一个例子,
02:51
where you just have a bad ingredient成分 and you have a disease疾病,
63
156000
3000
只要一个“佐料”坏了就能发病,
02:54
and we can actually其实 make a direct直接 correspondence对应
64
159000
3000
这里我们真能在基因和疾病间
02:57
between之间 the ingredient成分 and the disease疾病.
65
162000
3000
建立直接的联系。
03:00
But most things, you really have to know what's going on in the kitchen厨房,
66
165000
3000
但是大多数情况下,你真得知道厨房里是怎么回事,
03:03
because, mostly大多, sick生病 people used to be healthy健康 people --
67
168000
2000
因为绝大部分的病人都曾是健康的——
03:05
they have the same相同 genome基因组.
68
170000
2000
他们(得病前后的)基因组是不变的
03:07
So the genome基因组 really tells告诉 you much more
69
172000
2000
所以基因组真正告诉我们的,
03:09
about predisposition倾向.
70
174000
2000
不过是易感性而已。
03:11
So what you can tell
71
176000
2000
光看“佐料单”你能够作出的结论
03:13
is you can tell the difference区别 between之间 an Asian亚洲 person and a European欧洲的 person
72
178000
2000
只不过是这个人是亚洲人,
03:15
by looking at their ingredients配料 list名单.
73
180000
2000
那个人是欧洲人而已。
03:17
But you really for the most part部分 can't tell the difference区别
74
182000
3000
大多数的时候,病人和健康人之间的区别
03:20
between之间 a healthy健康 person and a sick生病 person --
75
185000
3000
从基因组学是看不出来的——
03:23
except in some of these special特别 cases.
76
188000
2000
除非很特别的情况下。
03:25
So why all the big deal合同
77
190000
2000
那为什么遗传学研究
03:27
about genetics遗传学?
78
192000
2000
这么重要呢?
03:29
Well first of all,
79
194000
2000
首先,
03:31
it's because we can read it, which哪一个 is fantastic奇妙.
80
196000
3000
这是我们能够掌握的信息,很不容易的。
03:34
It is very useful有用 in certain某些 circumstances情况.
81
199000
3000
遗传信息在某些情况下特别有用。
03:37
It's also the great theoretical理论 triumph胜利
82
202000
3000
在生物学中,遗传学
03:40
of biology生物学.
83
205000
2000
是生物理论研究上的巨大成功。
03:42
It's the one theory理论
84
207000
2000
它是个生物学上唯一的
03:44
that the biologists生物学家 ever really got right.
85
209000
2000
所谓理论,能经得起推敲的。
03:46
It's fundamental基本的 to Darwin达尔文
86
211000
2000
它是达尔文学说的基础,
03:48
and Mendel孟德尔 and so on.
87
213000
2000
也是孟德尔学说和后续理论的基础。
03:50
And so it's the one thing where they predicted预料到的 a theoretical理论 construct构造.
88
215000
3000
他们预测出了这个理论构架。
03:54
So Mendel孟德尔 had this idea理念 of a gene基因
89
219000
2000
孟德尔认为基因
03:56
as an abstract抽象 thing,
90
221000
3000
是抽象的。
03:59
and Darwin达尔文 built内置 a whole整个 theory理论
91
224000
2000
达尔文把自己的整个学说
04:01
that depended依赖 on them existing现有,
92
226000
2000
建立在基因是实体的基础上。
04:03
and then Watson沃森 and Crick克里克
93
228000
2000
接下来沃森和克瑞特
04:05
actually其实 looked看着 and found发现 one.
94
230000
2000
观察发现了基因的存在。
04:07
So this happens发生 in physics物理 all the time.
95
232000
2000
这样的逻辑在物理学中常见。
04:09
You predict预测 a black黑色 hole,
96
234000
2000
人们预测了黑洞的存在,
04:11
and you look out the telescope望远镜 and there it is, just like you said.
97
236000
3000
之后用望远镜找,发现了之前预测的黑洞。
04:14
But it rarely很少 happens发生 in biology生物学.
98
239000
2000
但是这个逻辑在生物学中很少见。
04:16
So this great triumph胜利 -- it's so good,
99
241000
3000
这就是为什么这个成功如此伟大——它如此伟大——
04:19
there's almost几乎 a religious宗教 experience经验
100
244000
2000
几乎称得上是生物学中的
04:21
in biology生物学.
101
246000
2000
神迹
04:23
And Darwinian达尔文 evolution演化
102
248000
2000
而其中达尔文的进化论
04:25
is really the core核心 theory理论.
103
250000
3000
称得上是理论核心。
04:30
So the other reason原因 it's been very popular流行
104
255000
2000
遗传学这么广为接受的另一个原因,
04:32
is because we can measure测量 it, it's digital数字.
105
257000
3000
就是我们能够测量它,它是数字化的。
04:35
And in fact事实,
106
260000
2000
事实上,
04:37
thanks谢谢 to Kary雨霏 Mullis穆利斯,
107
262000
2000
感谢凯瑞莫里斯(发明了聚合酶链反应PCR的生物学家)
04:39
you can basically基本上 measure测量 your genome基因组 in your kitchen厨房
108
264000
4000
你能事实上测量你的基因组,就在你自己的厨房里
04:43
with a few少数 extra额外 ingredients配料.
109
268000
3000
就靠几种材料。
04:46
So for instance, by measuring测量 the genome基因组,
110
271000
3000
举个例子,就靠着测量基因,
04:49
we've我们已经 learned学到了 a lot about how we're related有关 to other kinds of animals动物
111
274000
4000
我们已经深入理解了我们是怎么和其他动物同源的,
04:53
by the closeness亲近 of our genome基因组,
112
278000
3000
就靠看我们和他们基因组间的相似性,
04:56
or how we're related有关 to each other -- the family家庭 tree,
113
281000
3000
或者我们人类之间是怎么相联系的——家谱之类的,
04:59
or the tree of life.
114
284000
2000
或者是生物进化树。
05:01
There's a huge巨大 amount of information信息 about the genetics遗传学
115
286000
3000
就靠着比较基因的相似性,
05:04
just by comparing比较 the genetic遗传 similarity相似.
116
289000
3000
遗传学就能提供很多的信息。
05:07
Now of course课程, in medical application应用,
117
292000
2000
当然了,在医学应用方面,
05:09
that is very useful有用
118
294000
2000
这也是很有用的,
05:11
because it's the same相同 kind of information信息
119
296000
3000
因为这是和医生从你的家族病史中
05:14
that the doctor医生 gets得到 from your family家庭 medical history历史 --
120
299000
3000
得到的信息是类似的——
05:17
except probably大概,
121
302000
2000
只不过家族病史只是一个随机的子信息,
05:19
your genome基因组 knows知道 much more about your medical history历史 than you do.
122
304000
3000
你的基因其实能解释很多的你的病史,比你能解释的还要多。
05:22
And so by reading the genome基因组,
123
307000
2000
所以通过解读基因,
05:24
we can find out much more about your family家庭 than you probably大概 know.
124
309000
3000
我们能够比你还了解你的家庭。
05:27
And so we can discover发现 things
125
312000
2000
我们还能发现新的信息
05:29
that probably大概 you could have found发现
126
314000
2000
那些你应该早知道的
05:31
by looking at enough足够 of your relatives亲戚们,
127
316000
2000
凭着观察你的亲戚们,
05:33
but they may可能 be surprising奇怪.
128
318000
3000
但这些事情可能还是会出乎你的意料。
05:36
I did the 23andMe和我 thing
129
321000
2000
我做了类似的一个测试,
05:38
and was very surprised诧异 to discover发现 that I am fat脂肪 and bald.
130
323000
3000
很惊讶的发现我不但过胖还秃头。
05:41
(Laughter笑声)
131
326000
7000
(笑声)
05:48
But sometimes有时 you can learn学习 much more useful有用 things about that.
132
333000
3000
但有时你能得到很多有用的信息。
05:51
But mostly大多
133
336000
3000
多数情况下
05:54
what you need to know, to find out if you're sick生病,
134
339000
2000
发现疾病的必需的信息
05:56
is not your predispositions倾向,
135
341000
2000
并不是你的易感性,
05:58
but it's actually其实 what's going on in your body身体 right now.
136
343000
3000
而是现时你身体的发生了什么。
06:01
So to do that, what you really need to do,
137
346000
2000
为了发现疾病,你真需要做的,
06:03
you need to look at the things
138
348000
2000
你真需要观察的,
06:05
that the genes基因 are producing生产
139
350000
2000
是你的基因的产物,
06:07
and what's happening事件 after the genetics遗传学,
140
352000
2000
是基因组学之后的一个层次。
06:09
and that's what proteomics蛋白质组学 is about.
141
354000
2000
这正是蛋白质组学所研究的。
06:11
Just like genome基因组 mixes混合 the study研究 of all the genes基因,
142
356000
3000
就像是基因组学研究所有的基因,
06:14
proteomics蛋白质组学 is the study研究 of all the proteins蛋白质.
143
359000
3000
蛋白质组学研究所有的蛋白质。
06:17
And the proteins蛋白质 are all of the little things in your body身体
144
362000
2000
这些蛋白质是你体内的小小物质
06:19
that are signaling发信号 between之间 the cells细胞 --
145
364000
3000
它们在每个细胞间传递信息——
06:22
actually其实, the machines that are operating操作 --
146
367000
2000
它们是真正操纵你身体的迷你机器。
06:24
that's where the action行动 is.
147
369000
2000
它们是行动者。
06:26
Basically基本上, a human人的 body身体
148
371000
3000
基本上,人体
06:29
is a conversation会话 going on,
149
374000
3000
是个
06:32
both within the cells细胞 and between之间 the cells细胞,
150
377000
3000
在细胞里和细胞间的持续对话,
06:35
and they're telling告诉 each other to grow增长 and to die,
151
380000
3000
细胞们告诉对方该长大还是该消失。
06:38
and when you're sick生病,
152
383000
2000
当你生病时,
06:40
something's什么是 gone走了 wrong错误 with that conversation会话.
153
385000
2000
这种对话就出错了。
06:42
And so the trick is --
154
387000
2000
这里的微妙之处在于——
06:44
unfortunately不幸, we don't have an easy简单 way to measure测量 these
155
389000
3000
不幸的是,我们没有像测试基因一样容易的方法,
06:47
like we can measure测量 the genome基因组.
156
392000
2000
来测试这些蛋白质。
06:49
So the problem问题 is that measuring测量 --
157
394000
3000
问题在于测试方法——
06:52
if you try to measure测量 all the proteins蛋白质, it's a very elaborate阐述 process处理.
158
397000
3000
如果你试图一起测试所有的蛋白质,这是个非常复杂的过程。
06:55
It requires要求 hundreds数以百计 of steps脚步,
159
400000
2000
需要上百个步骤,
06:57
and it takes a long, long time.
160
402000
2000
需要很长的时间。
06:59
And it matters事项 how much of the protein蛋白 it is.
161
404000
2000
蛋白质的含量也很有关系。
07:01
It could be very significant重大 that a protein蛋白 changed by 10 percent百分,
162
406000
3000
十分之一的蛋白质的量变就很要命了,
07:04
so it's not a nice不错 digital数字 thing like DNA脱氧核糖核酸.
163
409000
3000
所以这并不是像基因一样是数码制的(分离系统)。
07:07
And basically基本上 our problem问题 is somebody's某人的 in the middle中间
164
412000
2000
基本上我们的问题是,如果有人在测试蛋白质,
07:09
of this very long stage阶段,
165
414000
2000
在长时间的操作中,
07:11
they pause暂停 for just a moment时刻,
166
416000
2000
暂停了一下下,
07:13
and they leave离开 something in an enzyme for a second第二,
167
418000
2000
把蛋白质留在蛋白酶中,就多一秒,
07:15
and all of a sudden突然 all the measurements测量 from then on
168
420000
2000
突然间所有的测量,从这一刻开始,
07:17
don't work.
169
422000
2000
就不再准确了。
07:19
And so then people get very inconsistent不符 results结果
170
424000
2000
所以大家不断得到特别不一致的结果
07:21
when they do it this way.
171
426000
2000
因为他们是这么测量的。
07:23
People have tried试着 very hard to do this.
172
428000
2000
大家做了很多努力来测量蛋白质,
07:25
I tried试着 this a couple一对 of times
173
430000
2000
我自己也做了几次实验
07:27
and looked看着 at this problem问题 and gave up on it.
174
432000
2000
试着克服这个问题,最后我放弃了。
07:29
I kept不停 getting得到 this call from this oncologist肿瘤科医生
175
434000
2000
后来我开始不断接到从大卫 艾格斯,
07:31
named命名 David大卫 Agus阿古斯.
176
436000
2000
一个癌症学家的电话。
07:33
And Applied应用的 Minds头脑 gets得到 a lot of calls电话
177
438000
3000
总是有很多人给我们公司“Applied Minds”打电话
07:36
from people who want help with their problems问题,
178
441000
2000
不断有人要求我们帮忙,
07:38
and I didn't think this was a very likely容易 one to call back,
179
443000
3000
我以为这个电话是不会再来的。
07:41
so I kept不停 on giving him to the delay延迟 list名单.
180
446000
3000
所以我迟迟没有回他的电话。
07:44
And then one day,
181
449000
2000
直到有一天,
07:46
I get a call from John约翰 Doerr杜尔, Bill法案 Berkman伯克曼
182
451000
2000
我同一天内接到约翰 德尔,比尔 伯克曼,
07:48
and Al Gore血块 on the same相同 day
183
453000
2000
和埃尔 高尔的电话
07:50
saying return返回 David大卫 Agus's阿古斯的 phone电话 call.
184
455000
2000
让我给大卫 艾格斯回电话。
07:52
(Laughter笑声)
185
457000
2000
(笑声)
07:54
So I was like, "Okay. This guy's家伙 at least最小 resourceful足智多谋."
186
459000
2000
所以我想:“打就打,至少这个人聪明到会用关系网。”
07:56
(Laughter笑声)
187
461000
4000
(笑声)
08:00
So we started开始 talking,
188
465000
2000
这样我们开始对话,
08:02
and he said, "I really need a better way to measure测量 proteins蛋白质."
189
467000
3000
他说:“我迫切需要更好的技术来测量蛋白质。”
08:05
I'm like, "Looked看着 at that. Been there.
190
470000
2000
我说:“我试了,也失败了。
08:07
Not going to be easy简单."
191
472000
2000
不是容易做的。”
08:09
He's like, "No, no. I really need it.
192
474000
2000
他说:“不一样,不一样,我是真需要。
08:11
I mean, I see patients耐心 dying垂死 every一切 day
193
476000
4000
病人天天死在我眼前
08:15
because we don't know what's going on inside of them.
194
480000
3000
就因为我们不知道身体里面发生了什么。
08:18
We have to have a window窗口 into this."
195
483000
2000
我们一定要找到办法看透他们的身体。”
08:20
And he took me through通过
196
485000
2000
他还给我举了些例子,
08:22
specific具体 examples例子 of when he really needed需要 it.
197
487000
3000
具体的病例和何时需要这个技术,
08:25
And I realized实现, wow, this would really make a big difference区别,
198
490000
2000
我才意识到,哇,如果我们能测量蛋白质的话,
08:27
if we could do it,
199
492000
2000
真的能改变命运。
08:29
and so I said, "Well, let's look at it."
200
494000
2000
于是我说:“好吧让我试试。”
08:31
Applied应用的 Minds头脑 has enough足够 play money
201
496000
2000
我们公司有些积蓄,
08:33
that we can go and just work on something
202
498000
2000
是用来作初级测试的,
08:35
without getting得到 anybody's任何人的 funding资金 or permission允许 or anything.
203
500000
3000
不需要客户出钱或者授权。
08:38
So we started开始 playing播放 around with this.
204
503000
2000
于是我们就开始研发这个技术。
08:40
And as we did it, we realized实现 this was the basic基本 problem问题 --
205
505000
3000
我们做的时候,意识到这里有个根源性的问题——
08:43
that taking服用 the sip of coffee咖啡 --
206
508000
2000
(实验员会)停下去喝口咖啡什么的,(导致实验中断)
08:45
that there were humans人类 doing this complicated复杂 process处理
207
510000
2000
所以不该是靠人工来做这件事。
08:47
and that what really needed需要 to be doneDONE
208
512000
2000
我们真正需要的
08:49
was to automate自动化 this process处理 like an assembly部件 line线
209
514000
3000
是让机器做,就像是在流水线上一样,
08:52
and build建立 robots机器人
210
517000
2000
做出机器人
08:54
that would measure测量 proteomics蛋白质组学.
211
519000
2000
来替我们测试蛋白质。
08:56
And so we did that,
212
521000
2000
于是我们就这样做了。
08:58
and working加工 with David大卫,
213
523000
2000
和大卫合作,
09:00
we made制作 a little company公司 called Applied应用的 Proteomics蛋白质组学 eventually终于,
214
525000
3000
我们成立了一个小小的公司,定名为“蛋白组学应用公司”,
09:03
which哪一个 makes品牌 this robotic机器人 assembly部件 line线,
215
528000
3000
专门做这些能够稳定测量蛋白质的
09:06
which哪一个, in a very consistent一贯 way, measures措施 the protein蛋白.
216
531000
3000
机器人。
09:09
And I'll show显示 you what that protein蛋白 measurement测量 looks容貌 like.
217
534000
3000
接下来我要介绍这个测量技术是什么样的。
09:13
Basically基本上, what we do
218
538000
2000
基本上,我们所做的是
09:15
is we take a drop下降 of blood血液
219
540000
2000
从病人身上
09:17
out of a patient患者,
220
542000
2000
取一滴血,
09:19
and we sort分类 out the proteins蛋白质
221
544000
2000
然后检测这滴血里的
09:21
in the drop下降 of blood血液
222
546000
2000
所有的蛋白质
09:23
according根据 to how much they weigh称重,
223
548000
2000
根据蛋白质的不同质量,
09:25
how slippery they are,
224
550000
2000
和蛋白质的不同粘性。
09:27
and we arrange安排 them in an image图片.
225
552000
3000
我们给它们画个图,
09:30
And so we can look at literally按照字面
226
555000
2000
就能从这一滴血中
09:32
hundreds数以百计 of thousands数千 of features特征 at once一旦
227
557000
2000
同时看到
09:34
out of that drop下降 of blood血液.
228
559000
2000
成百上千个不同的信息。
09:36
And we can take a different不同 one tomorrow明天,
229
561000
2000
第二天我们还可以再检测一次,
09:38
and you will see your proteins蛋白质 tomorrow明天 will be different不同 --
230
563000
2000
你能看到第二天你的蛋白质组群是不同的——
09:40
they'll他们会 be different不同 after you eat or after you sleep睡觉.
231
565000
3000
你吃东西或者睡觉都会改变它们。
09:43
They really tell us what's going on there.
232
568000
3000
它们是你身体里的实况报告。
09:46
And so this picture图片,
233
571000
2000
这就是一个图,
09:48
which哪一个 looks容貌 like a big smudge弄脏 to you,
234
573000
2000
看起来像是一大片污迹,
09:50
is actually其实 the thing that got me really thrilled高兴 about this
235
575000
4000
正是让我觉得我们走对了路,
09:54
and made制作 me feel like we were on the right track跟踪.
236
579000
2000
让我觉得无比震撼的。
09:56
So if I zoom放大 into that picture图片,
237
581000
2000
如果我放大某个部分,
09:58
I can just show显示 you what it means手段.
238
583000
2000
你就能看到我指的是什么。
10:00
We sort分类 out the proteins蛋白质 -- from left to right
239
585000
3000
我们把蛋白质都分开了——从左到右,
10:03
is the weight重量 of the fragments片段 that we're getting得到,
240
588000
3000
是不同的蛋白片断的质量,
10:06
and from top最佳 to bottom底部 is how slippery they are.
241
591000
3000
从上到下是它们的粘性。
10:09
So we're zooming缩放 in here just to show显示 you a little bit of it.
242
594000
3000
我们放大图的这块,让你能看清很小的一点点。
10:12
And so each of these lines线
243
597000
2000
这几条线里的每一条,
10:14
represents代表 some signal信号 that we're getting得到 out of a piece of a protein蛋白.
244
599000
3000
都代表了这片蛋白的不同信息。
10:17
And you can see how the lines线 occur发生
245
602000
2000
你能看到它们是怎么分布的,
10:19
in these little groups of bump磕碰, bump磕碰, bump磕碰, bump磕碰, bump磕碰.
246
604000
4000
都是一小组一小组的,
10:23
And that's because we're measuring测量 the weight重量 so precisely恰恰 that --
247
608000
3000
这是因为我们测量质量的方法精细到——
10:26
carbon comes in different不同 isotopes同位素,
248
611000
2000
能看到碳原子的不同同位素,
10:28
so if it has an extra额外 neutron中子 on it,
249
613000
3000
如果这个碳原子多一个少一个中子,
10:31
we actually其实 measure测量 it as a different不同 chemical化学.
250
616000
4000
我们都能测得出来,把它们分开。
10:35
So we're actually其实 measuring测量 each isotope同位素 as a different不同 one.
251
620000
3000
所以我们其实测量得到每个同位素。
10:38
And so that gives you an idea理念
252
623000
3000
这告诉我们
10:41
of how exquisitely玲珑 sensitive敏感 this is.
253
626000
2000
这个技术有多灵敏。
10:43
So seeing眼看 this picture图片
254
628000
2000
我们看这张图片
10:45
is sort分类 of like getting得到 to be Galileo伽利略
255
630000
2000
就像是伽利略
10:47
and looking at the stars明星
256
632000
2000
看星星
10:49
and looking through通过 the telescope望远镜 for the first time,
257
634000
2000
第一次从望远镜中看到
10:51
and suddenly突然 you say, "Wow, it's way more complicated复杂 than we thought it was."
258
636000
3000
你会感叹:“喔,这比我想象的复杂多了。”
10:54
But we can see that stuff东东 out there
259
639000
2000
但我们能够看到这些区别,
10:56
and actually其实 see features特征 of it.
260
641000
2000
看到里面的信息。
10:58
So this is the signature签名 out of which哪一个 we're trying to get patterns模式.
261
643000
3000
这是个特例,我们能够通过它得到一个模式,
11:01
So what we do with this
262
646000
2000
方法是
11:03
is, for example, we can look at two patients耐心,
263
648000
2000
比如,我们可以比较两个病人
11:05
one that responded回应 to a drug药物 and one that didn't respond响应 to a drug药物,
264
650000
3000
一个对药物有阳性反应,另一个药物不起作用。
11:08
and ask, "What's going on differently不同
265
653000
2000
然后问:
11:10
inside of them?"
266
655000
2000
“他们身体内有什么不同?”
11:12
And so we can make these measurements测量 precisely恰恰 enough足够
267
657000
3000
通过精确的测量技术,
11:15
that we can overlay覆盖 two patients耐心 and look at the differences分歧.
268
660000
3000
我们可以比较来看两个人的蛋白质有什么不同。
11:18
So here we have Alice爱丽丝 in green绿色
269
663000
2000
像这里爱丽丝的是绿色的,
11:20
and Bob短发 in red.
270
665000
2000
鲍勃的是红的,
11:22
We overlay覆盖 them. This is actual实际 data数据.
271
667000
3000
让我们比较两个结果,这是真的病人的结果。
11:25
And you can see, mostly大多 it overlaps重叠 and it's yellow黄色,
272
670000
3000
你能看到,绝大部分是一样的,显示黄色,
11:28
but there's some things that just Alice爱丽丝 has
273
673000
2000
但有些蛋白是爱丽丝专有的,
11:30
and some things that just Bob短发 has.
274
675000
2000
有的是鲍勃专有的。
11:32
And if we find a pattern模式 of things
275
677000
3000
如果我们能发现在对药物有阳性反应的
11:35
of the responders反应 to the drug药物,
276
680000
3000
病人的共性,
11:38
we see that in the blood血液,
277
683000
2000
我们从血液中能发现,
11:40
they have the condition条件
278
685000
2000
他们都有共同性
11:42
that allows允许 them to respond响应 to this drug药物.
279
687000
2000
让药物能对他们起作用,
11:44
We might威力 not even know what this protein蛋白 is,
280
689000
2000
我们可能不知道起作用的蛋白质的名字,
11:46
but we can see it's a marker标记
281
691000
2000
但我们能用它作为一个标志物,
11:48
for the response响应 to the disease疾病.
282
693000
2000
来标明对于疾病的反应。
11:53
So this already已经, I think,
283
698000
2000
所以这个已经是,我认为,
11:55
is tremendously异常 useful有用 in all kinds of medicine医学.
284
700000
3000
在医药学上极其有用的。
11:58
But I think this is actually其实
285
703000
2000
但我认为这其实只是
12:00
just the beginning开始
286
705000
2000
一个开始,
12:02
of how we're going to treat对待 cancer癌症.
287
707000
2000
将来我们要用它来治疗癌症。
12:04
So let me move移动 to cancer癌症.
288
709000
2000
让我来谈谈癌症。
12:06
The thing about cancer癌症 --
289
711000
2000
癌症——
12:08
when I got into this,
290
713000
2000
当我开始研究它,
12:10
I really knew知道 nothing about it,
291
715000
2000
我什么都不知道,
12:12
but working加工 with David大卫 Agus阿古斯,
292
717000
2000
但是通过和大卫 艾格斯工作,
12:14
I started开始 watching观看 how cancer癌症 was actually其实 being存在 treated治疗
293
719000
3000
我开始观察癌症是怎样被治疗的。
12:17
and went to operations操作 where it was being存在 cut out.
294
722000
3000
我还观察了手术,癌组织是怎么被取走的。
12:20
And as I looked看着 at it,
295
725000
2000
当我研究癌症时,
12:22
to me it didn't make sense
296
727000
2000
对我来说,我们治疗癌症的方法
12:24
how we were approaching接近 cancer癌症,
297
729000
2000
并不正确。
12:26
and in order订购 to make sense of it,
298
731000
3000
为了理解这个途径,
12:29
I had to learn学习 where did this come from.
299
734000
3000
我得学习这些现今的治疗方法是怎么确定的。
12:32
We're treating治疗 cancer癌症 almost几乎 like it's an infectious传染病 disease疾病.
300
737000
4000
我们治疗癌症,好像癌症是传染病一样,
12:36
We're treating治疗 it as something that got inside of you
301
741000
2000
我们治疗癌症像是癌症侵入了我们体内
12:38
that we have to kill.
302
743000
2000
我们得消灭敌人。
12:40
So this is the great paradigm范例.
303
745000
2000
这是为什么取走癌组织被认为是很好的模式。
12:42
This is another另一个 case案件
304
747000
2000
另一种情况,
12:44
where a theoretical理论 paradigm范例 in biology生物学 really worked工作 --
305
749000
2000
这里生物的理论模式真的起作用了——
12:46
was the germ病菌 theory理论 of disease疾病.
306
751000
3000
就是疾病是细菌的理论。
12:49
So what doctors医生 are mostly大多 trained熟练 to do
307
754000
2000
医生都被训练
12:51
is diagnose诊断 --
308
756000
2000
来诊断疾病——
12:53
that is, put you into a category类别
309
758000
2000
就是把你放进一个类别里去——
12:55
and apply应用 a scientifically科学 proven证明 treatment治疗
310
760000
2000
给你用来治疗这个类别的人
12:57
for that diagnosis诊断 --
311
762000
2000
通常起作用的那个治疗方法。
12:59
and that works作品 great for infectious传染病 diseases疾病.
312
764000
3000
这通常对传染病是起作用的。
13:02
So if we put you in the category类别
313
767000
2000
如果我们把你放在这个类别中,
13:04
of you've got syphilis梅毒, we can give you penicillin青霉素.
314
769000
3000
就好像你得了梅毒,我们就给你青霉素。
13:07
We know that that works作品.
315
772000
2000
我们知道青霉素能治好你。
13:09
If you've got malaria疟疾, we give you quinine奎宁
316
774000
2000
就好像如果你得了疟疾,我们给你奎宁,
13:11
or some derivative衍生物 of it.
317
776000
2000
或者相似的药物。
13:13
And so that's the basic基本 thing doctors医生 are trained熟练 to do,
318
778000
3000
因为这是通常医生被训练去做的。
13:16
and it's miraculous神奇
319
781000
2000
对于传染病,
13:18
in the case案件 of infectious传染病 disease疾病 --
320
783000
3000
这个非常管用——
13:21
how well it works作品.
321
786000
2000
就像是一个奇迹。
13:23
And many许多 people in this audience听众 probably大概 wouldn't不会 be alive
322
788000
3000
如果医生们不这样做,
13:26
if doctors医生 didn't do this.
323
791000
2000
我们中的很多人恐怕活不到今天。
13:28
But now let's apply应用 that
324
793000
2000
但是当我们把类似的治疗方法用于
13:30
to systems系统 diseases疾病 like cancer癌症.
325
795000
2000
像癌症那样的系统性疾病,
13:32
The problem问题 is that, in cancer癌症,
326
797000
2000
就有问题了。对于癌症,
13:34
there isn't something else其他
327
799000
2000
没有别的,
13:36
that's inside of you.
328
801000
2000
就是你出了问题。
13:38
It's you; you're broken破碎.
329
803000
2000
是你,你有地方坏了,
13:40
That conversation会话 inside of you
330
805000
4000
这是因为你体内的对话出了问题,
13:44
got mixed up in some way.
331
809000
2000
开始各处错误对话。
13:46
So how do we diagnose诊断 that conversation会话?
332
811000
2000
我们怎样解读这样的错误对话呢?
13:48
Well, right now what we do is we divide划分 it by part部分 of the body身体 --
333
813000
3000
我们现在在做的是把癌症按照身体部分分类——
13:51
you know, where did it appear出现? --
334
816000
3000
你知道,按照癌症在什么地方发生——
13:54
and we put you in different不同 categories类别
335
819000
2000
把你放进不同的类别里,
13:56
according根据 to the part部分 of the body身体.
336
821000
2000
那个身体部分的类别。
13:58
And then we do a clinical临床 trial审讯
337
823000
2000
接下来我们做医疗实验,
14:00
for a drug药物 for lung cancer癌症
338
825000
2000
比如对肺癌用一个药,
14:02
and one for prostate前列腺 cancer癌症 and one for breast乳房 cancer癌症,
339
827000
3000
对前列腺癌用一个药,对乳癌用一个药,
14:05
and we treat对待 these as if they're separate分离 diseases疾病
340
830000
3000
我们治疗这些癌症,把它们当作是完全不同的病。
14:08
and that this way of dividing them
341
833000
2000
这样对癌症的分类方法
14:10
had something to do with what actually其实 went wrong错误.
342
835000
2000
是真的按照出了什么问题来的。
14:12
And of course课程, it really doesn't have that much to do
343
837000
2000
当然了,其实这和到底什么出了问题
14:14
with what went wrong错误
344
839000
2000
并没有直接的关系。
14:16
because cancer癌症 is a failure失败 of the system系统.
345
841000
3000
因为癌症是一个系统失灵。
14:19
And in fact事实, I think we're even wrong错误
346
844000
2000
事实上,我认为像这样把癌症当成是一件事来谈,
14:21
when we talk about cancer癌症 as a thing.
347
846000
3000
都是错误的。
14:24
I think this is the big mistake错误.
348
849000
2000
我认为这是个大错误。
14:26
I think cancer癌症 should not be a noun名词.
349
851000
4000
我看癌症,不是一个事物。
14:30
We should talk about canceringcancering
350
855000
2000
我们应该用的词是“得癌”。
14:32
as something we do, not something we have.
351
857000
3000
是我们得的,不是我们有的。
14:35
And so those tumors肿瘤,
352
860000
2000
那些癌组织,
14:37
those are symptoms症状 of cancer癌症.
353
862000
2000
只是“得癌”的一个症状。
14:39
And so your body身体 is probably大概 canceringcancering all the time,
354
864000
3000
你的身体随时都在得癌,
14:42
but there are lots of systems系统 in your body身体
355
867000
3000
但是绝大多数情况下,你的身体机构
14:45
that keep it under control控制.
356
870000
2000
能够不让它们发展。
14:47
And so to give you an idea理念
357
872000
2000
这里我给你一个概念,
14:49
of an analogy比喻 of what I mean
358
874000
2000
算是我的定义的一个比方,
14:51
by thinking思维 of canceringcancering as a verb动词,
359
876000
3000
想象癌症是一个过程,
14:54
imagine想像 we didn't know anything about plumbing水暖,
360
879000
3000
只要想象我们对下水管道一无所知,
14:57
and the way that we talked about it,
361
882000
2000
我们通常会这样描述:
14:59
we'd星期三 come home and we'd星期三 find a leak泄漏 in our kitchen厨房
362
884000
3000
我们回家,发现厨房有漏水,
15:02
and we'd星期三 say, "Oh, my house has water."
363
887000
4000
我们就说:“我们的房子有水。”
15:06
We might威力 divide划分 it -- the plumber水管工人 would say, "Well, where's哪里 the water?"
364
891000
3000
我们能够粗粗分类——管道工会问:“哪里有水?”
15:09
"Well, it's in the kitchen厨房." "Oh, you must必须 have kitchen厨房 water."
365
894000
3000
“厨房里。”“那就是厨房水了。”
15:12
That's kind of the level水平 at which哪一个 it is.
366
897000
3000
这就是我们现在对癌症的认识。
15:15
"Kitchen厨房 water,
367
900000
2000
“厨房水”,
15:17
well, first of all, we'll go in there and we'll mop拖把 out a lot of it.
368
902000
2000
首先,我们要去厨房,把水拖干净,
15:19
And then we know that if we sprinkle DranoDrano around the kitchen厨房,
369
904000
3000
之后我们知道,在厨房里喷上
15:22
that helps帮助.
370
907000
3000
管道清洁剂能起作用。
15:25
Whereas living活的 room房间 water,
371
910000
2000
如果是客厅水,
15:27
it's better to do tar柏油 on the roof屋顶."
372
912000
2000
“屋顶防潮剂能起作用。”
15:29
And it sounds声音 silly愚蠢,
373
914000
2000
这听起来可笑,
15:31
but that's basically基本上 what we do.
374
916000
2000
但是这是我们现在用的对策。
15:33
And I'm not saying you shouldn't不能 mop拖把 up your water if you have cancer癌症,
375
918000
3000
我不是说得了癌症后你不该除掉“厨房水”,
15:36
but I'm saying that's not really the problem问题;
376
921000
3000
我只是说那并不是问题的症结;
15:39
that's the symptom症状 of the problem问题.
377
924000
2000
那只是问题的症状。
15:41
What we really need to get at
378
926000
2000
我们真的该解决的,
15:43
is the process处理 that's going on,
379
928000
2000
是正在发生的症结。
15:45
and that's happening事件 at the level水平
380
930000
2000
而且这个解决方案应该发生在
15:47
of the proteonomic蛋白质组 actions行动,
381
932000
2000
蛋白质组互相作用的层次上,
15:49
happening事件 at the level水平 of why is your body身体 not healing复原 itself本身
382
934000
3000
发生在为什么你的身体不能自行治愈,
15:52
in the way that it normally一般 does?
383
937000
2000
像它通常能做的?
15:54
Because normally一般, your body身体 is dealing交易 with this problem问题 all the time.
384
939000
3000
通常你的身体每天都在解决这些问题。
15:57
So your house is dealing交易 with leaks泄漏 all the time,
385
942000
3000
所以说你的“房子”其实一直有漏水的问题,
16:00
but it's fixing定影 them. It's draining排水 them out and so on.
386
945000
4000
但是它在自己解决,自己排出漏水等等。
16:04
So what we need
387
949000
3000
我们需要的
16:07
is to have a causative致病 model模型
388
952000
4000
是制定出一个症结模型
16:11
of what's actually其实 going on,
389
956000
2000
来模拟问题是怎么发生的。
16:13
and proteomics蛋白质组学 actually其实 gives us
390
958000
3000
蛋白质组学能够提供给我们
16:16
the ability能力 to build建立 a model模型 like that.
391
961000
3000
建立起这样的模型的能力。
16:19
David大卫 got me invited邀请
392
964000
2000
大卫请我去国家癌症研究院
16:21
to give a talk at National国民 Cancer癌症 Institute研究所
393
966000
2000
做个讲座,
16:23
and Anna安娜 Barker巴克 was there.
394
968000
3000
安娜 巴克也在那里。
16:27
And so I gave this talk
395
972000
2000
我做了讲座,
16:29
and said, "Why don't you guys do this?"
396
974000
3000
然后问他们:“为什么你们不按照这个思路做?”
16:32
And Anna安娜 said,
397
977000
2000
安娜说:
16:34
"Because nobody没有人 within cancer癌症
398
979000
3000
“因为癌症学界没有人
16:37
would look at it this way.
399
982000
2000
能从这个角度看事情。
16:39
But what we're going to do, is we're going to create创建 a program程序
400
984000
3000
但是我们想要做的,是成立一个计划署,
16:42
for people outside the field领域 of cancer癌症
401
987000
2000
让不在癌症学界工作的人们
16:44
to get together一起 with doctors医生
402
989000
2000
来和真正对付癌症的
16:46
who really know about cancer癌症
403
991000
3000
医生们合作,
16:49
and work out different不同 programs程式 of research研究."
404
994000
4000
发展出一个不同的研究方案。”
16:53
So David大卫 and I applied应用的 to this program程序
405
998000
2000
这样大卫和我就向这个计划署申请
16:55
and created创建 a consortium财团
406
1000000
2000
在USC(南加州大学)成立了
16:57
at USCUSC
407
1002000
2000
一个集团,
16:59
where we've我们已经 got some of the best最好 oncologists肿瘤科医生 in the world世界
408
1004000
3000
在那里我们有世界顶级的癌症学家,
17:02
and some of the best最好 biologists生物学家 in the world世界,
409
1007000
3000
还有从Cold Spring Harbor(冷泉港),
17:05
from Cold Spring弹簧 Harbor港口,
410
1010000
2000
Stanford(斯坦福),Austin(奥斯汀)等多处的
17:07
Stanford斯坦福, Austin奥斯汀 --
411
1012000
2000
一些世界级的生物学家——
17:09
I won't惯于 even go through通过 and name名称 all the places地方 --
412
1014000
3000
我都列不出全部这些合作者们——
17:12
to have a research研究 project项目
413
1017000
3000
来做这个研究项目。
17:15
that will last for five years年份
414
1020000
2000
在未来的五年,
17:17
where we're really going to try to build建立 a model模型 of cancer癌症 like this.
415
1022000
3000
我们将为癌症做一个症结模型。
17:20
We're doing it in mice老鼠 first,
416
1025000
2000
我们正首先在小鼠身上做这个模型。
17:22
and we will kill a lot of mice老鼠
417
1027000
2000
在这个过程中,
17:24
in the process处理 of doing this,
418
1029000
2000
我们需要使用很多小鼠,
17:26
but they will die for a good cause原因.
419
1031000
2000
但至少它们死得其所。
17:28
And we will actually其实 try to get to the point
420
1033000
3000
之后我们会到达一个阶段,
17:31
where we have a predictive预测 model模型
421
1036000
2000
是我们能有个预测出的模型,
17:33
where we can understand理解,
422
1038000
2000
在这个模型里我们是真的明白
17:35
when cancer癌症 happens发生,
423
1040000
2000
癌症是什么时候产生的,
17:37
what's actually其实 happening事件 in there
424
1042000
2000
里面是怎么回事,
17:39
and which哪一个 treatment治疗 will treat对待 that cancer癌症.
425
1044000
3000
什么样的治疗方案能够奏效。
17:42
So let me just end结束 with giving you a little picture图片
426
1047000
3000
这里让我稍稍描绘一下远景,来结束这个演讲
17:45
of what I think cancer癌症 treatment治疗 will be like in the future未来.
427
1050000
3000
谈谈我认为未来的癌症治疗方案是怎么一回事。
17:48
So I think eventually终于,
428
1053000
2000
我认为,总有一天,
17:50
once一旦 we have one of these models楷模 for people,
429
1055000
2000
当我们给每个病人都树立了正确的模型,
17:52
which哪一个 we'll get eventually终于 --
430
1057000
2000
总有一天——
17:54
I mean, our group won't惯于 get all the way there --
431
1059000
2000
光靠我们的研究队伍是不够的——
17:56
but eventually终于 we'll have a very good computer电脑 model模型 --
432
1061000
3000
但是最终我们会得到很好的计算模型——
17:59
sort分类 of like a global全球 climate气候 model模型 for weather天气.
433
1064000
3000
像是一个全球气候模型。
18:02
It has lots of different不同 information信息
434
1067000
3000
这个模型包含了很多信息
18:05
about what's the process处理 going on in this proteomic蛋白质组学 conversation会话
435
1070000
3000
描述蛋白质组间的对话,
18:08
on many许多 different不同 scales.
436
1073000
2000
从不同的精确度。
18:10
And so we will simulate模拟
437
1075000
2000
这样我们就可以模拟
18:12
in that model模型
438
1077000
2000
为你身上的那种癌症
18:14
for your particular特定 cancer癌症 --
439
1079000
3000
做出一个疾病模型来——
18:17
and this also will be for ALSALS,
440
1082000
2000
我们也可以为ALS(肌肉萎縮性側索硬化症)
18:19
or any kind of system系统 neurodegenerative神经退行性 diseases疾病,
441
1084000
3000
或者任何一种系统性的神经退化疾病做(这样的模型)
18:22
things like that --
442
1087000
2000
这类的疾病——
18:24
we will simulate模拟
443
1089000
2000
我们会特别为你
18:26
specifically特别 you,
444
1091000
2000
模拟一个治疗方案,
18:28
not just a generic通用 person,
445
1093000
2000
不为其他任何人,
18:30
but what's actually其实 going on inside you.
446
1095000
2000
而是根据你身体真的在发生什么,
18:32
And in that simulation模拟, what we could do
447
1097000
2000
在这个程序里,我们能
18:34
is design设计 for you specifically特别
448
1099000
2000
为你特别设计
18:36
a sequence序列 of treatments治疗,
449
1101000
2000
一系列的治疗方案
18:38
and it might威力 be very gentle温和 treatments治疗, very small amounts of drugs毒品.
450
1103000
3000
这些可以是非常轻微的治疗,非常微量的药量
18:41
It might威力 be things like, don't eat that day,
451
1106000
3000
好比是,这天先别吃东西,
18:44
or give them a little chemotherapy化疗,
452
1109000
2000
或者给一点点化疗,
18:46
maybe a little radiation辐射.
453
1111000
2000
一点点放射性治疗,
18:48
Of course课程, we'll do surgery手术 sometimes有时 and so on.
454
1113000
3000
当然了,有时手术是不可避免的。
18:51
But design设计 a program程序 of treatments治疗 specifically特别 for you
455
1116000
3000
但是我们能够为你量身定做治疗方案,
18:54
and help your body身体
456
1119000
3000
帮助你的身体,
18:57
guide指南 back to health健康 --
457
1122000
3000
领着它逐渐恢复健康——
19:00
guide指南 your body身体 back to health健康.
458
1125000
2000
领着你的身体恢复健康。
19:02
Because your body身体 will do most of the work of fixing定影 it
459
1127000
4000
因为你的身体会尽量自己恢复,
19:06
if we just sort分类 of prop支柱 it up in the ways方法 that are wrong错误.
460
1131000
3000
只要我们在它走错路的时候扶一把,
19:09
We put it in the equivalent当量 of splints夹板.
461
1134000
2000
只要我们能够提供支持
19:11
And so your body身体 basically基本上 has lots and lots of mechanisms机制
462
1136000
2000
你的身体有很多的潜力,
19:13
for fixing定影 cancer癌症,
463
1138000
2000
自己治疗癌症。
19:15
and we just have to prop支柱 those up in the right way
464
1140000
3000
我们只需要关键时刻帮一把,
19:18
and get them to do the job工作.
465
1143000
2000
帮它回到正路上来。
19:20
And so I believe that this will be the way
466
1145000
2000
我相信这将会是
19:22
that cancer癌症 will be treated治疗 in the future未来.
467
1147000
2000
未来治疗癌症的途径。
19:24
It's going to require要求 a lot of work,
468
1149000
2000
这将需要我们不断的努力,
19:26
a lot of research研究.
469
1151000
2000
很多很多的科研。
19:28
There will be many许多 teams球队 like our team球队
470
1153000
3000
需要其他的研究队伍,像我们队伍这样的
19:31
that work on this.
471
1156000
2000
一起进行这个研究。
19:33
But I think eventually终于,
472
1158000
2000
但我相信终有一天,
19:35
we will design设计 for everybody每个人
473
1160000
2000
我们能为每个人
19:37
a custom习惯 treatment治疗 for cancer癌症.
474
1162000
4000
量身定做治疗癌症的方案。
19:41
So thank you very much.
475
1166000
2000
谢谢大家。
19:43
(Applause掌声)
476
1168000
6000
(掌声)
Translated by Alison Xiaoqiao Xie
Reviewed by Jenny Yang

▲Back to top

ABOUT THE SPEAKER
Danny Hillis - Computer theorist
Inventor, scientist, author, engineer -- over his broad career, Danny Hillis has turned his ever-searching brain on an array of subjects, with surprising results.

Why you should listen

Danny Hillis is an inventor, scientist, author and engineer. While completing his doctorate at MIT, he pioneered the concept of parallel computers that is now the basis for graphics processors and cloud computing. He holds more than 300 US patents, covering parallel computers, disk arrays, forgery prevention methods, various electronic and mechanical devices, and the pinch-to-zoom display interface. He has recently been working on problems in medicine as well. He is also the designer of a 10,000-year mechanical clock, and he gave a TED Talk in 1994 that is practically prophetic. Throughout his career, Hillis has worked at places like Disney, and now MIT and Applied Invention, always looking for the next fascinating problem.

More profile about the speaker
Danny Hillis | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee