ABOUT THE SPEAKER
Kevin Slavin - Algoworld expert
Kevin Slavin navigates in the algoworld, the expanding space in our lives that’s determined and run by algorithms.

Why you should listen

Are you addicted to the dead-simple numbers game Drop 7 or Facebook’s Parking Wars? Blame Kevin Slavin and the game development company he co-founded in 2005, Area/Code, which makes clever game entertainments that enter the fabric of reality.

All this fun is powered by algorithms -- as, increasingly, is our daily life. From the Google algorithms to the algos that give you “recommendations” online to those that automatically play the stock markets (and sometimes crash them): we may not realize it, but we live in the algoworld.

He says: "The quickest way to find out what the boundaries of reality are is to figure where they break."

More profile about the speaker
Kevin Slavin | Speaker | TED.com
TEDGlobal 2011

Kevin Slavin: How algorithms shape our world

凯文·斯拉文:算法如何塑造我们的世界

Filmed:
4,199,898 views

凯文·斯拉文认为我们生活在一个为算法设计的世界 -- 并且日益为算法所控制。在这个来自TEDGlobal非常精彩的演讲中,他展示了这些复杂的计算机程序是如何决定:间谍策略、股票价格、电影剧本和建筑。他警告道,我们正在编写我们无法理解的,可能不受控制的代码。
- Algoworld expert
Kevin Slavin navigates in the algoworld, the expanding space in our lives that’s determined and run by algorithms. Full bio

Double-click the English transcript below to play the video.

00:15
This is a photograph照片
0
0
2000
这是一张由艺术家
00:17
by the artist艺术家 Michael迈克尔 Najjar纳贾尔,
1
2000
2000
迈克尔·纳贾尔拍摄的照片,
00:19
and it's real真实,
2
4000
2000
这是真实的,
00:21
in the sense that he went there to Argentina阿根廷
3
6000
2000
他在阿根廷
00:23
to take the photo照片.
4
8000
2000
拍摄的这张照片。
00:25
But it's also a fiction小说. There's a lot of work that went into it after that.
5
10000
3000
但其中也有虚构的成分。在拍摄后还做了许多工作。
00:28
And what he's doneDONE
6
13000
2000
他所做的是,
00:30
is he's actually其实 reshaped重塑, digitally数字,
7
15000
2000
他实际上数字化地重塑了
00:32
all of the contours轮廓 of the mountains
8
17000
2000
所有山峰的轮廓
00:34
to follow跟随 the vicissitudes沧桑 of the Dow道琼斯 Jones琼斯 index指数.
9
19000
3000
以遵循道琼斯指数的变化。
00:37
So what you see,
10
22000
2000
因此各位所看到的,
00:39
that precipice悬崖, that high precipice悬崖 with the valley,
11
24000
2000
这悬崖,深沟险壑,
00:41
is the 2008 financial金融 crisis危机.
12
26000
2000
是2008年的金融危机。
00:43
The photo照片 was made制作
13
28000
2000
这张照片是在我们
00:45
when we were deep in the valley over there.
14
30000
2000
陷入深谷时制作的。
00:47
I don't know where we are now.
15
32000
2000
我不知道我们现在在哪儿。
00:49
This is the Hang Seng恒生 index指数
16
34000
2000
这是为香港恒生指数
00:51
for Hong香港 Kong.
17
36000
2000
制作的。
00:53
And similar类似 topography地形.
18
38000
2000
类似的形状。
00:55
I wonder奇迹 why.
19
40000
2000
我不知道为什么。
00:57
And this is art艺术. This is metaphor隐喻.
20
42000
3000
这是艺术。这是隐喻。
01:00
But I think the point is
21
45000
2000
但我认为这是个
01:02
that this is metaphor隐喻 with teeth,
22
47000
2000
带着牙齿会咬人的隐喻。
01:04
and it's with those teeth that I want to propose提出 today今天
23
49000
3000
带着这些齿状的线条,今天我建议
01:07
that we rethink反思 a little bit
24
52000
2000
我们重新思考一下
01:09
about the role角色 of contemporary现代的 math数学 --
25
54000
3000
当代数学的角色 --
01:12
not just financial金融 math数学, but math数学 in general一般.
26
57000
3000
不仅是金融数学,还有一般数学。
01:15
That its transition过渡
27
60000
2000
它由
01:17
from being存在 something that we extract提取 and derive派生 from the world世界
28
62000
3000
我们从世界中提炼出的某种事物
01:20
to something that actually其实 starts启动 to shape形状 it --
29
65000
3000
转变为事实上开始塑造世界的事物 --
01:23
the world世界 around us and the world世界 inside us.
30
68000
3000
我们周围的世界和我们内心的世界。
01:26
And it's specifically特别 algorithms算法,
31
71000
2000
特别是算法,
01:28
which哪一个 are basically基本上 the math数学
32
73000
2000
它基本上是
01:30
that computers电脑 use to decide决定 stuff东东.
33
75000
3000
计算机用于决策的数学。
01:33
They acquire获得 the sensibility感性 of truth真相
34
78000
2000
它们具有了真理的敏感性,
01:35
because they repeat重复 over and over again,
35
80000
2000
因为它们会不断地重复。
01:37
and they ossify骨化 and calcify钙化,
36
82000
3000
它们固化下来,
01:40
and they become成为 real真实.
37
85000
2000
变得真实。
01:42
And I was thinking思维 about this, of all places地方,
38
87000
3000
我随时随地都在思考这些,
01:45
on a transatlantic大西洋 flight飞行 a couple一对 of years年份 ago,
39
90000
3000
数年前在一次跨越大西洋的航班上,
01:48
because I happened发生 to be seated坐在
40
93000
2000
因为我恰好坐在一名
01:50
next下一个 to a Hungarian匈牙利 physicist物理学家 about my age年龄
41
95000
2000
与我年纪相仿的匈牙利物理学家旁边,
01:52
and we were talking
42
97000
2000
我们谈论
01:54
about what life was like during the Cold War战争
43
99000
2000
冷战期间在匈牙利的
01:56
for physicists物理学家 in Hungary匈牙利.
44
101000
2000
物理学家生活是什么样的。
01:58
And I said, "So what were you doing?"
45
103000
2000
我说道,“你们都做些什么?”
02:00
And he said, "Well we were mostly大多 breaking破坏 stealth隐形."
46
105000
2000
他回答道,“嗯,我们主要是在破解隐形飞机。”
02:02
And I said, "That's a good job工作. That's interesting有趣.
47
107000
2000
我说,“不错。很有趣。
02:04
How does that work?"
48
109000
2000
怎么做呢?”
02:06
And to understand理解 that,
49
111000
2000
要理解这个,
02:08
you have to understand理解 a little bit about how stealth隐形 works作品.
50
113000
3000
要先对隐形飞机如何工作有点了解。
02:11
And so -- this is an over-simplification简单化 --
51
116000
3000
因此 -- 有点过于简化 --
02:14
but basically基本上, it's not like
52
119000
2000
但基本上,不是
02:16
you can just pass通过 a radar雷达 signal信号
53
121000
2000
仅仅让156吨的钢铁
02:18
right through通过 156 tons of steel in the sky天空.
54
123000
3000
在天空中穿过雷达信号就完事了。
02:21
It's not just going to disappear消失.
55
126000
3000
它不会就这么消失了。
02:24
But if you can take this big, massive大规模的 thing,
56
129000
3000
但如果能把这巨大的东西
02:27
and you could turn it into
57
132000
3000
变成
02:30
a million百万 little things --
58
135000
2000
上百万个小东西 --
02:32
something like a flock of birds鸟类 --
59
137000
2000
有点像一群鸟 --
02:34
well then the radar雷达 that's looking for that
60
139000
2000
那么寻找目标的雷达
02:36
has to be able能够 to see
61
141000
2000
能看到天空中的
02:38
every一切 flock of birds鸟类 in the sky天空.
62
143000
2000
每个鸟群。
02:40
And if you're a radar雷达, that's a really bad job工作.
63
145000
4000
如果你是雷达,这真是个糟糕的工作。
02:44
And he said, "Yeah." He said, "But that's if you're a radar雷达.
64
149000
3000
他说道,“是的。”他说,“如果你是雷达的话。
02:47
So we didn't use a radar雷达;
65
152000
2000
所以我们不用雷达;
02:49
we built内置 a black黑色 box that was looking for electrical电动 signals信号,
66
154000
3000
我们造了个黑盒子来探测电子信号,
02:52
electronic电子 communication通讯.
67
157000
3000
电子通讯。
02:55
And whenever每当 we saw a flock of birds鸟类 that had electronic电子 communication通讯,
68
160000
3000
当我们看到有电子通讯的一群鸟时,
02:58
we thought, 'Probably'大概 has something to do with the Americans美国人.'"
69
163000
3000
我们就认为这可能与美国有关。
03:01
And I said, "Yeah.
70
166000
2000
我说,”是的。
03:03
That's good.
71
168000
2000
这很不错。
03:05
So you've effectively有效 negated否定
72
170000
2000
你们有效地让60年的
03:07
60 years年份 of aeronautic航空 research研究.
73
172000
2000
航空研究无效了。
03:09
What's your act法案 two?
74
174000
2000
你的下一步是什么?
03:11
What do you do when you grow增长 up?"
75
176000
2000
你长大后,你想要做什么?“
03:13
And he said,
76
178000
2000
他说,
03:15
"Well, financial金融 services服务."
77
180000
2000
”嗯,金融服务。“
03:17
And I said, "Oh."
78
182000
2000
我说,”哦。“
03:19
Because those had been in the news新闻 lately最近.
79
184000
3000
因为这已经在最近的新闻里了。
03:22
And I said, "How does that work?"
80
187000
2000
我说,”这工作怎么样?“
03:24
And he said, "Well there's 2,000 physicists物理学家 on Wall Street now,
81
189000
2000
他说,”嗯,现在有2000名物理学家在华尔街工作,
03:26
and I'm one of them."
82
191000
2000
我是其中之一。“
03:28
And I said, "What's the black黑色 box for Wall Street?"
83
193000
3000
我说,”华尔街的黑盒子是什么?“
03:31
And he said, "It's funny滑稽 you ask that,
84
196000
2000
他说,”你问的这个很有趣,
03:33
because it's actually其实 called black黑色 box trading贸易.
85
198000
3000
因为这实际上被称为暗箱交易。
03:36
And it's also sometimes有时 called algoALGO trading贸易,
86
201000
2000
也被称为算法交易,
03:38
algorithmic算法 trading贸易."
87
203000
3000
算法交易。“
03:41
And algorithmic算法 trading贸易 evolved进化 in part部分
88
206000
3000
算法交易的演化某种程度上
03:44
because institutional制度 traders贸易商 have the same相同 problems问题
89
209000
3000
是因为机构交易员碰到了
03:47
that the United联合的 States状态 Air空气 Force had,
90
212000
3000
与美国空军一样的问题,
03:50
which哪一个 is that they're moving移动 these positions位置 --
91
215000
3000
他们要移动这些点 --
03:53
whether是否 it's Proctor普罗克特 & Gamble or Accenture埃森哲, whatever随你 --
92
218000
2000
不管是宝洁还是埃森哲,不管是什么 --
03:55
they're moving移动 a million百万 shares分享 of something
93
220000
2000
他们在市场上交易上百万的
03:57
through通过 the market市场.
94
222000
2000
某公司的股票。
03:59
And if they do that all at once一旦,
95
224000
2000
如果他们一次移动全部,
04:01
it's like playing播放 poker扑克 and going all in right away.
96
226000
2000
有点像象玩扑克室,所有筹码全部下注。
04:03
You just tip小费 your hand.
97
228000
2000
你就露了底牌。
04:05
And so they have to find a way --
98
230000
2000
因此他们不得不找一个方法 --
04:07
and they use algorithms算法 to do this --
99
232000
2000
他们用算法来完成这项工作 --
04:09
to break打破 up that big thing
100
234000
2000
把巨大的交易
04:11
into a million百万 little transactions交易.
101
236000
2000
转化为上百万次小的交易。
04:13
And the magic魔法 and the horror恐怖 of that
102
238000
2000
其中的神奇和可怕之处是
04:15
is that the same相同 math数学
103
240000
2000
你用于把庞然大物分解成
04:17
that you use to break打破 up the big thing
104
242000
2000
上百万份的数学方法
04:19
into a million百万 little things
105
244000
2000
也可以用于
04:21
can be used to find a million百万 little things
106
246000
2000
找到上百万个小东西,
04:23
and sew them back together一起
107
248000
2000
重新拼接起来
04:25
and figure数字 out what's actually其实 happening事件 in the market市场.
108
250000
2000
并算出市场上到底发生了什么。
04:27
So if you need to have some image图片
109
252000
2000
因此如果你需要一些
04:29
of what's happening事件 in the stock股票 market市场 right now,
110
254000
3000
描绘了当前市场中的情景的图像,
04:32
what you can picture图片 is a bunch of algorithms算法
111
257000
2000
你能呈现出的是一组
04:34
that are basically基本上 programmed程序 to hide隐藏,
112
259000
3000
被设定为隐藏的算法,
04:37
and a bunch of algorithms算法 that are programmed程序 to go find them and act法案.
113
262000
3000
一组被设定为可找到并执行的算法。
04:40
And all of that's great, and it's fine.
114
265000
3000
这一切太伟大了,太棒了。
04:43
And that's 70 percent百分
115
268000
2000
美国股票市场
04:45
of the United联合的 States状态 stock股票 market市场,
116
270000
2000
中的百分之70,
04:47
70 percent百分 of the operating操作 system系统
117
272000
2000
操作系统的百分之70
04:49
formerly以前 known已知 as your pension养老金,
118
274000
3000
前身为退休金,
04:52
your mortgage抵押.
119
277000
3000
按揭。
04:55
And what could go wrong错误?
120
280000
2000
什么可能出问题?
04:57
What could go wrong错误
121
282000
2000
一年前
04:59
is that a year ago,
122
284000
2000
出的问题是
05:01
nine percent百分 of the entire整个 market市场 just disappears消失 in five minutes分钟,
123
286000
3000
整个市场的百分之九消失了五分钟,
05:04
and they called it the Flash Crash紧急 of 2:45.
124
289000
3000
这被称为“2:45的瞬间崩溃”。
05:07
All of a sudden突然, nine percent百分 just goes away,
125
292000
3000
突然之间,百分之九就消失了,
05:10
and nobody没有人 to this day
126
295000
2000
直到今天大家
05:12
can even agree同意 on what happened发生
127
297000
2000
对发生了什么还不能达成一致,
05:14
because nobody没有人 ordered有序 it, nobody没有人 asked for it.
128
299000
3000
因为没人下命令,没人要这么做。
05:17
Nobody没有人 had any control控制 over what was actually其实 happening事件.
129
302000
3000
对那天所发生的大家束手无策。
05:20
All they had
130
305000
2000
他们就是
05:22
was just a monitor监控 in front面前 of them
131
307000
2000
看着面前的屏幕
05:24
that had the numbers数字 on it
132
309000
2000
上的数字
05:26
and just a red button按键
133
311000
2000
和一个红色按钮
05:28
that said, "Stop."
134
313000
2000
上面写着,“停。”
05:30
And that's the thing,
135
315000
2000
事情就是这样
05:32
is that we're writing写作 things,
136
317000
2000
这就是我们正在编写的东西,
05:34
we're writing写作 these things that we can no longer read.
137
319000
3000
我们在编写我们读不懂的东西。
05:37
And we've我们已经 rendered呈现 something
138
322000
2000
我们把一些事情变得
05:39
illegible难以辨认,
139
324000
2000
难以理解。
05:41
and we've我们已经 lost丢失 the sense
140
326000
3000
我们已经对
05:44
of what's actually其实 happening事件
141
329000
2000
这个我们创造的世界中
05:46
in this world世界 that we've我们已经 made制作.
142
331000
2000
正在发生的事情失去理解能力。
05:48
And we're starting开始 to make our way.
143
333000
2000
我们开始前进。
05:50
There's a company公司 in Boston波士顿 called NanexNanex,
144
335000
3000
在波士顿有个名为Nanex的公司,
05:53
and they use math数学 and magic魔法
145
338000
2000
他们运用数学和魔法
05:55
and I don't know what,
146
340000
2000
和我不知道是什么的东西,
05:57
and they reach达到 into all the market市场 data数据
147
342000
2000
他们深入研究所有他们能找到的
05:59
and they find, actually其实 sometimes有时, some of these algorithms算法.
148
344000
3000
市场数据,实际上有时候是一些算法。
06:02
And when they find them they pull them out
149
347000
3000
当他们找到这些数据时,就把数据抽取出来
06:05
and they pin them to the wall like butterflies蝴蝶.
150
350000
3000
像蝴蝶似的把它们钉在墙上。
06:08
And they do what we've我们已经 always doneDONE
151
353000
2000
他们所做的也是我们在
06:10
when confronted面对 with huge巨大 amounts of data数据 that we don't understand理解 --
152
355000
3000
面对大量我们无法理解的数据时所做的 --
06:13
which哪一个 is that they give them a name名称
153
358000
2000
给它们一个名字
06:15
and a story故事.
154
360000
2000
和一个故事。
06:17
So this is one that they found发现,
155
362000
2000
这就是他们找的一个,
06:19
they called the Knife,
156
364000
4000
他们称之为‘小刀’,
06:23
the Carnival狂欢,
157
368000
2000
‘嘉年华’,
06:25
the Boston波士顿 Shuffler洗牌,
158
370000
4000
‘波士顿洗牌者’,
06:29
Twilight.
159
374000
2000
暮光。
06:31
And the gag插科打诨 is
160
376000
2000
有意思的是
06:33
that, of course课程, these aren't just running赛跑 through通过 the market市场.
161
378000
3000
这不仅存在于股票市场上。
06:36
You can find these kinds of things wherever哪里 you look,
162
381000
3000
一旦你知道如何寻找它们,
06:39
once一旦 you learn学习 how to look for them.
163
384000
2000
无论在哪儿你都能找到这类东西,
06:41
You can find it here: this book about flies苍蝇
164
386000
3000
你能在这儿找到它:这本关于苍蝇的书
06:44
that you may可能 have been looking at on Amazon亚马逊.
165
389000
2000
你可能在亚马逊上看到过这本书。
06:46
You may可能 have noticed注意到 it
166
391000
2000
你或许已经注意到
06:48
when its price价钱 started开始 at 1.7 million百万 dollars美元.
167
393000
2000
它的价格是一百七十万美元。
06:50
It's out of print打印 -- still ...
168
395000
2000
绝版 -- 仍然是绝版...
06:52
(Laughter笑声)
169
397000
2000
(笑声)
06:54
If you had bought it at 1.7, it would have been a bargain讨价还价.
170
399000
3000
如果你在一百七十万美元是购买了它,那还算便宜的。
06:57
A few少数 hours小时 later后来, it had gone走了 up
171
402000
2000
数小时后,它涨到了
06:59
to 23.6 million百万 dollars美元,
172
404000
2000
两千三百六十万美元,
07:01
plus shipping运输 and handling处理.
173
406000
2000
含运费和手续费。
07:03
And the question is:
174
408000
2000
问题是:
07:05
Nobody没有人 was buying购买 or selling销售 anything; what was happening事件?
175
410000
2000
没有人购买或销售任何东西;发生了什么?
07:07
And you see this behavior行为 on Amazon亚马逊
176
412000
2000
你在亚马逊看到的这一行为
07:09
as surely一定 as you see it on Wall Street.
177
414000
2000
毫无疑问与在华尔街看到的一样。
07:11
And when you see this kind of behavior行为,
178
416000
2000
当你看到这类行为时,
07:13
what you see is the evidence证据
179
418000
2000
你所看到的就是
07:15
of algorithms算法 in conflict冲突,
180
420000
2000
算法冲突的证据,
07:17
algorithms算法 locked锁定 in loops循环 with each other,
181
422000
2000
算法相互锁定,
07:19
without any human人的 oversight疏忽,
182
424000
2000
没有人类的监管,
07:21
without any adult成人 supervision监督
183
426000
3000
没有任何成熟的监督
07:24
to say, "Actually其实, 1.7 million百万 is plenty丰富."
184
429000
3000
说,“实际上,一百七十万美元是很大一笔了。”
07:27
(Laughter笑声)
185
432000
3000
(笑声)
07:30
And as with Amazon亚马逊, so it is with NetflixNetflix公司.
186
435000
3000
与亚马逊一样,Netflix也有这样的问题。
07:33
And so NetflixNetflix公司 has gone走了 through通过
187
438000
2000
因此Netflix多年来已经
07:35
several一些 different不同 algorithms算法 over the years年份.
188
440000
2000
经历了若干不同算法。
07:37
They started开始 with CinematchCinematch, and they've他们已经 tried试着 a bunch of others其他 --
189
442000
3000
他们开始用的是Cinematch,后来又尝试了一些其他的。
07:40
there's Dinosaur恐龙 Planet行星; there's Gravity重力.
190
445000
2000
有Dinosaur Planet,Gravity。
07:42
They're using运用 Pragmatic务实 Chaos混沌 now.
191
447000
2000
现在他们在使用Pragmatic Chaos。
07:44
Pragmatic务实 Chaos混沌 is, like all of NetflixNetflix公司 algorithms算法,
192
449000
2000
Pragmatic Chaos,与所有Netflix算法相同,
07:46
trying to do the same相同 thing.
193
451000
2000
试着做同样的事情。
07:48
It's trying to get a grasp把握 on you,
194
453000
2000
它试图把握住你,
07:50
on the firmware固件 inside the human人的 skull头骨,
195
455000
2000
掌控人类头骨内的固件,
07:52
so that it can recommend推荐 what movie电影
196
457000
2000
这样它就能向你推荐
07:54
you might威力 want to watch next下一个 --
197
459000
2000
你可能想看的电影 --
07:56
which哪一个 is a very, very difficult problem问题.
198
461000
3000
这是个非常非常困难的事情。
07:59
But the difficulty困难 of the problem问题
199
464000
2000
但问题和事实的难点
08:01
and the fact事实 that we don't really quite相当 have it down,
200
466000
3000
在于我们没有真的掌握它,
08:04
it doesn't take away
201
469000
2000
它没有消除
08:06
from the effects效果 Pragmatic务实 Chaos混沌 has.
202
471000
2000
Pragmatic Chaos的影响。
08:08
Pragmatic务实 Chaos混沌, like all NetflixNetflix公司 algorithms算法,
203
473000
3000
Pragmatic Chaos,如同Netflix的所有算法,
08:11
determines确定, in the end结束,
204
476000
2000
最后决定了
08:13
60 percent百分
205
478000
2000
百分之60
08:15
of what movies电影 end结束 up being存在 rented.
206
480000
2000
最终被租用的电影。
08:17
So one piece of code
207
482000
2000
因此一段带有
08:19
with one idea理念 about you
208
484000
3000
你的看法的代码
08:22
is responsible主管 for 60 percent百分 of those movies电影.
209
487000
3000
对百分之60的电影负责。
08:25
But what if you could rate those movies电影
210
490000
2000
但如果你在这些电影制作之前
08:27
before they get made制作?
211
492000
2000
对它们进行评价会怎样?
08:29
Wouldn't岂不 that be handy便利?
212
494000
2000
这样岂不是很方便?
08:31
Well, a few少数 data数据 scientists科学家们 from the U.K. are in Hollywood好莱坞,
213
496000
3000
嗯,一些来自英国的数据科学家在好莱坞,
08:34
and they have "story故事 algorithms算法" --
214
499000
2000
他们有故事算法 --
08:36
a company公司 called EpagogixEpagogix.
215
501000
2000
一家名为Epagogix的公司。
08:38
And you can run your script脚本 through通过 there,
216
503000
3000
你可以向他们提供你的剧本,
08:41
and they can tell you, quantifiably量化地,
217
506000
2000
他们能量化地告诉你
08:43
that that's a 30 million百万 dollar美元 movie电影
218
508000
2000
这是个三千万美元票房的电影
08:45
or a 200 million百万 dollar美元 movie电影.
219
510000
2000
或是个两亿美元票房的电影。
08:47
And the thing is, is that this isn't Google谷歌.
220
512000
2000
这不是Google。
08:49
This isn't information信息.
221
514000
2000
不是信息。
08:51
These aren't financial金融 stats统计; this is culture文化.
222
516000
2000
不是金融统计;这是文化。
08:53
And what you see here,
223
518000
2000
你在这儿看到的
08:55
or what you don't really see normally一般,
224
520000
2000
或你没有真正察觉的,
08:57
is that these are the physics物理 of culture文化.
225
522000
4000
是文化的物理学。
09:01
And if these algorithms算法,
226
526000
2000
如果这些算法,
09:03
like the algorithms算法 on Wall Street,
227
528000
2000
象华尔街中的算法,
09:05
just crashed坠毁 one day and went awry,
228
530000
3000
某天崩溃了出错了,
09:08
how would we know?
229
533000
2000
我们怎么知道,
09:10
What would it look like?
230
535000
2000
那会是什么样子?
09:12
And they're in your house. They're in your house.
231
537000
3000
它们在你的屋子里,它们在你的屋子里。
09:15
These are two algorithms算法 competing竞争 for your living活的 room房间.
232
540000
2000
有两种算法在争夺你的客厅。
09:17
These are two different不同 cleaning清洁的 robots机器人
233
542000
2000
有两种不同的清洁机器人
09:19
that have very different不同 ideas思路 about what clean清洁 means手段.
234
544000
3000
它们对清洁的含义有着非常不同的理解。
09:22
And you can see it
235
547000
2000
如果你让它慢下来,在它上面放上灯光
09:24
if you slow it down and attach连接 lights灯火 to them,
236
549000
3000
你就能够看到。
09:27
and they're sort分类 of like secret秘密 architects建筑师 in your bedroom卧室.
237
552000
3000
有点像你卧室里的秘密建筑师。
09:30
And the idea理念 that architecture建筑 itself本身
238
555000
3000
建筑本身
09:33
is somehow不知何故 subject学科 to algorithmic算法 optimization优化
239
558000
2000
某种程度上服从算法优化的想法
09:35
is not far-fetched牵强.
240
560000
2000
并非牵强。
09:37
It's super-real超现实 and it's happening事件 around you.
241
562000
3000
这是超现实,它就发生在你周围。
09:40
You feel it most
242
565000
2000
当你在一个密封的金属盒子里时,
09:42
when you're in a sealed密封 metal金属 box,
243
567000
2000
一种被称为目标控制电梯的
09:44
a new-style新风格 elevator电梯;
244
569000
2000
新式电梯,
09:46
they're called destination-control目的控制 elevators电梯.
245
571000
2000
最能感受到它。
09:48
These are the ones那些 where you have to press what floor地板 you're going to go to
246
573000
3000
在你进入电梯之前你要按下
09:51
before you get in the elevator电梯.
247
576000
2000
你所要去的楼层的按钮。
09:53
And it uses使用 what's called a bin-packing装箱 algorithm算法.
248
578000
2000
它使用装箱算法。
09:55
So none没有 of this mishegasmishegas
249
580000
2000
因此让每个人进入
09:57
of letting出租 everybody每个人 go into whatever随你 car汽车 they want.
250
582000
2000
他们想进的电梯一点也不混乱。
09:59
Everybody每个人 who wants to go to the 10th floor地板 goes into car汽车 two,
251
584000
2000
想去10楼的人进入二号电梯,
10:01
and everybody每个人 who wants to go to the third第三 floor地板 goes into car汽车 five.
252
586000
3000
想去三层的人进入五号电梯。
10:04
And the problem问题 with that
253
589000
2000
问题是
10:06
is that people freak怪物 out.
254
591000
2000
人们吓坏了。
10:08
People panic恐慌.
255
593000
2000
人们抓狂了。
10:10
And you see why. You see why.
256
595000
2000
你知道为什么。你知道为什么。
10:12
It's because the elevator电梯
257
597000
2000
因为电梯
10:14
is missing失踪 some important重要 instrumentation仪器仪表, like the buttons纽扣.
258
599000
3000
缺少了些重要的东西,比如按钮。
10:17
(Laughter笑声)
259
602000
2000
(笑声)
10:19
Like the things that people use.
260
604000
2000
正如人们使用的电梯。
10:21
All it has
261
606000
2000
都有
10:23
is just the number that moves移动 up or down
262
608000
3000
标明向上或向下的数字
10:26
and that red button按键 that says, "Stop."
263
611000
3000
还有一个红色按钮,上写着,“停。”
10:29
And this is what we're designing设计 for.
264
614000
3000
这就是我们正在设计的。
10:32
We're designing设计
265
617000
2000
我们正在设计
10:34
for this machine dialect方言.
266
619000
2000
这种机器方言。
10:36
And how far can you take that? How far can you take it?
267
621000
3000
能做到什么程度?能用它做到何种境界?
10:39
You can take it really, really far.
268
624000
2000
用它可以走得很远很远。
10:41
So let me take it back to Wall Street.
269
626000
3000
让我们回到华尔街。
10:45
Because the algorithms算法 of Wall Street
270
630000
2000
因为华尔街的算法
10:47
are dependent依赖的 on one quality质量 above以上 all else其他,
271
632000
3000
依赖于一个高于一切的特质,
10:50
which哪一个 is speed速度.
272
635000
2000
速度。
10:52
And they operate操作 on milliseconds毫秒 and microseconds微秒.
273
637000
3000
它们的运行时间以毫秒和微妙计算。
10:55
And just to give you a sense of what microseconds微秒 are,
274
640000
2000
让你们对微秒有点感觉,
10:57
it takes you 500,000 microseconds微秒
275
642000
2000
点击一下鼠标
10:59
just to click点击 a mouse老鼠.
276
644000
2000
要花50万微秒的时间。
11:01
But if you're a Wall Street algorithm算法
277
646000
2000
但如果你是一个华尔街的算法
11:03
and you're five microseconds微秒 behind背后,
278
648000
2000
落后5微秒,
11:05
you're a loser失败者.
279
650000
2000
你就是失败者。
11:07
So if you were an algorithm算法,
280
652000
2000
因此,如果你是一个算法,
11:09
you'd look for an architect建筑师 like the one that I met会见 in Frankfurt法兰克福
281
654000
3000
你得寻找一个像我在法兰克福所遇的那样的建筑师
11:12
who was hollowing空鼓 out a skyscraper摩天大楼 --
282
657000
2000
把整个摩天大楼掏空 --
11:14
throwing投掷 out all the furniture家具, all the infrastructure基础设施 for human人的 use,
283
659000
3000
扔掉所有的家具和人类使用的基础设施,
11:17
and just running赛跑 steel on the floors地板
284
662000
3000
仅用刚才铺至地面,
11:20
to get ready准备 for the stacks of servers服务器 to go in --
285
665000
3000
准备好大批的服务器入驻 --
11:23
all so an algorithm算法
286
668000
2000
整个算法
11:25
could get close to the Internet互联网.
287
670000
3000
都能快速连入互联网。
11:28
And you think of the Internet互联网 as this kind of distributed分散式 system系统.
288
673000
3000
把互联网看成一种分布式系统。
11:31
And of course课程, it is, but it's distributed分散式 from places地方.
289
676000
3000
当然,它就是,但分布于不同地点。
11:34
In New York纽约, this is where it's distributed分散式 from:
290
679000
2000
在纽约,它分布在:
11:36
the Carrier支架 Hotel旅馆
291
681000
2000
位于哈德逊大街的
11:38
located位于 on Hudson哈德森 Street.
292
683000
2000
电信酒店。
11:40
And this is really where the wires电线 come right up into the city.
293
685000
3000
这是线缆真正进入这座城市的地方。
11:43
And the reality现实 is that the further进一步 away you are from that,
294
688000
4000
事实上你距离这地方越远,
11:47
you're a few少数 microseconds微秒 behind背后 every一切 time.
295
692000
2000
每次都会落后几微秒。
11:49
These guys down on Wall Street,
296
694000
2000
在华尔街上的这些家伙,
11:51
Marco马尔科 Polo马球 and Cherokee切诺基 Nation国家,
297
696000
2000
Marco Polo和Cherokee Nation,
11:53
they're eight microseconds微秒
298
698000
2000
他们比这些
11:55
behind背后 all these guys
299
700000
2000
在电信酒店周围的
11:57
going into the empty buildings房屋 being存在 hollowed挖空 out
300
702000
4000
被掏空了的大厦里的家伙
12:01
up around the Carrier支架 Hotel旅馆.
301
706000
2000
要落后八微秒。
12:03
And that's going to keep happening事件.
302
708000
3000
这在不断发生。
12:06
We're going to keep hollowing空鼓 them out,
303
711000
2000
我们要把它们不断掏空,
12:08
because you, inch英寸 for inch英寸
304
713000
3000
因为你,每一英寸
12:11
and pound for pound and dollar美元 for dollar美元,
305
716000
3000
每一磅,每一美元,
12:14
none没有 of you could squeeze revenue收入 out of that space空间
306
719000
3000
没人能像‘波士顿洗牌者’那样
12:17
like the Boston波士顿 Shuffler洗牌 could.
307
722000
3000
从中榨取收益。
12:20
But if you zoom放大 out,
308
725000
2000
但如果你缩小地图,
12:22
if you zoom放大 out,
309
727000
2000
如果你缩小地图,
12:24
you would see an 825-mile-英里 trench
310
729000
4000
你会看到一条长达825英里的
12:28
between之间 New York纽约 City and Chicago芝加哥
311
733000
2000
位于纽约城和芝加哥之间的沟渠,
12:30
that's been built内置 over the last few少数 years年份
312
735000
2000
它在过去几年中
12:32
by a company公司 called Spread传播 Networks网络.
313
737000
3000
由一家名为Spread Networks的公司建造。
12:35
This is a fiber纤维 optic视神经 cable电缆
314
740000
2000
这条
12:37
that was laid铺设 between之间 those two cities城市
315
742000
2000
两座城市间的光缆
12:39
to just be able能够 to traffic交通 one signal信号
316
744000
3000
就是为了以比你点击鼠标
12:42
37 times faster更快 than you can click点击 a mouse老鼠 --
317
747000
3000
快37倍的速度传输信号 --
12:45
just for these algorithms算法,
318
750000
3000
就是为了这些算法,
12:48
just for the Carnival狂欢 and the Knife.
319
753000
3000
就是为了‘嘉年华’和‘小刀’。
12:51
And when you think about this,
320
756000
2000
你想一想,
12:53
that we're running赛跑 through通过 the United联合的 States状态
321
758000
2000
我们正在用炸药和岩石锯
12:55
with dynamite炸药 and rock saws
322
760000
3000
穿过美国,
12:58
so that an algorithm算法 can close the deal合同
323
763000
2000
只是为了一个算法
13:00
three microseconds微秒 faster更快,
324
765000
3000
能快三微秒完成交易,
13:03
all for a communications通讯 framework骨架
325
768000
2000
都是为了一个没人会知道的
13:05
that no human人的 will ever know,
326
770000
4000
通信框架,
13:09
that's a kind of manifest表现 destiny命运;
327
774000
3000
这有点命运天定论
13:12
and we'll always look for a new frontier边境.
328
777000
3000
并总是在寻找新的领域。
13:15
Unfortunately不幸, we have our work cut out for us.
329
780000
3000
不幸地是,我们面前困难重重。
13:18
This is just theoretical理论.
330
783000
2000
这仅仅是理论上的。
13:20
This is some mathematicians数学家 at MITMIT.
331
785000
2000
这是MIT的一些数学家制作的。
13:22
And the truth真相 is I don't really understand理解
332
787000
2000
我并不太明白
13:24
a lot of what they're talking about.
333
789000
2000
他们所谈论的。
13:26
It involves涉及 light cones and quantum量子 entanglement纠葛,
334
791000
3000
它涉及光锥体和量子纠缠,
13:29
and I don't really understand理解 any of that.
335
794000
2000
这些我真的都不太明白。
13:31
But I can read this map地图,
336
796000
2000
但我能看明白这张地图。
13:33
and what this map地图 says
337
798000
2000
这张地图表明
13:35
is that, if you're trying to make money on the markets市场 where the red dots are,
338
800000
3000
如果你要在市场上赚钱,那些红点所在位置,
13:38
that's where people are, where the cities城市 are,
339
803000
2000
也是人所在位置,也是城市所在位置,
13:40
you're going to have to put the servers服务器 where the blue蓝色 dots are
340
805000
3000
就要把服务器放到蓝点所在位置
13:43
to do that most effectively有效.
341
808000
2000
这样最有效率。
13:45
And the thing that you might威力 have noticed注意到 about those blue蓝色 dots
342
810000
3000
各位也许已经注意到这些蓝点
13:48
is that a lot of them are in the middle中间 of the ocean海洋.
343
813000
3000
许多都在大洋中。
13:51
So that's what we'll do: we'll build建立 bubbles泡泡 or something,
344
816000
3000
那么我们要做的是,建造一些气泡之类的东西,
13:54
or platforms平台.
345
819000
2000
或者是平台。
13:56
We'll actually其实 part部分 the water
346
821000
2000
我们们确实能分离水,
13:58
to pull money out of the air空气,
347
823000
2000
从空气中挖掘财富,
14:00
because it's a bright future未来
348
825000
2000
因为这很有前途,
14:02
if you're an algorithm算法.
349
827000
2000
如果你是一个算法的话。
14:04
(Laughter笑声)
350
829000
2000
(笑声)
14:06
And it's not the money that's so interesting有趣 actually其实.
351
831000
3000
实际上有意思的不是钱。
14:09
It's what the money motivates能够激励,
352
834000
2000
而是钱所激发的东西。
14:11
that we're actually其实 terraforming地球化
353
836000
2000
我们实际上在用
14:13
the Earth地球 itself本身
354
838000
2000
这种算法的效率
14:15
with this kind of algorithmic算法 efficiency效率.
355
840000
2000
在改造地球本身。
14:17
And in that light,
356
842000
2000
根据这点,
14:19
you go back
357
844000
2000
各位回去看看
14:21
and you look at Michael迈克尔 Najjar's纳贾尔的 photographs照片,
358
846000
2000
迈克尔·纳贾尔的照片,
14:23
and you realize实现 that they're not metaphor隐喻, they're prophecy预言.
359
848000
3000
会领悟到它们不是隐喻,而是预言。
14:26
They're prophecy预言
360
851000
2000
它们是
14:28
for the kind of seismic地震, terrestrial陆生 effects效果
361
853000
4000
我们正在数学上掀起的
14:32
of the math数学 that we're making制造.
362
857000
2000
那种地震效应的预言。
14:34
And the landscape景观 was always made制作
363
859000
3000
风景总是由
14:37
by this sort分类 of weird奇怪的, uneasy不安 collaboration合作
364
862000
3000
自然和人类之间的这种
14:40
between之间 nature性质 and man.
365
865000
3000
怪异不安的协作产生的。
14:43
But now there's this third第三 co-evolutionary协同进化 force: algorithms算法 --
366
868000
3000
但现在有这些第三方协同进化力量:算法 --
14:46
the Boston波士顿 Shuffler洗牌, the Carnival狂欢.
367
871000
3000
‘波士顿洗牌者‘,’嘉年华’。
14:49
And we will have to understand理解 those as nature性质,
368
874000
3000
我们将不得不将这些视为自然。
14:52
and in a way, they are.
369
877000
2000
某种程度上,它们是的。
14:54
Thank you.
370
879000
2000
谢谢。
14:56
(Applause掌声)
371
881000
20000
(掌声)
Translated by Felix Chen
Reviewed by Chunxiang Qian

▲Back to top

ABOUT THE SPEAKER
Kevin Slavin - Algoworld expert
Kevin Slavin navigates in the algoworld, the expanding space in our lives that’s determined and run by algorithms.

Why you should listen

Are you addicted to the dead-simple numbers game Drop 7 or Facebook’s Parking Wars? Blame Kevin Slavin and the game development company he co-founded in 2005, Area/Code, which makes clever game entertainments that enter the fabric of reality.

All this fun is powered by algorithms -- as, increasingly, is our daily life. From the Google algorithms to the algos that give you “recommendations” online to those that automatically play the stock markets (and sometimes crash them): we may not realize it, but we live in the algoworld.

He says: "The quickest way to find out what the boundaries of reality are is to figure where they break."

More profile about the speaker
Kevin Slavin | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee