ABOUT THE SPEAKER
Irina Kareva - Theoretical biologist
Irina Kareva is looking for answers to biological questions using mathematical modeling.

Why you should listen

Dr. Irina Kareva studies cancer as an evolving ecosystem, bringing in insights from various disciplines -- from evolutionary biology to paleontology to ergodic theory -- to understand how we can manage, if not cure, cancer like a chronic disease. She has authored more than 25 publications, including several papers with her parents, who are also mathematicians. The Kareva clan was featured in a Nature article entitled "Relationships: Scions of Science."
 
Kareva is a research scientist at EMD Serono Research Center near Boston Massachusetts, US. Her book, Understanding Cancer from a Systems Biology Point of View: From Observation to Theory and Back, was recently published by Elsevier, and a second book on mathematical modeling of the evolution of heterogeneous populations will be released in mid-2019. 
 
In addition to her scientific studies and endeavors, Kareva also holds a degree in music and works actively as a professional opera singer.  She is a member of the Boston Symphony Orchestra’s Tanglewood Festival Chorus, has performed solo roles in local productions, religious music performances, and can even occasionally be heard in pieces as varied as video game soundtracks and heavy metal recordings.


More profile about the speaker
Irina Kareva | Speaker | TED.com
TED@Merck KGaA, Darmstadt, Germany

Irina Kareva: Math can help uncover cancer's secrets

艾瑞娜·卡瑞瓦: 数学有助于揭开癌症的奥秘

Filmed:
1,223,313 views

艾瑞娜·卡瑞瓦把生物语言翻译成数学语言,再从数学翻译回生物。她建立描述癌症动态的数学模型,目的在于研制出治疗肿瘤的新型药物。“数学建模的力与美在于,它可以以最有力的方式,将我们的认知形式化。”艾瑞娜这样说。“数学模型可以引导我们,让我们知道哪里值得继续探索,哪里可能是死路。”这一切的关键在于问对问题、把问题翻译成对的方程式、再翻译回去。
- Theoretical biologist
Irina Kareva is looking for answers to biological questions using mathematical modeling. Full bio

Double-click the English transcript below to play the video.

00:12
I am a translator翻译者.
0
549
1243
我是一名翻译。
00:14
I translate翻译 from biology生物学 into mathematics数学
1
2514
3191
我把生物学翻译成数学,
00:17
and vice versa反之亦然.
2
5729
1150
反之亦然。
00:19
I write mathematical数学的 models楷模
3
7588
1790
我建造数学模型,
00:21
which哪一个, in my case案件, are systems系统
of differential微分 equations方程,
4
9402
2847
用微分方程组,
00:24
to describe描述 biological生物 mechanisms机制,
5
12273
1947
来描述生物学机制,
00:26
such这样 as cell细胞 growth发展.
6
14244
1158
比如说细胞的生长。
00:28
Essentially实质上, it works作品 like this.
7
16122
1848
基本来说,运作过程如下。
00:30
First, I identify鉴定 the key elements分子
8
18573
2469
首先,我找出关键的元素,
00:33
that I believe may可能 be driving主动
behavior行为 over time
9
21066
2777
那些我认为
可能会随着时间的推移,
影响某些特定机制运作的元素。
00:35
of a particular特定 mechanism机制.
10
23867
1539
00:38
Then, I formulate制定 assumptions假设
11
26230
1891
然后,我做出假设,
00:40
about how these elements分子
interact相互作用 with each other
12
28145
2886
猜测这些元素
如何与彼此互动,
00:43
and with their environment环境.
13
31055
1337
与它们的环境互动。
00:44
It may可能 look something like this.
14
32916
1772
可能看起来像这样。
00:46
Then, I translate翻译
these assumptions假设 into equations方程,
15
34712
3317
然后,我把这些假设
翻译成方程,
00:50
which哪一个 may可能 look something like this.
16
38610
1824
它看起来可能像这样。
00:53
Finally最后, I analyze分析 my equations方程
17
41434
1890
最后,我分析我的方程,
00:55
and translate翻译 the results结果 back
into the language语言 of biology生物学.
18
43348
3101
并把结果翻译回生物学语言。
01:00
A key aspect方面 of mathematical数学的 modeling造型
19
48156
2420
数学建模的一个关键点在于,
01:02
is that we, as modelers建 模,
do not think about what things are;
20
50600
3908
我们作为建模者,
不是想这些东西“是”什么,
而是想它们“做”什么。
01:06
we think about what they do.
21
54532
1855
我们思考个体之间的关系,
01:08
We think about relationships关系
between之间 individuals个人,
22
56411
2489
01:10
whether是否 they be cells细胞, animals动物 or people,
23
58924
2886
不管这些个体是细胞、动物还是人,
01:13
and how they interact相互作用 with each other
and with their environment环境.
24
61834
3048
我们想它们如何与彼此相互影响、
与它们周围的环境相互影响。
01:17
Let me give you an example.
25
65639
1340
让我来举个例子。
01:19
What do foxes狐狸 and immune免疫的 cells细胞
have in common共同?
26
67719
3803
狐狸和免疫细胞之间
有什么共同点?
01:24
They're both predators大鳄,
27
72793
1459
它们都是捕食者,
01:26
except foxes狐狸 feed饲料 on rabbits,
28
74744
2723
只不过狐狸吃兔子,
01:29
and immune免疫的 cells细胞 feed饲料 on invaders入侵者,
such这样 as cancer癌症 cells细胞.
29
77491
3330
而免疫细胞以入侵者为食,
比如说癌细胞。
01:33
But from a mathematical数学的 point of view视图,
30
81273
2345
但是从数学的角度来说,
01:35
a qualitatively定性 same相同 system系统
of predator-prey捕食 type类型 equations方程
31
83642
4156
用本质上相同的
捕食者——猎物方程系统,
01:39
will describe描述 interactions互动
between之间 foxes狐狸 and rabbits
32
87822
3245
就能描述狐狸与兔子
之间的相互影响
01:43
and cancer癌症 and immune免疫的 cells细胞.
33
91091
1774
还有癌细胞与免疫细胞
之间的相互影响。
01:45
Predator-prey捕食者-猎物 type类型 systems系统
have been studied研究 extensively广泛
34
93609
2708
捕食者——猎物类型的方程系统,
01:48
in scientific科学 literature文学,
35
96341
1269
已经在科学文献中被广泛研究,
01:49
describing说明 interactions互动
of two populations人群,
36
97634
2378
它被用来描述
两个种群之间的相互影响,
01:52
where survival生存 of one depends依靠
on consuming消费 the other.
37
100036
2775
其中一个种群吃掉另一个种群
才能得以生存。
01:55
And these same相同 equations方程
provide提供 a framework骨架
38
103485
2620
也就是这些方程为我们
提供了一个框架
01:58
for understanding理解
cancer-immune癌症免疫 interactions互动,
39
106129
2311
来了解癌细胞与免疫系统
之间的相互影响,
在这套方程中,癌细胞是猎物,
02:00
where cancer癌症 is the prey猎物,
40
108464
1841
02:02
and the immune免疫的 system系统 is the predator捕食者.
41
110329
2372
免疫系统是捕食者。
02:04
And the prey猎物 employs采用 all sorts排序 of tricks技巧
to prevent避免 the predator捕食者 from killing谋杀 it,
42
112725
4032
猎物会采用一切诡计
来防止被捕食者杀死,
02:08
ranging不等 from camouflaging伪装 itself本身
43
116781
1820
从伪装自己,
02:10
to stealing偷窃行为 the predator's捕食者的 food餐饮.
44
118625
1839
到偷走捕食者的食物。
02:13
This can have some very
interesting有趣 implications启示.
45
121352
2562
这可能会产生一些非常有趣的情况。
02:15
For example, despite尽管 enormous巨大 successes成功
in the field领域 of immunotherapy免疫治疗,
46
123938
4822
举例来说,尽管我们在免疫疗法领域
取得了巨大的成就,
02:20
there still remains遗迹
somewhat有些 limited有限 efficacy功效
47
128784
2461
但在面对实体恶性肿瘤时,
02:23
when it comes solid固体 tumors肿瘤.
48
131269
1542
其疗效还是十分有限的。
02:25
But if you think about it ecologically生态,
49
133423
2559
但如果从生态学的观点来思考的话,
02:28
both cancer癌症 and immune免疫的 cells细胞 --
50
136006
2090
不管是癌细胞和免疫细胞——
02:30
the prey猎物 and the predator捕食者 --
51
138120
1600
即猎物和捕食者——
02:31
require要求 nutrients营养成分
such这样 as glucose葡萄糖 to survive生存.
52
139744
3031
都需要营养(如葡萄糖)来生存。
02:35
If cancer癌症 cells细胞 outcompete胜出
the immune免疫的 cells细胞 for shared共享 nutrients营养成分
53
143358
4789
如果癌细胞比免疫细胞
摄入的共享养分更多,
02:40
in the tumor microenvironment微环境,
54
148171
1793
在肿瘤的微环境中,
02:41
then the immune免疫的 cells细胞 will physically物理
not be able能够 to do their job工作.
55
149988
3414
免疫细胞就不能够
完成它们的工作。
02:46
This predator-prey-shared捕食者-猎物-共用
resource资源 type类型 model模型
56
154291
2868
这种
捕食者—猎物—共享资源类的模型,
02:49
is something I've worked工作 on
in my own拥有 research研究.
57
157183
2297
是我一直在研究的。
02:51
And it was recently最近 shown显示 experimentally实验
58
159504
2724
最近的实验表明
02:54
that restoring恢复 the metabolic新陈代谢 balance平衡
in the tumor microenvironment微环境 --
59
162252
4054
恢复肿瘤微环境中的
新陈代谢平衡——
02:58
that is, making制造 sure
immune免疫的 cells细胞 get their food餐饮 --
60
166330
3531
也就是确保免疫细胞
得到它们的食物——
03:01
can give them, the predators大鳄, back
their edge边缘 in fighting战斗 cancer癌症, the prey猎物.
61
169885
5245
可以使免疫细胞(捕食者)在
与癌细胞(猎物)对抗时找回优势。
03:08
This means手段 that if you abstract抽象 a bit,
62
176440
2339
意思就是,抽象一点来想,
03:10
you can think about cancer癌症 itself本身
as an ecosystem生态系统,
63
178803
2955
你可以把癌细胞自身
想象成一个生态系统,
03:13
where heterogeneous异质 populations人群 of cells细胞
compete竞争 and cooperate合作
64
181782
4287
在这个系统中,多样的细胞种群
相互竞争、相互合作
03:18
for space空间 and nutrients营养成分,
65
186093
2017
来获取空间和营养,
03:20
interact相互作用 with predators大鳄 --
the immune免疫的 system系统 --
66
188134
2672
与捕食者——免疫细胞相互影响,
03:22
migrate迁移 -- metastases转移 --
67
190830
2241
迁移,也就是新陈代谢……
03:25
all within the ecosystem生态系统
of the human人的 body身体.
68
193095
2467
这全都发生在人体
这个生态系统之中。
03:28
And what do we know about most
ecosystems生态系统 from conservation保护 biology生物学?
69
196221
3869
那么,从生物保护的角度来看,
我 们对大多数生态系统有哪些了解?
03:32
That one of the best最好 ways方法
to extinguish扑灭 species种类
70
200643
2852
那就是,让一个物种灭绝的
最佳方式之一,
03:35
is not to target目标 them directly
71
203519
1952
不是直接毁灭物种本身,
03:37
but to target目标 their environment环境.
72
205495
2439
而是破坏它们所生存的环境。
03:40
And so, once一旦 we have identified确定
the key components组件
73
208880
3070
这样一来,一旦我们明确了
03:43
of the tumor environment环境,
74
211974
1644
肿瘤环境的关键成分,
03:45
we can propose提出 hypotheses假设
75
213642
1948
我们可以做出假设,
03:47
and simulate模拟 scenarios场景
and therapeutic治疗 interventions干预措施
76
215614
3294
模拟情景,然后进行干预治疗,
03:50
all in a completely全然 safe安全
and affordable实惠 way
77
218932
3425
这全部采用一种十分安全
和实惠的方法
03:54
and target目标 different不同 components组件
of the microenvironment微环境
78
222381
3369
之后以微环境中不同的成分为目标
03:57
in such这样 a way as to kill the cancer癌症
without harming汉宁波 the host主办,
79
225774
3996
在不危害宿主的情况下
杀死癌细胞,
04:01
such这样 as me or you.
80
229794
1570
宿主可以是你,或者是我。
04:05
And so while the immediate即时
goal目标 of my research研究
81
233029
3002
所以,当前我研究的直接目标,
04:08
is to advance提前 research研究 and innovation革新
82
236055
2266
是推动研究与创新的发展
04:10
and to reduce减少 its cost成本,
83
238345
1896
降低成本,
04:12
the real真实 intent意图, of course课程,
is to save保存 lives生活.
84
240265
2517
当然,真实的目的是拯救生命。
04:15
And that's what I try to do
85
243278
1771
这也是我一直在尝试的,
04:17
through通过 mathematical数学的 modeling造型
applied应用的 to biology生物学,
86
245073
2747
将数学建模应用于生物学,
04:19
and in particular特定,
to the development发展 of drugs毒品.
87
247844
2471
特别是应用于药物的开发上。
04:22
It's a field领域 that until直到 relatively相对
recently最近 has remained保持 somewhat有些 marginal边缘,
88
250895
4056
直到最近,
这都还是一个有些边缘化的领域,
但它已经成熟。
04:26
but it has matured成熟.
89
254975
1452
04:28
And there are now very well-developed发达
mathematical数学的 methods方法,
90
256451
3149
现在有很多开发成熟的数学方法,
04:31
a lot of preprogrammed预先 tools工具,
91
259624
1899
有很多预编工具,
包括很多免费的,
04:33
including包含 free自由 ones那些,
92
261547
1496
04:35
and an ever-increasing不断增加 amount
of computational计算 power功率 available可得到 to us.
93
263067
4047
我们能获取的计算能力在不断增多。
04:40
The power功率 and beauty美女
of mathematical数学的 modeling造型
94
268718
3399
数学建模的力与美
04:44
lies in the fact事实
that it makes品牌 you formalize形式化,
95
272141
2641
在于它可以,
04:46
in a very rigorous严格 way,
96
274806
2087
用最有力的方式,
04:48
what we think we know.
97
276917
1465
将我们的认知形式化。
04:50
We make assumptions假设,
98
278904
1444
我们做出假设,
04:52
translate翻译 them into equations方程,
99
280372
1568
把假设翻译成方程,
04:53
run simulations模拟,
100
281964
1311
模拟场景,
04:55
all to answer回答 the question:
101
283299
1773
全是为了回答一个问题:
04:57
In a world世界 where my assumptions假设 are true真正,
102
285096
2246
如果我的假设正确的话,
04:59
what do I expect期望 to see?
103
287366
1570
我能看到什么?
05:01
It's a pretty漂亮 simple简单 conceptual概念上的 framework骨架.
104
289890
2086
这是一个十分简单的概念框架。
05:04
It's all about asking the right questions问题.
105
292000
2226
全在于问对问题。
05:06
But it can unleash发挥 numerous众多 opportunities机会
for testing测试 biological生物 hypotheses假设.
106
294603
4095
但这会释放出大量
检验生物学假设的机会。
05:11
If our predictions预测 match比赛 our observations意见,
107
299696
2600
如果我们的预测与观察相吻合,
05:14
great! -- we got it right,
so we can make further进一步 predictions预测
108
302320
3027
太好了!证明我们是对的,
这样我们就能做出进一步的预测,
05:17
by changing改变 this or that
aspect方面 of the model模型.
109
305371
2560
通过改变模型的其他方面。
05:20
If, however然而, our predictions预测
do not match比赛 our observations意见,
110
308733
3700
但如果,我们的预测
与我们的观察不符,
这就意味着我们的假设出了错,
05:24
that means手段 that some
of our assumptions假设 are wrong错误,
111
312457
2585
05:27
and so our understanding理解
of the key mechanisms机制
112
315066
2433
意味着我们对于生物学中潜在的,
05:29
of underlying底层 biology生物学
113
317523
1439
关键机制
05:30
is still incomplete残缺.
114
318986
1270
理解得还不够完善。
05:32
Luckily, since以来 this is a model模型,
115
320829
2362
幸好,因为这只是个模型,
我们能控制所有的假设。
05:35
we control控制 all the assumptions假设.
116
323215
1889
05:37
So we can go through通过 them, one by one,
117
325128
2140
所以我们可以一个一个的仔细检查,
05:39
identifying识别 which哪一个 one or ones那些
are causing造成 the discrepancy差异.
118
327292
3829
找出是哪个或哪些假设导致了偏差。
05:43
And then we can fill this newly
identified确定 gap间隙 in knowledge知识
119
331637
3356
然后我们就能通过实验与理论的方式,
05:47
using运用 both experimental试验
and theoretical理论 approaches方法.
120
335017
2715
填补新发现的知识空白。
05:50
Of course课程, any ecosystem生态系统
is extremely非常 complex复杂,
121
338699
2821
当然,任何生态系统都极其复杂,
05:53
and trying to describe描述 all the moving移动
parts部分 is not only very difficult,
122
341544
3843
尝试去描述这之中的所有运动
不仅十分困难,
05:57
but also not very informative信息.
123
345411
1662
而且也无法获得太多信息。
05:59
There's also the issue问题 of timescales时间表,
124
347518
2066
并且还有时间范围的问题,
06:01
because some processes流程 take place地点
on a scale规模 of seconds, some minutes分钟,
125
349608
3668
因为有些过程发生的时间
以秒为单位,有的以分为单位,
还有的以天、月、年为单位。
06:05
some days, months个月 and years年份.
126
353300
1948
把这些全部通过实验分开
是不太可能的。
06:07
It may可能 not always be possible可能
to separate分离 those out experimentally实验.
127
355272
3199
06:11
And some things happen发生
so quickly很快 or so slowly慢慢地
128
359143
3384
有的发生的太快,
有的发生的太慢,
06:14
that you may可能 physically物理
never be able能够 to measure测量 them.
129
362551
2720
以至于你不可能去测量它们。
06:17
But as mathematicians数学家,
130
365295
2288
但是作为数学家,
06:19
we have the power功率 to zoom放大 in
on any subsystem子系统 in any timescale时间表
131
367607
5645
我们有能力在任何时间范围内
放大任何子系统,
06:25
and simulate模拟 effects效果 of interventions干预措施
132
373276
2124
并模拟在任何时间范围中,
06:27
that take place地点 in any timescale时间表.
133
375424
2701
可能发生的干预效果。
06:31
Of course课程, this isn't the work
of a modelerModeler alone单独.
134
379942
2934
当然,这项工作光靠建模者是不行的。
06:34
It has to happen发生 in close
collaboration合作 with biologists生物学家.
135
382900
3289
他们还得与生物学家密切合作才行。
这确实需要一些翻译能力,
06:38
And it does demand需求
some capacity容量 of translation翻译
136
386213
3004
06:41
on both sides双方.
137
389241
1204
双方都需要。
06:43
But starting开始 with a theoretical理论
formulation公式 of a problem问题
138
391550
3788
但是从一个问题的理论构想开始
06:47
can unleash发挥 numerous众多 opportunities机会
for testing测试 hypotheses假设
139
395362
3497
可以释放出大量的机会
去验证假设
06:50
and simulating模拟 scenarios场景
and therapeutic治疗 interventions干预措施,
140
398883
3239
去模拟场景和治疗干预,
06:54
all in a completely全然 safe安全 way.
141
402146
2070
这都是在完全安全的情况下进行的。
06:56
It can identify鉴定 gaps空白 in knowledge知识
and logical合乎逻辑 inconsistencies不一致性
142
404977
5175
这可以找出知识的空白、
逻辑的不一致,
07:02
and can help guide指南 us
as to where we should keep looking
143
410176
2839
可以帮忙引导我们,
让我们知道哪里值得继续寻找,
07:05
and where there may可能 be a dead end结束.
144
413039
1895
哪里可能是个死胡同。
07:07
In other words:
145
415632
1247
换句话说:
数学建模能帮助我们回答
07:08
mathematical数学的 modeling造型
can help us answer回答 questions问题
146
416903
3494
那些直接影响人们健康的问题——
07:12
that directly affect影响 people's人们 health健康 --
147
420421
2388
07:15
that affect影响 each
person's人的 health健康, actually其实 --
148
423942
2704
实际上,这会影响每个人的健康——
07:18
because mathematical数学的 modeling造型 will be key
149
426670
2676
因为数学建模,
07:21
to propelling推进 personalized个性化 medicine医学.
150
429370
1834
将会是推动个性化医疗的关键。
07:24
And it all comes down
to asking the right question
151
432112
3067
而这一切的关键在于问对问题,
07:27
and translating翻译 it
to the right equation方程 ...
152
435711
2075
然后把它翻译成正确的方程,
07:30
and back.
153
438670
1150
再翻译回去。
07:32
Thank you.
154
440533
1151
谢谢。
07:33
(Applause掌声)
155
441708
3299
(掌声)
Translated by Zehan Ma
Reviewed by Bangyou Xiang

▲Back to top

ABOUT THE SPEAKER
Irina Kareva - Theoretical biologist
Irina Kareva is looking for answers to biological questions using mathematical modeling.

Why you should listen

Dr. Irina Kareva studies cancer as an evolving ecosystem, bringing in insights from various disciplines -- from evolutionary biology to paleontology to ergodic theory -- to understand how we can manage, if not cure, cancer like a chronic disease. She has authored more than 25 publications, including several papers with her parents, who are also mathematicians. The Kareva clan was featured in a Nature article entitled "Relationships: Scions of Science."
 
Kareva is a research scientist at EMD Serono Research Center near Boston Massachusetts, US. Her book, Understanding Cancer from a Systems Biology Point of View: From Observation to Theory and Back, was recently published by Elsevier, and a second book on mathematical modeling of the evolution of heterogeneous populations will be released in mid-2019. 
 
In addition to her scientific studies and endeavors, Kareva also holds a degree in music and works actively as a professional opera singer.  She is a member of the Boston Symphony Orchestra’s Tanglewood Festival Chorus, has performed solo roles in local productions, religious music performances, and can even occasionally be heard in pieces as varied as video game soundtracks and heavy metal recordings.


More profile about the speaker
Irina Kareva | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee