ABOUT THE SPEAKER
Hod Lipson - Roboticist
Hod Lipson works at the intersection of engineering and biology, studying robots and the way they "behave" and evolve. His work has exciting implications for design and manufacturing -- and serves as a window to understand our own behavior and evolution.

Why you should listen

To say that Hod Lipson and his team at Cornell build robots is not completely accurate: They may simply set out a pile of virtual robot parts, devise some rules for assembly, and see what the parts build themselves into. They've created robots that decide for themselves how they want to walk; robots that develop a sense of what they look like; even robots that can, through trial and error, construct other robots just like themselves.

Working across disciplines -- physics, computer science, math, biology and several flavors of engineer -- the team studies techniques for self-assembly and evolution that have great implications for fields such as micro-manufacturing -- allowing tiny pieces to assemble themselves at scales heretofore impossible -- and extreme custom manufacturing (in other words, 3-D printers for the home).

His lab's Outreach page is a funhouse of tools and instructions, including the amazing Golem@Home -- a self-assembling virtual robot who lives in your screensaver.

More profile about the speaker
Hod Lipson | Speaker | TED.com
TED2007

Hod Lipson: Building "self-aware" robots

霍德·利普森建造的“自我感知”机器人

Filmed:
1,460,460 views

霍德·利普森演示了他的几个神奇的小机器人。它们不仅有学习能力,理解自己,甚至还能进行自我复制!
- Roboticist
Hod Lipson works at the intersection of engineering and biology, studying robots and the way they "behave" and evolve. His work has exciting implications for design and manufacturing -- and serves as a window to understand our own behavior and evolution. Full bio

Double-click the English transcript below to play the video.

00:25
So, where are the robots机器人?
0
0
2000
啊,机器人们都在哪儿呢?
00:27
We've我们已经 been told for 40 years年份 already已经 that they're coming未来 soon不久.
1
2000
3000
四十年前人们就说它们很快就要来了
00:30
Very soon不久 they'll他们会 be doing everything for us.
2
5000
3000
很快,它们就能为我们做一切事情
00:33
They'll他们会 be cooking烹饪, cleaning清洁的, buying购买 things, shopping购物, building建造. But they aren't here.
3
8000
5000
它们会做饭,打扫,买东西,购物,甚至是建房子。但直到今天,它们也没能进入我们的生活。
00:38
Meanwhile与此同时, we have illegal非法 immigrants移民 doing all the work,
4
13000
4000
这段时间里,非法移民承担着这些工作,
00:42
but we don't have any robots机器人.
5
17000
2000
但我们什么机器人都没有。
00:44
So what can we do about that? What can we say?
6
19000
4000
我们又能做些或说些什么呢?
00:48
So I want to give a little bit of a different不同 perspective透视
7
23000
4000
我想给大家带来点不同的启发
00:52
of how we can perhaps也许 look at these things in a little bit of a different不同 way.
8
27000
6000
看看今天我们能不能换一个角度看待这些事情
00:58
And this is an x-rayX-射线 picture图片
9
33000
2000
这是一张X光片
01:00
of a real真实 beetle甲虫, and a Swiss瑞士人 watch, back from '88. You look at that --
10
35000
5000
上面有一只活甲虫,和一只88年的瑞士手表,你看——
01:05
what was true真正 then is certainly当然 true真正 today今天.
11
40000
2000
无论是当时还是现在
01:07
We can still make the pieces. We can make the right pieces.
12
42000
3000
我们都可以做出这些零件,一模一样的零件,
01:10
We can make the circuitry电路 of the right computational计算 power功率,
13
45000
3000
我们能做出有同样计算能力的电路,
01:13
but we can't actually其实 put them together一起 to make something
14
48000
3000
但我们并不能把它们放在一起,再做出个什么东西
01:16
that will actually其实 work and be as adaptive自适应 as these systems系统.
15
51000
5000
能和这些系统(甲虫)有一样的适应力。
01:21
So let's try to look at it from a different不同 perspective透视.
16
56000
2000
那么就让我们试着换个角度再看看这个问题。
01:23
Let's summon召唤 the best最好 designer设计师, the mother母亲 of all designers设计师.
17
58000
4000
让我们召集最好的设计师,所有设计师的鼻祖,
01:27
Let's see what evolution演化 can do for us.
18
62000
3000
看看进化论能给我们做些什么。
01:30
So we threw in -- we created创建 a primordial原始 soup
19
65000
4000
所以我们就找来了--我们创造了一锅“原汤”,
01:34
with lots of pieces of robots机器人 -- with bars酒吧, with motors马达, with neurons神经元.
20
69000
4000
里面有组装机器人需要的各种零件:条状的,带马达的,还有些带神经元的。
01:38
Put them all together一起, and put all this under kind of natural自然 selection选择,
21
73000
4000
把它们都放在一起,然后把所有这些放到一种自然选择,
01:42
under mutation突变, and rewarded奖励 things for how well they can move移动 forward前锋.
22
77000
4000
可能产生突变的环境中,并奖励那些发生“进化”的零件组。
01:46
A very simple简单 task任务, and it's interesting有趣 to see what kind of things came来了 out of that.
23
81000
6000
这是一个非常简单的任务,并且得出的结果非常有趣。
01:52
So if you look, you can see a lot of different不同 machines
24
87000
3000
看一下,你能看到各式各样的机器
01:55
come out of this. They all move移动 around.
25
90000
2000
在这种模式下制造出来,它们到处移动,
01:57
They all crawl爬行 in different不同 ways方法, and you can see on the right,
26
92000
4000
以不同的方式爬行,在右边你可以看到
02:01
that we actually其实 made制作 a couple一对 of these things,
27
96000
2000
我们真的做出了几个这样的玩意儿,
02:03
and they work in reality现实. These are not very fantastic奇妙 robots机器人,
28
98000
3000
它们在现实中真的能工作。这些还算不上非常先进的机器人,
02:06
but they evolved进化 to do exactly究竟 what we reward奖励 them for:
29
101000
4000
但它们的确按照我们奖励的方向进化了:
02:10
for moving移动 forward前锋. So that was all doneDONE in simulation模拟,
30
105000
3000
那就是向前进化。这些都是模拟的,
02:13
but we can also do that on a real真实 machine.
31
108000
2000
但我们在真的机器上也做成功了,
02:15
Here's这里的 a physical物理 robot机器人 that we actually其实
32
110000
5000
这是一个真实的机器人,
02:20
have a population人口 of brains大脑,
33
115000
3000
我们动用了大量的人力脑力
02:23
competing竞争, or evolving进化 on the machine.
34
118000
2000
让机器们相互竞争,共同进化
02:25
It's like a rodeo圈地 show显示. They all get a ride on the machine,
35
120000
3000
这有点像一场套马表演:他们都骑在机器上
02:28
and they get rewarded奖励 for how fast快速 or how far
36
123000
3000
根据他们能够驾驶机器前进的速度和距离
02:31
they can make the machine move移动 forward前锋.
37
126000
2000
得到奖励
02:33
And you can see these robots机器人 are not ready准备
38
128000
2000
你可以看到这些机器人都还没完全准备好
02:35
to take over the world世界 yet然而, but
39
130000
3000
占领这个世界,但是
02:38
they gradually逐渐 learn学习 how to move移动 forward前锋,
40
133000
2000
它们渐渐地学会如何前进
02:40
and they do this autonomously自主.
41
135000
3000
并且是自发地学习。
02:43
So in these two examples例子, we had basically基本上
42
138000
4000
所以从这两个例子中,我们已经基本上
02:47
machines that learned学到了 how to walk步行 in simulation模拟,
43
142000
3000
得到了能在虚拟中学习走路
02:50
and also machines that learned学到了 how to walk步行 in reality现实.
44
145000
2000
和在现实中学习走路的机器人。
02:52
But I want to show显示 you a different不同 approach途径,
45
147000
2000
现在我还要再给你们展示另一项进展,
02:54
and this is this robot机器人 over here, which哪一个 has four legs.
46
149000
6000
就是这里的这个机器人,在这儿,它有四条腿
03:00
It has eight motors马达, four on the knees膝盖 and four on the hip臀部.
47
155000
2000
它身上安了八个马达,膝盖上四个,腿上四个
03:02
It has also two tilt倾斜 sensors传感器 that tell the machine
48
157000
3000
它还配备了两个倾斜度传感器,可以告诉自己
03:05
which哪一个 way it's tilting倾斜.
49
160000
3000
正在向哪个方向倾斜。
03:08
But this machine doesn't know what it looks容貌 like.
50
163000
2000
但这个机器并不知道自己长啥样
03:10
You look at it and you see it has four legs,
51
165000
2000
你可以看到它长了四条腿,
03:12
the machine doesn't know if it's a snake, if it's a tree,
52
167000
2000
但它自己并不知道自己是一条蛇还是一棵树
03:14
it doesn't have any idea理念 what it looks容貌 like,
53
169000
3000
它完全给蒙在鼓里,不晓得自己的相貌
03:17
but it's going to try to find that out.
54
172000
2000
但它马上就要试着找到自己
03:19
Initially原来, it does some random随机 motion运动,
55
174000
2000
首先,它会做一些随机的动作
03:21
and then it tries尝试 to figure数字 out what it might威力 look like.
56
176000
3000
然后试着弄清楚那些动作都看起来是什么样子的——
03:24
And you're seeing眼看 a lot of things passing通过 through通过 its minds头脑,
57
179000
2000
你可以看到它的脑海里闪过许许多多的东西,
03:26
a lot of self-models自主车型 that try to explain说明 the relationship关系
58
181000
4000
大量的自我尝试的动作模型,试着理清
03:30
between之间 actuation启动 and sensing传感. It then tries尝试 to do
59
185000
3000
行动和感官之间的关系——然后它将再做第二个动作
03:33
a second第二 action行动 that creates创建 the most disagreement异议
60
188000
4000
在所有可能的动作模型中
03:37
among其中 predictions预测 of these alternative替代 models楷模,
61
192000
2000
最诡异的一个动作,
03:39
like a scientist科学家 in a lab实验室. Then it does that
62
194000
2000
就像科学家在实验室里的试验。接着,它重复那个动作,
03:41
and tries尝试 to explain说明 that, and prune修剪 out its self-models自主车型.
63
196000
4000
并且试着解释那个动作,然后梳理出自己的动作模型。
03:45
This is the last cycle周期, and you can see it's pretty漂亮 much
64
200000
3000
这是最后一个环节,你可以看到它已经基本上
03:48
figured想通 out what its self looks容貌 like. And once一旦 it has a self-model自模型,
65
203000
4000
清楚自己的样子了。一旦它理清自己的动作模型,
03:52
it can use that to derive派生 a pattern模式 of locomotion运动.
66
207000
4000
就可以从模型中得出一种运动模式。
03:56
So what you're seeing眼看 here are a couple一对 of machines --
67
211000
2000
好了,你现在看到的是几个机器——
03:58
a pattern模式 of locomotion运动.
68
213000
2000
嗯,一种运动模式,
04:00
We were hoping希望 that it wass沃斯 going to have a kind of evil邪恶, spidery蜘蛛 walk步行,
69
215000
4000
我们期待它能产生一种邪恶的,蜘蛛式的运动,
04:04
but instead代替 it created创建 this pretty漂亮 lame way of moving移动 forward前锋.
70
219000
4000
结果它却自创出这种相当脑残的前进方式。
04:08
But when you look at that, you have to remember记得
71
223000
3000
但当你看着它前进的时候,你必须记得
04:11
that this machine did not do any physical物理 trials试验 on how to move移动 forward前锋,
72
226000
6000
这个机器并没有接受任何物理指令,控制着它们向前进,
04:17
nor也不 did it have a model模型 of itself本身.
73
232000
2000
它也没有任何已有的自我模型。
04:19
It kind of figured想通 out what it looks容貌 like, and how to move移动 forward前锋,
74
234000
3000
它相当于是自己推理出了自己的样子,以及应该如何向前进
04:22
and then actually其实 tried试着 that out.
75
237000
4000
并且进行了亲身的尝试。
04:26
(Applause掌声)
76
241000
5000
鼓掌~~~♫
04:31
So, we'll move移动 forward前锋 to a different不同 idea理念.
77
246000
4000
那么现在,我们再来看看另一个想法。
04:35
So that was what happened发生 when we had a couple一对 of --
78
250000
5000
那是我们将几个...
04:40
that's what happened发生 when you had a couple一对 of -- OK, OK, OK --
79
255000
4000
把几个...放在一块儿就会...好啦好啦好啦——
04:44
(Laughter笑声)
80
259000
2000
(笑)
04:46
-- they don't like each other. So
81
261000
2000
——它们不大喜欢对方,所以啦~
04:48
there's a different不同 robot机器人.
82
263000
3000
这是另外一个机器人。
04:51
That's what happened发生 when the robots机器人 actually其实
83
266000
2000
刚才的那些都是在机器人做对了动作,
04:53
are rewarded奖励 for doing something.
84
268000
2000
获得奖励的情况下发生的。
04:55
What happens发生 if you don't reward奖励 them for anything, you just throw them in?
85
270000
3000
那么如果我们不给它们奖励,只是把它们扔到一块,又会怎么样呢?
04:58
So we have these cubes立方体, like the diagram showed显示 here.
86
273000
3000
所以我们拿来了这些立方体,就像这里的这些图,
05:01
The cube立方体 can swivel旋转, or flip翻动 on its side,
87
276000
2000
它们能旋转,或者翻筋斗
05:04
and we just throw 1,000 of these cubes立方体 into a soup --
88
279000
4000
我们把1000个这样的立方体放入“原汤”——
05:08
this is in simulation模拟 --and- 和 don't reward奖励 them for anything,
89
283000
2000
这是模拟效果——我们没给它们任何奖励,
05:10
we just let them flip翻动. We pump energy能源 into this
90
285000
3000
我们就让它们自己活动。我们给它们注入了些能量,
05:13
and see what happens发生 in a couple一对 of mutations突变.
91
288000
3000
看看经过几次突变,会发生点什么。
05:16
So, initially原来 nothing happens发生, they're just flipping翻转 around there.
92
291000
3000
刚开始的时候,什么也没发生,它们光在那儿跳来跳去。
05:19
But after a very short while, you can see these blue蓝色 things
93
294000
4000
但过了一小会儿,你可以看到这些蓝色的小东西,
05:23
on the right there begin开始 to take over.
94
298000
2000
它们在右边逐渐地开始占取主动。
05:25
They begin开始 to self-replicate自我复制. So in absence缺席 of any reward奖励,
95
300000
4000
它们开始自我复制。由此可见即使没有任何奖励
05:29
the intrinsic固有 reward奖励 is self-replication自我复制.
96
304000
3000
它们也会用自我复制的方式来奖励自己。
05:32
And we've我们已经 actually其实 built内置 a couple一对 of these,
97
307000
1000
事实上我们已经造了好几个这类的玩意儿,
05:33
and this is part部分 of a larger robot机器人 made制作 out of these cubes立方体.
98
308000
4000
这是一部分以这些立方体为单位造出来的大机器人,
05:37
It's an accelerated加速 view视图, where you can see the robot机器人 actually其实
99
312000
3000
这是快进的效果,可以让你看到机器人
05:40
carrying携带 out some of its replication复制 process处理.
100
315000
2000
进行自我复制的过程。
05:42
So you're feeding馈送 it with more material材料 -- cubes立方体 in this case案件 --
101
317000
4000
如果你给它多喂点儿——就是这些立方体——
05:46
and more energy能源, and it can make another另一个 robot机器人.
102
321000
3000
再多给它点能量,它就能自己造出另一个机器人。
05:49
So of course课程, this is a very crude原油 machine,
103
324000
3000
当然,这还是一个非常粗糙,不成熟的机器,
05:52
but we're working加工 on a micro-scale微量 version of these,
104
327000
2000
但我们正在研究微缩版的这类机器人,
05:54
and hopefully希望 the cubes立方体 will be like a powder粉末 that you pour in.
105
329000
3000
希望这些立方体能小到像倒出的面粉一般。
05:57
OK, so what can we learn学习? These robots机器人 are of course课程
106
332000
5000
好的,那么我们都了解到了什么?这些机器人当然
06:02
not very useful有用 in themselves他们自己, but they might威力 teach us something
107
337000
3000
自己并不是有很大用处,但它们能教会我们一些东西,
06:05
about how we can build建立 better robots机器人,
108
340000
3000
让我们知道如何造出更好的机器人,
06:08
and perhaps也许 how humans人类, animals动物, create创建 self-models自主车型 and learn学习.
109
343000
5000
甚至是人类,动物创造自我模型和学习机制的原理。
06:13
And one of the things that I think is important重要
110
348000
2000
我觉得这其中最重要的,
06:15
is that we have to get away from this idea理念
111
350000
2000
就是我们必须摒弃之前的观念,
06:17
of designing设计 the machines manually手动,
112
352000
2000
手动地设计这些机器
06:19
but actually其实 let them evolve发展 and learn学习, like children孩子,
113
354000
3000
而是让它们自己进化,学习,像孩子一样,
06:22
and perhaps也许 that's the way we'll get there. Thank you.
114
357000
2000
这大概才是我们成功的必经之路。谢谢!
06:24
(Applause掌声)
115
359000
2000
(鼓掌♫)
Translated by Qing Zhang
Reviewed by Yongming Luo

▲Back to top

ABOUT THE SPEAKER
Hod Lipson - Roboticist
Hod Lipson works at the intersection of engineering and biology, studying robots and the way they "behave" and evolve. His work has exciting implications for design and manufacturing -- and serves as a window to understand our own behavior and evolution.

Why you should listen

To say that Hod Lipson and his team at Cornell build robots is not completely accurate: They may simply set out a pile of virtual robot parts, devise some rules for assembly, and see what the parts build themselves into. They've created robots that decide for themselves how they want to walk; robots that develop a sense of what they look like; even robots that can, through trial and error, construct other robots just like themselves.

Working across disciplines -- physics, computer science, math, biology and several flavors of engineer -- the team studies techniques for self-assembly and evolution that have great implications for fields such as micro-manufacturing -- allowing tiny pieces to assemble themselves at scales heretofore impossible -- and extreme custom manufacturing (in other words, 3-D printers for the home).

His lab's Outreach page is a funhouse of tools and instructions, including the amazing Golem@Home -- a self-assembling virtual robot who lives in your screensaver.

More profile about the speaker
Hod Lipson | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee