ABOUT THE SPEAKER
Kevin Slavin - Algoworld expert
Kevin Slavin navigates in the algoworld, the expanding space in our lives that’s determined and run by algorithms.

Why you should listen

Are you addicted to the dead-simple numbers game Drop 7 or Facebook’s Parking Wars? Blame Kevin Slavin and the game development company he co-founded in 2005, Area/Code, which makes clever game entertainments that enter the fabric of reality.

All this fun is powered by algorithms -- as, increasingly, is our daily life. From the Google algorithms to the algos that give you “recommendations” online to those that automatically play the stock markets (and sometimes crash them): we may not realize it, but we live in the algoworld.

He says: "The quickest way to find out what the boundaries of reality are is to figure where they break."

More profile about the speaker
Kevin Slavin | Speaker | TED.com
TEDGlobal 2011

Kevin Slavin: How algorithms shape our world

Kevin Slavin:演算法則如何建構我們的世界

Filmed:
4,199,898 views

Kevin Slavin主張我們正處於為演算法的存在而設計的世界,並且日益受演算法所控制。在TEDGlobal現場的這場風趣又精采的演說中,他解釋這些錯綜複雜的電腦程式如何測定碟報戰術、股票價格、電影劇本和建築設計。他提醒到,我們正編寫連自己都不了解的程式編碼;隨之而來的是,我們無法掌控可能的後果。
- Algoworld expert
Kevin Slavin navigates in the algoworld, the expanding space in our lives that’s determined and run by algorithms. Full bio

Double-click the English transcript below to play the video.

00:15
This is a photograph照片
0
0
2000
這是張相片
00:17
by the artist藝術家 Michael邁克爾 Najjar納賈爾,
1
2000
2000
由藝術家Michael Najjar 拍攝的
00:19
and it's real真實,
2
4000
2000
這張相片是真的
00:21
in the sense that he went there to Argentina阿根廷
3
6000
2000
也就是說,他親自到阿根廷,那座山的所在處
00:23
to take the photo照片.
4
8000
2000
拍攝這張照片。
00:25
But it's also a fiction小說. There's a lot of work that went into it after that.
5
10000
3000
但也可以說,這是張虛構的相片。這張相片的完作花了很多功夫。
00:28
And what he's doneDONE
6
13000
2000
他對相片動了些手腳:
00:30
is he's actually其實 reshaped重塑, digitally數字,
7
15000
2000
數位化重整
00:32
all of the contours輪廓 of the mountains
8
17000
2000
整片山脈的形體輪廓,
00:34
to follow跟隨 the vicissitudes滄桑 of the Dow道瓊斯 Jones瓊斯 index指數.
9
19000
3000
使其隨道瓊指數曲線變化。
00:37
So what you see,
10
22000
2000
你所看到的
00:39
that precipice懸崖, that high precipice懸崖 with the valley,
11
24000
2000
那個峭壁, 那個有處凹陷的高聳峭壁
00:41
is the 2008 financial金融 crisis危機.
12
26000
2000
代表2008年的金融危機。
00:43
The photo照片 was made製作
13
28000
2000
拍攝這張相片時
00:45
when we were deep in the valley over there.
14
30000
2000
我們的金融情勢正處於低谷,
00:47
I don't know where we are now.
15
32000
2000
不曉得我們現在處於何種形勢。
00:49
This is the Hang Seng恆生 index指數
16
34000
2000
這是恆生指數,
00:51
for Hong香港 Kong.
17
36000
2000
香港股市價格的重要指標。
00:53
And similar類似 topography地形.
18
38000
2000
(兩張相片)地形相似,
00:55
I wonder奇蹟 why.
19
40000
2000
我想知道為什麼
00:57
And this is art藝術. This is metaphor隱喻.
20
42000
3000
這是藝術;這是種象徵。
01:00
But I think the point is
21
45000
2000
但我認為重點是
01:02
that this is metaphor隱喻 with teeth,
22
47000
2000
這個象徵有“牙齒”。
01:04
and it's with those teeth that I want to propose提出 today今天
23
49000
3000
就是因為這些“牙齒”,我今天提議
01:07
that we rethink反思 a little bit
24
52000
2000
我們稍微重新思考
01:09
about the role角色 of contemporary現代的 math數學 --
25
54000
3000
當代數學的角色;
01:12
not just financial金融 math數學, but math數學 in general一般.
26
57000
3000
不只金融數學,還有普通數學。
01:15
That its transition過渡
27
60000
2000
「它」的演變:
01:17
from being存在 something that we extract提取 and derive派生 from the world世界
28
62000
3000
從我們鑽研這個世界,抽絲撥繭而取得的發現
01:20
to something that actually其實 starts啟動 to shape形狀 it --
29
65000
3000
到實際開始形成「它」的重要發現,
01:23
the world世界 around us and the world世界 inside us.
30
68000
3000
這含括我們的外在世界和我們內在的世界。
01:26
And it's specifically特別 algorithms算法,
31
71000
2000
說明確些,它是演算法,
01:28
which哪一個 are basically基本上 the math數學
32
73000
2000
基本上,是種數學─
01:30
that computers電腦 use to decide決定 stuff東東.
33
75000
3000
─電腦用來測定東西的數學。
01:33
They acquire獲得 the sensibility感性 of truth真相
34
78000
2000
演算法掌握高度精確的計量,
01:35
because they repeat重複 over and over again,
35
80000
2000
因為它們一而再,再而三的重覆著;
01:37
and they ossify骨化 and calcify鈣化,
36
82000
3000
然後漸漸成型,發展出基本架構
01:40
and they become成為 real真實.
37
85000
2000
然後它們變得實際且可靠。
01:42
And I was thinking思維 about this, of all places地方,
38
87000
3000
我當時正在思考這點, 真是太湊巧了!
01:45
on a transatlantic大西洋 flight飛行 a couple一對 of years年份 ago,
39
90000
3000
就在幾年前,橫越大西洋的班機上,
01:48
because I happened發生 to be seated坐在
40
93000
2000
因為我的座位碰巧
01:50
next下一個 to a Hungarian匈牙利 physicist物理學家 about my age年齡
41
95000
2000
在一位年紀與我相仿的匈牙利物理學家隔壁
01:52
and we were talking
42
97000
2000
我們談論關於
01:54
about what life was like during the Cold War戰爭
43
99000
2000
匈牙利冷戰期間
01:56
for physicists物理學家 in Hungary匈牙利.
44
101000
2000
物理學家的生活情況。
01:58
And I said, "So what were you doing?"
45
103000
2000
我說:「你那時在做什麼?」
02:00
And he said, "Well we were mostly大多 breaking破壞 stealth隱形."
46
105000
2000
他說:「嗯,我們大多在打擊祕密行動。」
02:02
And I said, "That's a good job工作. That's interesting有趣.
47
107000
2000
「那是個好工作,有趣吧,
02:04
How does that work?"
48
109000
2000
那是怎麼運作的?」
02:06
And to understand理解 that,
49
111000
2000
要了解那之前
02:08
you have to understand理解 a little bit about how stealth隱形 works作品.
50
113000
3000
你必須稍稍了解祕密行動的運作。
02:11
And so -- this is an over-simplification簡單化 --
51
116000
3000
這是個超簡單化的例子,
02:14
but basically基本上, it's not like
52
119000
2000
基本上,它不像是
02:16
you can just pass通過 a radar雷達 signal信號
53
121000
2000
你可以藉由156噸在天空飛的鋼鐵
02:18
right through通過 156 tons of steel in the sky天空.
54
123000
3000
傳送雷達信號。
02:21
It's not just going to disappear消失.
55
126000
3000
飛機不會消失不見。
02:24
But if you can take this big, massive大規模的 thing,
56
129000
3000
但若你能將這個龐大、具規模的東西
02:27
and you could turn it into
57
132000
3000
變成
02:30
a million百萬 little things --
58
135000
2000
百萬個小玩意
02:32
something like a flock of birds鳥類 --
59
137000
2000
─像鳥群一樣的東西─
02:34
well then the radar雷達 that's looking for that
60
139000
2000
那麼雷達偵測到那一群群的小東西
02:36
has to be able能夠 to see
61
141000
2000
必定會看到
02:38
every一切 flock of birds鳥類 in the sky天空.
62
143000
2000
在空中有“一群群的鳥”
02:40
And if you're a radar雷達, that's a really bad job工作.
63
145000
4000
若你是一個雷達,事情可就糟了。
02:44
And he said, "Yeah." He said, "But that's if you're a radar雷達.
64
149000
3000
他說:「對,但那是,如果你是個雷達。
02:47
So we didn't use a radar雷達;
65
152000
2000
所以我們不用雷達,
02:49
we built內置 a black黑色 box that was looking for electrical電動 signals信號,
66
154000
3000
我們建造一個黑箱子,用它搜尋電波,
02:52
electronic電子 communication通訊.
67
157000
3000
電子通訊。
02:55
And whenever每當 we saw a flock of birds鳥類 that had electronic電子 communication通訊,
68
160000
3000
任何時候,我們發現帶有電子通訊的鳥群,
02:58
we thought, 'Probably'大概 has something to do with the Americans美國人.'"
69
163000
3000
我們會認為這很可能跟美國人有關。」
03:01
And I said, "Yeah.
70
166000
2000
我接著說:「是啊,
03:03
That's good.
71
168000
2000
真行,
03:05
So you've effectively有效 negated否定
72
170000
2000
你們成功地消磨了
03:07
60 years年份 of aeronautic航空 research研究.
73
172000
2000
60年的航空學研究心血。
03:09
What's your act法案 two?
74
174000
2000
你接著要做什麼?
03:11
What do you do when you grow增長 up?"
75
176000
2000
當你長大成人以後,你從事什麼工作?」
03:13
And he said,
76
178000
2000
他回答:
03:15
"Well, financial金融 services服務."
77
180000
2000
「嗯,金融服務業。」
03:17
And I said, "Oh."
78
182000
2000
我驚呼:「喔!」
03:19
Because those had been in the news新聞 lately最近.
79
184000
3000
那一陣子相關報導一直在新聞出現。
03:22
And I said, "How does that work?"
80
187000
2000
我問:「進行的如何?」
03:24
And he said, "Well there's 2,000 physicists物理學家 on Wall Street now,
81
189000
2000
他說:「現有2,000名物理學家在華爾街(美國金融中心),
03:26
and I'm one of them."
82
191000
2000
我是他們其中一人。」
03:28
And I said, "What's the black黑色 box for Wall Street?"
83
193000
3000
我接著問:「華爾街用的『黑箱』是什麼?」
03:31
And he said, "It's funny滑稽 you ask that,
84
196000
2000
他回說:「你這樣問很好笑,
03:33
because it's actually其實 called black黑色 box trading貿易.
85
198000
3000
事實上,人們會稱它為『黑箱交易』
03:36
And it's also sometimes有時 called algoALGO trading貿易,
86
201000
2000
有時也稱為
03:38
algorithmic算法 trading貿易."
87
203000
3000
「演算法交易」(algorithmic trading 或algo trading)
03:41
And algorithmic算法 trading貿易 evolved進化 in part部分
88
206000
3000
「演算法交易」的演進發展,有部分是因為
03:44
because institutional制度 traders貿易商 have the same相同 problems問題
89
209000
3000
某些機構交易人遇到相同的問題;
03:47
that the United聯合的 States狀態 Air空氣 Force had,
90
212000
3000
而那問題美國空軍也同樣遭遇到,
03:50
which哪一個 is that they're moving移動 these positions位置 --
91
215000
3000
他們都在「移動這些位置」──
03:53
whether是否 it's Proctor普羅克特 & Gamble or Accenture埃森哲, whatever隨你 --
92
218000
2000
不論是寶僑(Proctor&Gamble)或埃森哲(Accenture:管理顧問、技術服務公司)
03:55
they're moving移動 a million百萬 shares分享 of something
93
220000
2000
他們都在移動一百萬股的東西,
03:57
through通過 the market市場.
94
222000
2000
透過市場交易而進行。
03:59
And if they do that all at once一旦,
95
224000
2000
如果他們一次就挪動全部,
04:01
it's like playing播放 poker撲克 and going all in right away.
96
226000
2000
就像玩撲克牌,把剩下的所有籌碼一次全部壓上,
04:03
You just tip小費 your hand.
97
228000
2000
你只會過早洩露底餡;
04:05
And so they have to find a way --
98
230000
2000
所以他們必須找到方法
04:07
and they use algorithms算法 to do this --
99
232000
2000
─他們用演算法,有系統的操作─
04:09
to break打破 up that big thing
100
234000
2000
將龐然大數化整為零
04:11
into a million百萬 little transactions交易.
101
236000
2000
成為百萬個小交易。
04:13
And the magic魔法 and the horror恐怖 of that
102
238000
2000
恐怖的是這個魔術正是
04:15
is that the same相同 math數學
103
240000
2000
「相同的數學」
04:17
that you use to break打破 up the big thing
104
242000
2000
─用來瓦解龐然巨物
04:19
into a million百萬 little things
105
244000
2000
變成百萬個小東西─
04:21
can be used to find a million百萬 little things
106
246000
2000
可以用來計算出百萬個零星單位
04:23
and sew them back together一起
107
248000
2000
又將他們統整在一起
04:25
and figure數字 out what's actually其實 happening事件 in the market市場.
108
250000
2000
並推算出實際在市場上發生的事情。
04:27
So if you need to have some image圖片
109
252000
2000
如果你立即需要
04:29
of what's happening事件 in the stock股票 market市場 right now,
110
254000
3000
一些股市交易的樣貌,
04:32
what you can picture圖片 is a bunch of algorithms算法
111
257000
2000
你可以構想到的是,成串的運算法
04:34
that are basically基本上 programmed程序 to hide隱藏,
112
259000
3000
基本上被設計為隱藏不顯示
04:37
and a bunch of algorithms算法 that are programmed程序 to go find them and act法案.
113
262000
3000
和成串的運算法被設計為可搜尋並執行。
04:40
And all of that's great, and it's fine.
114
265000
3000
整個設計的真是太棒了,又精確。
04:43
And that's 70 percent百分
115
268000
2000
那是百分之七十的
04:45
of the United聯合的 States狀態 stock股票 market市場,
116
270000
2000
美國股票市場,
04:47
70 percent百分 of the operating操作 system系統
117
272000
2000
這個百分之七十的營運系統
04:49
formerly以前 known已知 as your pension養老金,
118
274000
3000
之前堪稱為某些人的“退休金”
04:52
your mortgage抵押.
119
277000
3000
某人的“抵押借款”。
04:55
And what could go wrong錯誤?
120
280000
2000
會有什麼錯呢?
04:57
What could go wrong錯誤
121
282000
2000
事情出了差池:
04:59
is that a year ago,
122
284000
2000
一年前
05:01
nine percent百分 of the entire整個 market市場 just disappears消失 in five minutes分鐘,
123
286000
3000
整體股市的百分之九突然消失了五分鐘,
05:04
and they called it the Flash Crash緊急 of 2:45.
124
289000
3000
人們稱之為『瞬間當機2:45』
05:07
All of a sudden突然, nine percent百分 just goes away,
125
292000
3000
突然, 百分之九就這樣不見了,
05:10
and nobody沒有人 to this day
126
295000
2000
直到今天,仍沒有人
05:12
can even agree同意 on what happened發生
127
297000
2000
對發生的事取得一致的意見,
05:14
because nobody沒有人 ordered有序 it, nobody沒有人 asked for it.
128
299000
3000
因為沒人“下令”當機;沒人自找麻煩。
05:17
Nobody沒有人 had any control控制 over what was actually其實 happening事件.
129
302000
3000
大家對實際正在發生的事情束手無策
05:20
All they had
130
305000
2000
他們只有
05:22
was just a monitor監控 in front面前 of them
131
307000
2000
盯著面前的電腦螢幕,
05:24
that had the numbers數字 on it
132
309000
2000
電腦螢幕上的數字,
05:26
and just a red button按鍵
133
311000
2000
和一顆紅色按紐
05:28
that said, "Stop."
134
313000
2000
上面寫著: 『停止』
05:30
And that's the thing,
135
315000
2000
事情就是這樣,
05:32
is that we're writing寫作 things,
136
317000
2000
我們正在編寫的「東西」,
05:34
we're writing寫作 these things that we can no longer read.
137
319000
3000
我們正在編寫這些連自己都看不懂的東西。
05:37
And we've我們已經 rendered呈現 something
138
322000
2000
我們已經對「某種東西」投降了,
05:39
illegible難以辨認,
139
324000
2000
某種「難以辨識」的東西。
05:41
and we've我們已經 lost丟失 the sense
140
326000
3000
而且我們失去了
05:44
of what's actually其實 happening事件
141
329000
2000
對實際正發生之事的判別力
05:46
in this world世界 that we've我們已經 made製作.
142
331000
2000
就在我們自己創造的這個世界中,
05:48
And we're starting開始 to make our way.
143
333000
2000
況且我們正開始邁向成功。
05:50
There's a company公司 in Boston波士頓 called NanexNanex,
144
335000
3000
在波士頓有間公司叫Nanex(該公司開發市場數據供給系統),
05:53
and they use math數學 and magic魔法
145
338000
2000
他們用數學和魔法
05:55
and I don't know what,
146
340000
2000
和我不知道的什麼來的
05:57
and they reach達到 into all the market市場 data數據
147
342000
2000
他們深入研究市場數據資料
05:59
and they find, actually其實 sometimes有時, some of these algorithms算法.
148
344000
3000
他們確實發現值得重視的東西:某些演算法
06:02
And when they find them they pull them out
149
347000
3000
當他們發現這些演算程序,便把它們擷取出來
06:05
and they pin them to the wall like butterflies蝴蝶.
150
350000
3000
並將它們像蝴蝶一樣釘在牆上。
06:08
And they do what we've我們已經 always doneDONE
151
353000
2000
他們做大家總是會做的事情,
06:10
when confronted面對 with huge巨大 amounts of data數據 that we don't understand理解 --
152
355000
3000
當面臨龐大又不懂的數據資料時,
06:13
which哪一個 is that they give them a name名稱
153
358000
2000
為其命名
06:15
and a story故事.
154
360000
2000
和揑造故事。
06:17
So this is one that they found發現,
155
362000
2000
這是他們的發現:
06:19
they called the Knife,
156
364000
4000
他們稱為『刀』
06:23
the Carnival狂歡,
157
368000
2000
『嘉年華會』(Carnival)
06:25
the Boston波士頓 Shuffler洗牌,
158
370000
4000
『波士頓通勤者』(Boston Shuffler )
06:29
Twilight.
159
374000
2000
『暮光』
06:31
And the gag插科打諢 is
160
376000
2000
好玩的是
06:33
that, of course課程, these aren't just running賽跑 through通過 the market市場.
161
378000
3000
當然,這些不光是存在於金融市場;
06:36
You can find these kinds of things wherever哪裡 you look,
162
381000
3000
你能在任何你看得到的地方,發現這些東西,
06:39
once一旦 you learn學習 how to look for them.
163
384000
2000
一旦你明白如何找尋到它們(演算法)。
06:41
You can find it here: this book about flies蒼蠅
164
386000
3000
從這兒你可以發現:這是本關於蒼蠅的書,
06:44
that you may可能 have been looking at on Amazon亞馬遜.
165
389000
2000
你可能已在亞馬遜看到這本書;
06:46
You may可能 have noticed注意到 it
166
391000
2000
你可能已經注意到
06:48
when its price價錢 started開始 at 1.7 million百萬 dollars美元.
167
393000
2000
它的價格從一百七十萬元起價時,
06:50
It's out of print打印 -- still ...
168
395000
2000
這本書是絶版的......仍然絶版中。
06:52
(Laughter笑聲)
169
397000
2000
(笑笑)
06:54
If you had bought it at 1.7, it would have been a bargain討價還價.
170
399000
3000
如果能以一百七十萬的價格買下它是很划算的
06:57
A few少數 hours小時 later後來, it had gone走了 up
171
402000
2000
稍後幾小時,它飆漲至
06:59
to 23.6 million百萬 dollars美元,
172
404000
2000
兩千三百六十萬元,
07:01
plus shipping運輸 and handling處理.
173
406000
2000
包含運費和手續費。
07:03
And the question is:
174
408000
2000
問題是:
07:05
Nobody沒有人 was buying購買 or selling銷售 anything; what was happening事件?
175
410000
2000
這並無產生任何買賣行為;發生了什麼事?
07:07
And you see this behavior行為 on Amazon亞馬遜
176
412000
2000
你在亞馬遜見到這樣的行為,
07:09
as surely一定 as you see it on Wall Street.
177
414000
2000
確實跟你在華爾街看到的一般。
07:11
And when you see this kind of behavior行為,
178
416000
2000
當你見到這種行為:
07:13
what you see is the evidence證據
179
418000
2000
你所看到的顯然正是
07:15
of algorithms算法 in conflict衝突,
180
420000
2000
矛盾的演算程序,
07:17
algorithms算法 locked鎖定 in loops循環 with each other,
181
422000
2000
演算程序被彼此套住,卡在電腦程式回路中;
07:19
without any human人的 oversight疏忽,
182
424000
2000
沒有任何“人類監管”
07:21
without any adult成人 supervision監督
183
426000
3000
沒有任何“成人監護”
07:24
to say, "Actually其實, 1.7 million百萬 is plenty豐富."
184
429000
3000
來告訴你,“其實,一百七十萬已經夠多了!”
07:27
(Laughter笑聲)
185
432000
3000
(笑笑)
07:30
And as with Amazon亞馬遜, so it is with NetflixNetflix公司.
186
435000
3000
如同亞馬遜,Netflix(美國公司,經營線上串流影片)也一樣。
07:33
And so NetflixNetflix公司 has gone走了 through通過
187
438000
2000
多年來, Netflix採用過
07:35
several一些 different不同 algorithms算法 over the years年份.
188
440000
2000
好幾個不同的演算程序。
07:37
They started開始 with CinematchCinematch, and they've他們已經 tried試著 a bunch of others其他 --
189
442000
3000
他們從Cinematch(推薦系統軟體)開始,也試了一連串其他的軟體。
07:40
there's Dinosaur恐龍 Planet行星; there's Gravity重力.
190
445000
2000
有Dinosaur Planet團隊、Gravity團隊各別研發的推薦系統。
07:42
They're using運用 Pragmatic務實 Chaos混沌 now.
191
447000
2000
他們現在使用 Pragmatic Chaos研發的系統。
07:44
Pragmatic務實 Chaos混沌 is, like all of NetflixNetflix公司 algorithms算法,
192
449000
2000
像所有Netflix的運算系統,
07:46
trying to do the same相同 thing.
193
451000
2000
Pragmatic Chaos研發的推薦系統,試圖做相同的事。
07:48
It's trying to get a grasp把握 on you,
194
453000
2000
它試著去掌控你們,
07:50
on the firmware固件 inside the human人的 skull頭骨,
195
455000
2000
控制人類頭顱內的思考邏輯,
07:52
so that it can recommend推薦 what movie電影
196
457000
2000
以便它能推薦你
07:54
you might威力 want to watch next下一個 --
197
459000
2000
下次你也許想看的電影─
07:56
which哪一個 is a very, very difficult problem問題.
198
461000
3000
─這是非常高難度的難題。
07:59
But the difficulty困難 of the problem問題
199
464000
2000
但問題和事實的艱難度
08:01
and the fact事實 that we don't really quite相當 have it down,
200
466000
3000
─我們不是真的掌握問題的事實─
08:04
it doesn't take away
201
469000
2000
並沒減損
08:06
from the effects效果 Pragmatic務實 Chaos混沌 has.
202
471000
2000
Pragmatic Chaos的影嚮。
08:08
Pragmatic務實 Chaos混沌, like all NetflixNetflix公司 algorithms算法,
203
473000
3000
Pragmatic Chaos,如同所有Netflix運算系統,
08:11
determines確定, in the end結束,
204
476000
2000
至終裁定
08:13
60 percent百分
205
478000
2000
百分之六十的
08:15
of what movies電影 end結束 up being存在 rented.
206
480000
2000
哪些電影最後會被租借。
08:17
So one piece of code
207
482000
2000
所以一片程式編碼
08:19
with one idea理念 about you
208
484000
3000
─紀錄著你們看片的喜好─
08:22
is responsible主管 for 60 percent百分 of those movies電影.
209
487000
3000
得為百分之六十的電影負責。
08:25
But what if you could rate those movies電影
210
490000
2000
但倘若你能評估這些電影,
08:27
before they get made製作?
211
492000
2000
在電影製作前作預測呢?
08:29
Wouldn't豈不 that be handy便利?
212
494000
2000
那不就簡便多了?
08:31
Well, a few少數 data數據 scientists科學家們 from the U.K. are in Hollywood好萊塢,
213
496000
3000
嗯,在好萊塢,一些來自英國的數據科學家
08:34
and they have "story故事 algorithms算法" --
214
499000
2000
擁有故事情節演算程式系統──
08:36
a company公司 called EpagogixEpagogix.
215
501000
2000
一間公司叫Epagogix(英國一家預測劇本未來票房好壞的公司)
08:38
And you can run your script腳本 through通過 there,
216
503000
3000
你可以拿劇本請這間公司幫你預測;
08:41
and they can tell you, quantifiably量化地,
217
506000
2000
他們會提供你數據:
08:43
that that's a 30 million百萬 dollar美元 movie電影
218
508000
2000
那是一部可賣三千萬的電影
08:45
or a 200 million百萬 dollar美元 movie電影.
219
510000
2000
或是一部兩億的賣座電影。
08:47
And the thing is, is that this isn't Google谷歌.
220
512000
2000
事情是......這不是Google;
08:49
This isn't information信息.
221
514000
2000
這不是情報資料;
08:51
These aren't financial金融 stats統計; this is culture文化.
222
516000
2000
這些不是金融統計;這是文化。
08:53
And what you see here,
223
518000
2000
你們在這裡見到的,
08:55
or what you don't really see normally一般,
224
520000
2000
或者說,實際上,你通常不會察覺的
08:57
is that these are the physics物理 of culture文化.
225
522000
4000
是物理文化
09:01
And if these algorithms算法,
226
526000
2000
而且若這些演算系統
09:03
like the algorithms算法 on Wall Street,
227
528000
2000
像華爾街的演算系統
09:05
just crashed墜毀 one day and went awry,
228
530000
3000
某天突然當機,出岔子了
09:08
how would we know?
229
533000
2000
我們如何會知道.....
09:10
What would it look like?
230
535000
2000
那會如何?
09:12
And they're in your house. They're in your house.
231
537000
3000
再者,它們就在你的房子內,它們就在你的房子內
09:15
These are two algorithms算法 competing競爭 for your living活的 room房間.
232
540000
2000
兩個演算系統在競爭你的客廳。
09:17
These are two different不同 cleaning清潔的 robots機器人
233
542000
2000
兩個不同的清潔機器人
09:19
that have very different不同 ideas思路 about what clean清潔 means手段.
234
544000
3000
對乾淨的定義有不同的概念。
09:22
And you can see it
235
547000
2000
而且你能從中看到演算程序,
09:24
if you slow it down and attach連接 lights燈火 to them,
236
549000
3000
如果讓它慢下來,為它們裝上LCD燈的話,你們就能見識到。
09:27
and they're sort分類 of like secret秘密 architects建築師 in your bedroom臥室.
237
552000
3000
而且他們有點像在你卧房內的袐密建築師。
09:30
And the idea理念 that architecture建築 itself本身
238
555000
3000
況且建築學本身的概念
09:33
is somehow不知何故 subject學科 to algorithmic算法 optimization優化
239
558000
2000
從某種角度而言,是基於演算法的最佳化
09:35
is not far-fetched牽強.
240
560000
2000
一點也不牽強喔,
09:37
It's super-real超現實 and it's happening事件 around you.
241
562000
3000
超真實而且就在存在你週遭。
09:40
You feel it most
242
565000
2000
你感受最深的時刻是,
09:42
when you're in a sealed密封 metal金屬 box,
243
567000
2000
當你在一個密閉的金屬箱子內
09:44
a new-style新風格 elevator電梯;
244
569000
2000
─一臺新型的電梯─
09:46
they're called destination-control目的控制 elevators電梯.
245
571000
2000
他們被稱為「終點控制電梯」。
09:48
These are the ones那些 where you have to press what floor地板 you're going to go to
246
573000
3000
這些是電梯,你可以按鈕到你要去的樓層
09:51
before you get in the elevator電梯.
247
576000
2000
在你“進電梯前”按鈕。
09:53
And it uses使用 what's called a bin-packing裝箱 algorithm算法.
248
578000
2000
它使用所謂的「裝著演算法的盒子」。
09:55
So none沒有 of this mishegasmishegas
249
580000
2000
也就是說,這一點也不異常或瘋狂,
09:57
of letting出租 everybody每個人 go into whatever隨你 car汽車 they want.
250
582000
2000
讓每個人選擇進入任何一台電梯。
09:59
Everybody每個人 who wants to go to the 10th floor地板 goes into car汽車 two,
251
584000
2000
要到十樓的人進入二號電梯;
10:01
and everybody每個人 who wants to go to the third第三 floor地板 goes into car汽車 five.
252
586000
3000
要到三樓的人進入五號電梯。
10:04
And the problem問題 with that
253
589000
2000
問題是
10:06
is that people freak怪物 out.
254
591000
2000
人們嚇壞了
10:08
People panic恐慌.
255
593000
2000
人們驚慌失措。
10:10
And you see why. You see why.
256
595000
2000
你看看為什麼......你看看為什麼......
10:12
It's because the elevator電梯
257
597000
2000
原因是:
10:14
is missing失踪 some important重要 instrumentation儀器儀表, like the buttons鈕扣.
258
599000
3000
電梯缺少了某些種要的儀表,譬如說「按鈕」
10:17
(Laughter笑聲)
259
602000
2000
(笑笑)
10:19
Like the things that people use.
260
604000
2000
人們會使用那個東西。
10:21
All it has
261
606000
2000
電梯內只顯示
10:23
is just the number that moves移動 up or down
262
608000
3000
上樓或下樓的數字
10:26
and that red button按鍵 that says, "Stop."
263
611000
3000
還有紅色的按鈕,寫著:『停止』
10:29
And this is what we're designing設計 for.
264
614000
3000
而這是我們正在設計的,
10:32
We're designing設計
265
617000
2000
我們正在設計
10:34
for this machine dialect方言.
266
619000
2000
這種「機器方言」。
10:36
And how far can you take that? How far can you take it?
267
621000
3000
你可以作到什麼樣程度?你可以利用它到何種境界?
10:39
You can take it really, really far.
268
624000
2000
你可以“搭乘它(演算法)”至無遠弗界。
10:41
So let me take it back to Wall Street.
269
626000
3000
讓我們退回到華爾街,
10:45
Because the algorithms算法 of Wall Street
270
630000
2000
因為華爾街的演算系統
10:47
are dependent依賴的 on one quality質量 above以上 all else其他,
271
632000
3000
仰賴某種性質更勝於一切
10:50
which哪一個 is speed速度.
272
635000
2000
即「速度」。
10:52
And they operate操作 on milliseconds毫秒 and microseconds微秒.
273
637000
3000
他們以毫秒和微秒運作
10:55
And just to give you a sense of what microseconds微秒 are,
274
640000
2000
讓你了解什麼是微秒,
10:57
it takes you 500,000 microseconds微秒
275
642000
2000
你需要花五十萬微秒
10:59
just to click點擊 a mouse老鼠.
276
644000
2000
去點擊滑鼠;
11:01
But if you're a Wall Street algorithm算法
277
646000
2000
若你是華爾街的演算法
11:03
and you're five microseconds微秒 behind背後,
278
648000
2000
而你落後了五微秒,
11:05
you're a loser失敗者.
279
650000
2000
你就是失敗者。
11:07
So if you were an algorithm算法,
280
652000
2000
所以,倘若你是一個演算法,
11:09
you'd look for an architect建築師 like the one that I met會見 in Frankfurt法蘭克福
281
654000
3000
你會找一個建築師,像我在法蘭克福市遇到的那位,
11:12
who was hollowing空鼓 out a skyscraper摩天大樓 --
282
657000
2000
掏空摩天大樓,
11:14
throwing投擲 out all the furniture家具, all the infrastructure基礎設施 for human人的 use,
283
659000
3000
扔掉所有傢俱、所有供人類使用的基礎建設,
11:17
and just running賽跑 steel on the floors地板
284
662000
3000
只有鋼鐵舖地
11:20
to get ready準備 for the stacks of servers服務器 to go in --
285
665000
3000
準備好讓大批的伺服器入駐。
11:23
all so an algorithm算法
286
668000
2000
整個如此的演算程序
11:25
could get close to the Internet互聯網.
287
670000
3000
能使網路通路密切而有效率。
11:28
And you think of the Internet互聯網 as this kind of distributed分散式 system系統.
288
673000
3000
再者,你們認為網路是種分散式系統。
11:31
And of course課程, it is, but it's distributed分散式 from places地方.
289
676000
3000
當然,它是;可是,是從各個定點分散
11:34
In New York紐約, this is where it's distributed分散式 from:
290
679000
2000
在紐約,這裡是分佈的中心據點:
11:36
the Carrier支架 Hotel旅館
291
681000
2000
電信機房(Carrier Hotel)
11:38
located位於 on Hudson哈德森 Street.
292
683000
2000
座落在哈德森街(Hudson Street)
11:40
And this is really where the wires電線 come right up into the city.
293
685000
3000
這裡的確是電纜貫穿整座城市的源頭。
11:43
And the reality現實 is that the further進一步 away you are from that,
294
688000
4000
事實是,離那裡越遠
11:47
you're a few少數 microseconds微秒 behind背後 every一切 time.
295
692000
2000
每一次就落後數微秒。
11:49
These guys down on Wall Street,
296
694000
2000
在華爾街這一帶的“這些傢伙”
11:51
Marco馬爾科 Polo馬球 and Cherokee切諾基 Nation國家,
297
696000
2000
Marco Polo和Cherokee Nation
11:53
they're eight microseconds微秒
298
698000
2000
他們落後八微秒,
11:55
behind背後 all these guys
299
700000
2000
落後所有“這些傢伙”
11:57
going into the empty buildings房屋 being存在 hollowed挖空 out
300
702000
4000
這些傢伙進入被掏空的建築物
12:01
up around the Carrier支架 Hotel旅館.
301
706000
2000
而這些建築座落接近電信機房的周邊。
12:03
And that's going to keep happening事件.
302
708000
3000
而且那將會持續發生
12:06
We're going to keep hollowing空鼓 them out,
303
711000
2000
─這些建築物將會持續被掏空─
12:08
because you, inch英寸 for inch英寸
304
713000
3000
因為每一英寸
12:11
and pound for pound and dollar美元 for dollar美元,
305
716000
3000
每一磅和每一(美)元
12:14
none沒有 of you could squeeze revenue收入 out of that space空間
306
719000
3000
你們沒人能從那個空間距離強擠出收益
12:17
like the Boston波士頓 Shuffler洗牌 could.
307
722000
3000
像『波士頓通勤者』那般。
12:20
But if you zoom放大 out,
308
725000
2000
但如果縮小地圖
12:22
if you zoom放大 out,
309
727000
2000
縮小地圖
12:24
you would see an 825-mile-英里 trench
310
729000
4000
你會看到825英里(1327.7公里)的溝渠
12:28
between之間 New York紐約 City and Chicago芝加哥
311
733000
2000
在紐約和芝加哥之間,
12:30
that's been built內置 over the last few少數 years年份
312
735000
2000
已建立有幾年了
12:32
by a company公司 called Spread傳播 Networks網絡.
313
737000
3000
由Spread Networks 經營。
12:35
This is a fiber纖維 optic視神經 cable電纜
314
740000
2000
這一道光纖電纜
12:37
that was laid鋪設 between之間 those two cities城市
315
742000
2000
被設置在兩城市間
12:39
to just be able能夠 to traffic交通 one signal信號
316
744000
3000
只為一個信號的傳遞
12:42
37 times faster更快 than you can click點擊 a mouse老鼠 --
317
747000
3000
能以37倍速快過點擊滑鼠─
12:45
just for these algorithms算法,
318
750000
3000
─只為了這些演算系統;
12:48
just for the Carnival狂歡 and the Knife.
319
753000
3000
只為了『嘉年華會』和『刀』。
12:51
And when you think about this,
320
756000
2000
當你們想著這點時,
12:53
that we're running賽跑 through通過 the United聯合的 States狀態
321
758000
2000
我們正以炸藥與岩石鋸貫穿、
12:55
with dynamite炸藥 and rock saws
322
760000
3000
損耗美國,
12:58
so that an algorithm算法 can close the deal合同
323
763000
2000
以便一個演算法能快速達成交易
13:00
three microseconds微秒 faster更快,
324
765000
3000
─以減少三微秒的速度─
13:03
all for a communications通訊 framework骨架
325
768000
2000
全都為了一個人類
13:05
that no human人的 will ever know,
326
770000
4000
將永不會明瞭的通訊機制
13:09
that's a kind of manifest表現 destiny命運;
327
774000
3000
那是一種顯而易見的定數
13:12
and we'll always look for a new frontier邊境.
328
777000
3000
且將永遠不斷地尋找未開拓的新領域。
13:15
Unfortunately不幸, we have our work cut out for us.
329
780000
3000
不幸的是,我們必須要完成這個任務。
13:18
This is just theoretical理論.
330
783000
2000
這只是一個理論。
13:20
This is some mathematicians數學家 at MITMIT.
331
785000
2000
這是某些在麻省理工學院(MIT)的數學家製作的
13:22
And the truth真相 is I don't really understand理解
332
787000
2000
事實上,我不真的都了解
13:24
a lot of what they're talking about.
333
789000
2000
他們在談論些什麼
13:26
It involves涉及 light cones and quantum量子 entanglement糾葛,
334
791000
3000
它涉及光圓錐體和量子糾結
13:29
and I don't really understand理解 any of that.
335
794000
2000
我不真的了解那是什麼
13:31
But I can read this map地圖,
336
796000
2000
但我會讀這面地圖。
13:33
and what this map地圖 says
337
798000
2000
這面地圖指示
13:35
is that, if you're trying to make money on the markets市場 where the red dots are,
338
800000
3000
如果你試圖在有紅色點點的市場中賺錢
13:38
that's where people are, where the cities城市 are,
339
803000
2000
也就是在人們聚集的地方及市鎮重心,
13:40
you're going to have to put the servers服務器 where the blue藍色 dots are
340
805000
3000
你就必須將伺服器設置在藍色點點的地方
13:43
to do that most effectively有效.
341
808000
2000
讓運作效率最大化。
13:45
And the thing that you might威力 have noticed注意到 about those blue藍色 dots
342
810000
3000
你也許注意到那些藍色點點的分佈,
13:48
is that a lot of them are in the middle中間 of the ocean海洋.
343
813000
3000
很多藍色點點在海的中央;
13:51
So that's what we'll do: we'll build建立 bubbles泡泡 or something,
344
816000
3000
所以,我們要怎麼做:我們要建立透明圓外罩(bubbles意同泡泡)或什麼來的
13:54
or platforms平台.
345
819000
2000
或者很多平臺。
13:56
We'll actually其實 part部分 the water
346
821000
2000
我們將能確實分開海水
13:58
to pull money out of the air空氣,
347
823000
2000
將錢從空氣中抽取出,
14:00
because it's a bright future未來
348
825000
2000
未來是光明閃亮的
14:02
if you're an algorithm算法.
349
827000
2000
如果你自己就是一個演算法的話。
14:04
(Laughter笑聲)
350
829000
2000
(笑笑)
14:06
And it's not the money that's so interesting有趣 actually其實.
351
831000
3000
然而,事實上,不是錢有趣
14:09
It's what the money motivates能夠激勵,
352
834000
2000
而是錢激發的東西引人入勝─
14:11
that we're actually其實 terraforming地球化
353
836000
2000
─我們能確實地地球化(terraforming)
14:13
the Earth地球 itself本身
354
838000
2000
地球本身,
14:15
with this kind of algorithmic算法 efficiency效率.
355
840000
2000
透過演算法具有的最佳效率(能)。
14:17
And in that light,
356
842000
2000
根據這點,
14:19
you go back
357
844000
2000
咱們回到前面,
14:21
and you look at Michael邁克爾 Najjar's納賈爾的 photographs照片,
358
846000
2000
看著Michael Najjar的相片
14:23
and you realize實現 that they're not metaphor隱喻, they're prophecy預言.
359
848000
3000
我們領悟到:他們不是象徵;他們是預言
14:26
They're prophecy預言
360
851000
2000
他們預言了
14:28
for the kind of seismic地震, terrestrial陸生 effects效果
361
853000
4000
數學之地震效應、陸地效應
14:32
of the math數學 that we're making製造.
362
857000
2000
即將發生在我們創造出來的數學世界中。
14:34
And the landscape景觀 was always made製作
363
859000
3000
而且這風貌過去一直是由自然界和人之間
14:37
by this sort分類 of weird奇怪的, uneasy不安 collaboration合作
364
862000
3000
不可思議的協作及不易妥協而創作出來的,
14:40
between之間 nature性質 and man.
365
865000
3000
是自然界和人之間的對話。
14:43
But now there's this third第三 co-evolutionary協同進化 force: algorithms算法 --
366
868000
3000
但現在有第三股共同演化勢力:演算系統
14:46
the Boston波士頓 Shuffler洗牌, the Carnival狂歡.
367
871000
3000
『波士頓通勤者』、『嘉年華會』
14:49
And we will have to understand理解 those as nature性質,
368
874000
3000
我們必須明白這些皆為自然。
14:52
and in a way, they are.
369
877000
2000
在某種程度上,它們是!
14:54
Thank you.
370
879000
2000
謝謝大家
14:56
(Applause掌聲)
371
881000
20000
(掌聲熱烈)
Translated by Resa CC
Reviewed by Kuo-Yuan Cheng

▲Back to top

ABOUT THE SPEAKER
Kevin Slavin - Algoworld expert
Kevin Slavin navigates in the algoworld, the expanding space in our lives that’s determined and run by algorithms.

Why you should listen

Are you addicted to the dead-simple numbers game Drop 7 or Facebook’s Parking Wars? Blame Kevin Slavin and the game development company he co-founded in 2005, Area/Code, which makes clever game entertainments that enter the fabric of reality.

All this fun is powered by algorithms -- as, increasingly, is our daily life. From the Google algorithms to the algos that give you “recommendations” online to those that automatically play the stock markets (and sometimes crash them): we may not realize it, but we live in the algoworld.

He says: "The quickest way to find out what the boundaries of reality are is to figure where they break."

More profile about the speaker
Kevin Slavin | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee