ABOUT THE SPEAKER
Danny Hillis - Computer theorist
Inventor, scientist, author, engineer -- over his broad career, Danny Hillis has turned his ever-searching brain on an array of subjects, with surprising results.

Why you should listen

Danny Hillis is an inventor, scientist, author and engineer. While completing his doctorate at MIT, he pioneered the concept of parallel computers that is now the basis for graphics processors and cloud computing. He holds more than 300 US patents, covering parallel computers, disk arrays, forgery prevention methods, various electronic and mechanical devices, and the pinch-to-zoom display interface. He has recently been working on problems in medicine as well. He is also the designer of a 10,000-year mechanical clock, and he gave a TED Talk in 1994 that is practically prophetic. Throughout his career, Hillis has worked at places like Disney, and now MIT and Applied Invention, always looking for the next fascinating problem.

More profile about the speaker
Danny Hillis | Speaker | TED.com
TED1994

Danny Hillis: Back to the future (of 1994)

丹尼 希利斯: 回到未來(1994)

Filmed:
686,810 views

從那被放在TED很後面的檔案庫裡,丹尼 希利斯藉著將生命本身的演化和科技變化的腳步是如何且為什麼看似不斷的加速這兩點結合起來,然後簡單的論述了這個耐人尋味的看法。他所呈現的演說技巧或許看起來過時,但想法卻是相當切題且有意義的。
- Computer theorist
Inventor, scientist, author, engineer -- over his broad career, Danny Hillis has turned his ever-searching brain on an array of subjects, with surprising results. Full bio

Double-click the English transcript below to play the video.

00:15
Because I usually平時 take the role角色
0
0
3000
由於我經常
00:18
of trying to explain說明 to people
1
3000
2000
向人們解釋
00:20
how wonderful精彩 the new technologies技術
2
5000
3000
即將到來的新科技
00:23
that are coming未來 along沿 are going to be,
3
8000
2000
將會多麼的美妙
00:25
and I thought that, since以來 I was among其中 friends朋友 here,
4
10000
3000
我想既然我跟各位朋友們一起在這
00:28
I would tell you what I really think
5
13000
4000
就讓我來說說我真正的想法
00:32
and try to look back and try to understand理解
6
17000
2000
並試著回顧和理解
00:34
what is really going on here
7
19000
3000
這到底是如何發生的
00:37
with these amazing驚人 jumps跳躍 in technology技術
8
22000
5000
有了這些科技上的驚人進步。
00:42
that seem似乎 so fast快速 that we can barely僅僅 keep on top最佳 of it.
9
27000
3000
科技的進步似乎快到我們根本無法趕上它的腳步。
00:45
So I'm going to start開始 out
10
30000
2000
讓我先從這開始
00:47
by showing展示 just one very boring無聊 technology技術 slide滑動.
11
32000
3000
一頁很無趣的科技幻燈片。
00:50
And then, so if you can just turn on the slide滑動 that's on.
12
35000
3000
然後現在可以放幻燈片了。(對工作人員說)
00:56
This is just a random隨機 slide滑動
13
41000
2000
這只是我從我的文件中
00:58
that I picked採摘的 out of my file文件.
14
43000
2000
隨機挑選出的一張。
01:00
What I want to show顯示 you is not so much the details細節 of the slide滑動,
15
45000
3000
我想要你們看的並不是它的細節,
01:03
but the general一般 form形成 of it.
16
48000
2000
而是它的總體形式。
01:05
This happens發生 to be a slide滑動 of some analysis分析 that we were doing
17
50000
3000
這個是我們做的
01:08
about the power功率 of RISCRISC microprocessors微處理器
18
53000
3000
關於RISC微處理器功率
01:11
versus the power功率 of local本地 area networks網絡.
19
56000
3000
與本地網路功率分析的幻燈片。
01:14
And the interesting有趣 thing about it
20
59000
2000
有趣的是
01:16
is that this slide滑動,
21
61000
2000
這頁幻燈片
01:18
like so many許多 technology技術 slides幻燈片 that we're used to,
22
63000
3000
就像很多我們所熟悉的幻燈片一樣,
01:21
is a sort分類 of a straight直行 line
23
66000
2000
是半對數曲線圖
01:23
on a semi-log半對數 curve曲線.
24
68000
2000
上的一條直線。
01:25
In other words, every一切 step here
25
70000
2000
也就是這裡的每一層,
01:27
represents代表 an order訂購 of magnitude大小
26
72000
2000
代表了性能程度
01:29
in performance性能 scale規模.
27
74000
2000
大小的一級。
01:31
And this is a new thing
28
76000
2000
在半對數曲線圖上
01:33
that we talk about technology技術
29
78000
2000
討論科技,
01:35
on semi-log半對數 curves曲線.
30
80000
2000
這很新鮮。
01:37
Something really weird奇怪的 is going on here.
31
82000
2000
這其中有點奇特。
01:39
And that's basically基本上 what I'm going to be talking about.
32
84000
3000
這基本上是我接下來要說的。
01:42
So, if you could bring帶來 up the lights燈火.
33
87000
3000
(對工作人員)麻煩開一下燈。
01:47
If you could bring帶來 up the lights燈火 higher更高,
34
92000
2000
請把燈開亮點,
01:49
because I'm just going to use a piece of paper here.
35
94000
3000
因為我要用張紙。
01:52
Now why do we draw technology技術 curves曲線
36
97000
2000
為什麼我們要用對數曲線
01:54
in semi-log半對數 curves曲線?
37
99000
2000
描繪科技曲線呢?
01:56
Well the answer回答 is, if I drew德魯 it on a normal正常 curve曲線
38
101000
3000
嗯,答案是,如果我用普通曲線畫,
01:59
where, let's say, this is years年份,
39
104000
2000
我們說,這是年份,
02:01
this is time of some sort分類,
40
106000
2000
這是某個時間,
02:03
and this is whatever隨你 measure測量 of the technology技術
41
108000
3000
這是我準備畫的
02:06
that I'm trying to graph圖形,
42
111000
3000
科技的某種測量值,
02:09
the graphs look sort分類 of silly愚蠢.
43
114000
3000
這圖看起來有點傻。
02:12
They sort分類 of go like this.
44
117000
3000
就有點像是這樣。
02:15
And they don't tell us much.
45
120000
3000
而且並沒有提供什麼資訊。
02:18
Now if I graph圖形, for instance,
46
123000
3000
現在,如果我畫,比如說,
02:21
some other technology技術, say transportation運輸 technology技術,
47
126000
2000
另一種技術,像是交通運輸,
02:23
on a semi-log半對數 curve曲線,
48
128000
2000
在半對數曲線上,
02:25
it would look very stupid, it would look like a flat平面 line.
49
130000
3000
它看起來很蠢,會像條很平的線。
02:28
But when something like this happens發生,
50
133000
2000
但是如果出現像這種
02:30
things are qualitatively定性 changing改變.
51
135000
2000
質變的情況。
02:32
So if transportation運輸 technology技術
52
137000
2000
如果交通運輸技術
02:34
was moving移動 along沿 as fast快速 as microprocessor微處理器 technology技術,
53
139000
3000
進步地像微處理器業一樣快的話,
02:37
then the day after tomorrow明天,
54
142000
2000
那,後天
02:39
I would be able能夠 to get in a taxi出租車 cab出租車
55
144000
2000
我就能搭量計程車
02:41
and be in Tokyo東京 in 30 seconds.
56
146000
2000
然後在30秒內到東京。
02:43
It's not moving移動 like that.
57
148000
2000
但它並沒有進步得那麼快。
02:45
And there's nothing precedented有先例
58
150000
2000
在科技發展歷史中
02:47
in the history歷史 of technology技術 development發展
59
152000
2000
也沒有任何
02:49
of this kind of self-feeding自進 growth發展
60
154000
2000
這種自給自足,
02:51
where you go by orders命令 of magnitude大小 every一切 few少數 years年份.
61
156000
3000
每幾年程度翻倍增長的先例。
02:54
Now the question that I'd like to ask is,
62
159000
3000
現在我想要問的是,
02:57
if you look at these exponential指數 curves曲線,
63
162000
3000
如果你觀察這些指數曲線,
03:00
they don't go on forever永遠.
64
165000
3000
他們並非永遠的持續下去。
03:03
Things just can't possibly或者 keep changing改變
65
168000
3000
事物不可能一直
03:06
as fast快速 as they are.
66
171000
2000
改變得那麼快。
03:08
One of two things is going to happen發生.
67
173000
3000
兩件事會發生,
03:11
Either it's going to turn into a sort分類 of classical古典 S-curveS曲線 like this,
68
176000
4000
要麼它會變成像這樣典型的S曲線
03:15
until直到 something totally完全 different不同 comes along沿,
69
180000
4000
直到完全不同的情況出現。
03:19
or maybe it's going to do this.
70
184000
2000
或是會變成這樣。
03:21
That's about all it can do.
71
186000
2000
這就是所有可能。
03:23
Now I'm an optimist樂天派,
72
188000
2000
現在我是個樂觀主義者,
03:25
so I sort分類 of think it's probably大概 going to do something like that.
73
190000
3000
所以我覺得它很有可能就會變成這樣。
03:28
If so, that means手段 that what we're in the middle中間 of right now
74
193000
3000
如果是這樣,意味著我們目前所在的
03:31
is a transition過渡.
75
196000
2000
是過渡階段。
03:33
We're sort分類 of on this line
76
198000
2000
我們似乎在這條線上,
03:35
in a transition過渡 from the way the world世界 used to be
77
200000
2000
在世界從過去
03:37
to some new way that the world世界 is.
78
202000
3000
到將來的轉變中。
03:40
And so what I'm trying to ask, what I've been asking myself,
79
205000
3000
所有我要問的,我一直在問自己的,
03:43
is what's this new way that the world世界 is?
80
208000
3000
就是這世界未來道路在哪?
03:46
What's that new state that the world世界 is heading標題 toward?
81
211000
3000
它趨向的新時代是什麼樣的?
03:49
Because the transition過渡 seems似乎 very, very confusing撲朔迷離
82
214000
3000
由於這個變化似乎非常,非常迷惑人,
03:52
when we're right in the middle中間 of it.
83
217000
2000
當我們正處在其中時。
03:54
Now when I was a kid孩子 growing生長 up,
84
219000
3000
我小時候,長大過程中
03:57
the future未來 was kind of the year 2000,
85
222000
3000
未來就像是2000年,
04:00
and people used to talk about what would happen發生 in the year 2000.
86
225000
4000
人們都在討論2000年將會發生什麼。
04:04
Now here's這裡的 a conference會議
87
229000
2000
現在這個會議上,
04:06
in which哪一個 people talk about the future未來,
88
231000
2000
大家在談論未來,
04:08
and you notice注意 that the future未來 is still at about the year 2000.
89
233000
3000
而且你能發現這未來指的還是那個"2000年"。
04:11
It's about as far as we go out.
90
236000
2000
這就是我們能達到的程度。
04:13
So in other words, the future未來 has kind of been shrinking萎縮
91
238000
3000
換句話說,未來正在縮水,
04:16
one year per year
92
241000
3000
一生中
04:19
for my whole整個 lifetime一生.
93
244000
3000
每年縮短一年。
04:22
Now I think that the reason原因
94
247000
2000
我想原因是
04:24
is because we all feel
95
249000
2000
我們都感覺到
04:26
that something's什麼是 happening事件 there.
96
251000
2000
正在發生些什麼。
04:28
That transition過渡 is happening事件. We can all sense it.
97
253000
2000
變化正在發生。我們都能查覺到。
04:30
And we know that it just doesn't make too much sense
98
255000
2000
我們知道去考慮那未來的三,五十年
04:32
to think out 30, 50 years年份
99
257000
2000
已經沒什麼意義了,
04:34
because everything's一切的 going to be so different不同
100
259000
3000
因為每件事都將如此不同
04:37
that a simple簡單 extrapolation外推 of what we're doing
101
262000
2000
以至於推測將來
04:39
just doesn't make any sense at all.
102
264000
3000
不再有意義。
04:42
So what I would like to talk about
103
267000
2000
所以我要聊聊
04:44
is what that could be,
104
269000
2000
那會是怎樣,
04:46
what that transition過渡 could be that we're going through通過.
105
271000
3000
我們正在經歷的轉變會是怎樣。
04:49
Now in order訂購 to do that
106
274000
3000
為達到這個目的,
04:52
I'm going to have to talk about a bunch of stuff東東
107
277000
2000
我得介紹一堆東西
04:54
that really has nothing to do
108
279000
2000
它們與
04:56
with technology技術 and computers電腦.
109
281000
2000
科技和電腦完全無關。
04:58
Because I think the only way to understand理解 this
110
283000
2000
因為我決定理解這個的唯一方法
05:00
is to really step back
111
285000
2000
就是回顧過去
05:02
and take a long time scale規模 look at things.
112
287000
2000
拉長時間軸去看。
05:04
So the time scale規模 that I would like to look at this on
113
289000
3000
而我所要看的時間軸
05:07
is the time scale規模 of life on Earth地球.
114
292000
3000
是以地球上生命的時間尺來看。
05:13
So I think this picture圖片 makes品牌 sense
115
298000
2000
我想這幅圖合理了
05:15
if you look at it a few少數 billion十億 years年份 at a time.
116
300000
4000
如果你一次從幾十億年來看。
05:19
So if you go back
117
304000
2000
如果回溯/所以如果你回溯個
05:21
about two and a half billion十億 years年份,
118
306000
2000
大概25億年,
05:23
the Earth地球 was this big, sterile無菌 hunk猛男 of rock
119
308000
3000
地球這麼大,貧瘠的大塊石頭
05:26
with a lot of chemicals化學製品 floating漂浮的 around on it.
120
311000
3000
上面浮著些化學物質。
05:29
And if you look at the way
121
314000
2000
要是觀察
05:31
that the chemicals化學製品 got organized有組織的,
122
316000
2000
這些化學物質怎樣組合的,
05:33
we begin開始 to get a pretty漂亮 good idea理念 of how they do it.
123
318000
3000
我們開始弄明白它們怎麼形成的。
05:36
And I think that there's theories理論 that are beginning開始 to understand理解
124
321000
3000
我想有些理論是從理解
05:39
about how it started開始 with RNARNA,
125
324000
2000
生命怎樣從核糖核酸演變開始,
05:41
but I'm going to tell a sort分類 of simple簡單 story故事 of it,
126
326000
3000
但是我想講一個生命簡單的故事,
05:44
which哪一個 is that, at that time,
127
329000
2000
就是,在那個時候,
05:46
there were little drops滴劑 of oil floating漂浮的 around
128
331000
3000
有一滴滴的油四處浮動,
05:49
with all kinds of different不同 recipes食譜 of chemicals化學製品 in them.
129
334000
3000
裡面有各種不同化學成分組合。
05:52
And some of those drops滴劑 of oil
130
337000
2000
有些油滴
05:54
had a particular特定 combination組合 of chemicals化學製品 in them
131
339000
2000
裡面含有特殊的化學構成
05:56
which哪一個 caused造成 them to incorporate合併 chemicals化學製品 from the outside
132
341000
3000
這導致它們可以從外界聚集化學物質
05:59
and grow增長 the drops滴劑 of oil.
133
344000
3000
並慢慢變大。
06:02
And those that were like that
134
347000
2000
像這樣的油滴
06:04
started開始 to split分裂 and divide劃分.
135
349000
2000
又開始分化,分離。
06:06
And those were the most primitive原始 forms形式 of cells細胞 in a sense,
136
351000
3000
最原始的那些在某種程度上形成了細胞,
06:09
those little drops滴劑 of oil.
137
354000
2000
這些小小的油滴。
06:11
But now those drops滴劑 of oil weren't really alive, as we say it now,
138
356000
3000
但目前為止這些油滴不是真的活的,在我們現在看來,
06:14
because every一切 one of them
139
359000
2000
因為每一個
06:16
was a little random隨機 recipe食譜 of chemicals化學製品.
140
361000
2000
都是化學物質的隨機合成。
06:18
And every一切 time it divided分為,
141
363000
2000
每分裂一次,
06:20
they got sort分類 of unequal不等 division
142
365000
3000
都不是平均分佈
06:23
of the chemicals化學製品 within them.
143
368000
2000
內部的化學物。
06:25
And so every一切 drop下降 was a little bit different不同.
144
370000
3000
所以每個油滴都有點不同。
06:28
In fact事實, the drops滴劑 that were different不同 in a way
145
373000
2000
實際上,油滴不同的方式
06:30
that caused造成 them to be better
146
375000
2000
是讓它們能更好地
06:32
at incorporating結合 chemicals化學製品 around them,
147
377000
2000
集成周圍的化合物,
06:34
grew成長 more and incorporated合併 more chemicals化學製品 and divided分為 more.
148
379000
3000
長的更大,吸收更多,分裂更多。
06:37
So those tended往往 to live生活 longer,
149
382000
2000
所以它們會活的更長,
06:39
get expressed表達 more.
150
384000
3000
表現的更多。
06:42
Now that's sort分類 of just a very simple簡單
151
387000
3000
這就有點像個很簡單的
06:45
chemical化學 form形成 of life,
152
390000
2000
生命的化學形式,
06:47
but when things got interesting有趣
153
392000
3000
但過程變得有趣
06:50
was when these drops滴劑
154
395000
2000
是當這些油滴
06:52
learned學到了 a trick about abstraction抽象化.
155
397000
3000
學會了一個提取資訊的技巧時。
06:55
Somehow不知何故 by ways方法 that we don't quite相當 understand理解,
156
400000
3000
不知怎麼用我們不能完全理解的方式,
06:58
these little drops滴劑 learned學到了 to write down information信息.
157
403000
3000
這些小油滴學會了記錄資訊。
07:01
They learned學到了 to record記錄 the information信息
158
406000
2000
它們學會把
07:03
that was the recipe食譜 of the cell細胞
159
408000
2000
細胞形成的秘訣
07:05
onto a particular特定 kind of chemical化學
160
410000
2000
記錄到一種特殊物質上,
07:07
called DNA脫氧核糖核酸.
161
412000
2000
叫做去氧核糖核酸。
07:09
So in other words, they worked工作 out,
162
414000
2000
也就是說,它們想出了,
07:11
in this mindless沒頭腦 sort分類 of evolutionary發展的 way,
163
416000
3000
以這種隨性的進化方式,
07:14
a form形成 of writing寫作 that let them write down what they were,
164
419000
3000
可以寫下它們是什麼的記錄方式,
07:17
so that that way of writing寫作 it down could get copied複製.
165
422000
3000
以便這種記錄方式能被複製。
07:20
The amazing驚人 thing is that that way of writing寫作
166
425000
3000
驚奇的是這種記錄方式
07:23
seems似乎 to have stayed steady穩定
167
428000
2000
似乎可以保持穩定
07:25
since以來 it evolved進化 two and a half billion十億 years年份 ago.
168
430000
2000
由於它25億年前演化出來的。
07:27
In fact事實 the recipe食譜 for us, our genes基因,
169
432000
3000
實際上我們,我們的基因的組成
07:30
is exactly究竟 that same相同 code and that same相同 way of writing寫作.
170
435000
3000
就是完全一樣的代碼,一樣的記錄方式。
07:33
In fact事實, every一切 living活的 creature生物 is written書面
171
438000
3000
事實上,任何生物都是
07:36
in exactly究竟 the same相同 set of letters and the same相同 code.
172
441000
2000
用完全一樣的字母和代碼記錄下來的。
07:38
In fact事實, one of the things that I did
173
443000
2000
實際上,我所做的
07:40
just for amusement娛樂 purposes目的
174
445000
2000
僅是為了娛樂效果的一件事
07:42
is we can now write things in this code.
175
447000
2000
就是我們能用這個代碼記錄事件。
07:44
And I've got here a little 100 micrograms微克 of white白色 powder粉末,
176
449000
6000
我這有100微克的白粉,
07:50
which哪一個 I try not to let the security安全 people see at airports機場.
177
455000
4000
我盡力不讓機場安檢人員發現它們。
07:54
(Laughter笑聲)
178
459000
2000
(笑聲)
07:56
But this has in it --
179
461000
2000
不過這裡面有代碼
07:58
what I did is I took this code --
180
463000
2000
我所做的是我拿著這代碼
08:00
the code has standard標準 letters that we use for symbolizing象徵 it --
181
465000
3000
它裡面有我們用來標記它的標準字母,
08:03
and I wrote my business商業 card onto a piece of DNA脫氧核糖核酸
182
468000
3000
然後我把我的名片寫到一條去氧核糖核酸上
08:06
and amplified放大 it 10 to the 22 times.
183
471000
3000
再放大10到22倍。
08:09
So if anyone任何人 would like a hundred million百萬 copies副本 of my business商業 card,
184
474000
3000
所以如果有人需要數百萬我的名片,
08:12
I have plenty豐富 for everyone大家 in the room房間,
185
477000
2000
我有足夠多分給在座每個人,
08:14
and, in fact事實, everyone大家 in the world世界,
186
479000
2000
甚至是全世界每個人,
08:16
and it's right here.
187
481000
3000
就在這。
08:19
(Laughter笑聲)
188
484000
5000
(笑聲)
08:26
If I had really been a egotist自我中心主義,
189
491000
2000
要是我是個自大的人,
08:28
I would have put it into a virus病毒 and released發布 it in the room房間.
190
493000
3000
我就會把它放大病毒裡散步到屋子中。
08:31
(Laughter笑聲)
191
496000
5000
(笑聲)
08:39
So what was the next下一個 step?
192
504000
2000
所以下一步是什麼?
08:41
Writing寫作 down the DNA脫氧核糖核酸 was an interesting有趣 step.
193
506000
2000
記錄去氧核糖核酸是有趣的一步。
08:43
And that caused造成 these cells細胞 --
194
508000
2000
它導致了細胞的形成——
08:45
that kept不停 them happy快樂 for another另一個 billion十億 years年份.
195
510000
2000
讓它們又高興了幾十億年。
08:47
But then there was another另一個 really interesting有趣 step
196
512000
2000
不過還有個很有趣的環節
08:49
where things became成為 completely全然 different不同,
197
514000
3000
事情開始變得完全不同,
08:52
which哪一個 is these cells細胞 started開始 exchanging交換 and communicating通信 information信息,
198
517000
3000
那就是這些細胞開始交換和交流資訊,
08:55
so that they began開始 to get communities社區 of cells細胞.
199
520000
2000
從而形成細胞團體。
08:57
I don't know if you know this,
200
522000
2000
我不知道你們是否知道這個,
08:59
but bacteria can actually其實 exchange交換 DNA脫氧核糖核酸.
201
524000
2000
細菌實際上就可以交換去氧核糖核酸。
09:01
Now that's why, for instance,
202
526000
2000
這就是為什麼,比如,
09:03
antibiotic抗生素 resistance抵抗性 has evolved進化.
203
528000
2000
演變出抗菌免疫。
09:05
Some bacteria figured想通 out how to stay away from penicillin青黴素,
204
530000
3000
有些細菌知道怎麼遠離青黴素,
09:08
and it went around sort分類 of creating創建 its little DNA脫氧核糖核酸 information信息
205
533000
3000
然後它創造它這點去氧核糖核酸資訊,
09:11
with other bacteria,
206
536000
2000
並在別的細菌中到處遊走,
09:13
and now we have a lot of bacteria that are resistant to penicillin青黴素,
207
538000
3000
現在我們有很多對青黴素免疫的細菌了,
09:16
because bacteria communicate通信.
208
541000
2000
因為細菌會交流資訊。
09:18
Now what this communication通訊 allowed允許
209
543000
2000
這樣,這些交流致使
09:20
was communities社區 to form形成
210
545000
2000
群落的形成,
09:22
that, in some sense, were in the same相同 boat together一起;
211
547000
2000
在某種意義上,它們在同一條船上了;
09:24
they were synergistic協同.
212
549000
2000
它們是協作的。
09:26
So they survived倖存
213
551000
2000
因此它們一起倖存下來
09:28
or they failed失敗 together一起,
214
553000
2000
或者一起死去,
09:30
which哪一個 means手段 that if a community社區 was very successful成功,
215
555000
2000
也就是說如果一個群落成功了,
09:32
all the individuals個人 in that community社區
216
557000
2000
所有群落裡的個體
09:34
were repeated重複 more
217
559000
2000
都能複製更多,
09:36
and they were favored青睞 by evolution演化.
218
561000
3000
在進化更有利。
09:39
Now the transition過渡 point happened發生
219
564000
2000
於是,轉捩點到了,
09:41
when these communities社區 got so close
220
566000
2000
當這些族群很親近時,
09:43
that, in fact事實, they got together一起
221
568000
2000
事實上,它們聚集到一起
09:45
and decided決定 to write down the whole整個 recipe食譜 for the community社區
222
570000
3000
並決定一起在一條去氧核糖核酸上
09:48
together一起 on one string of DNA脫氧核糖核酸.
223
573000
3000
寫下整個族群的成分譜。
09:51
And so the next下一個 stage階段 that's interesting有趣 in life
224
576000
2000
生命中下一個有趣的階段
09:53
took about another另一個 billion十億 years年份.
225
578000
2000
又要幾十億年。
09:55
And at that stage階段,
226
580000
2000
在這個時期,
09:57
we have multi-cellular多細胞 communities社區,
227
582000
2000
有多細胞族群,
09:59
communities社區 of lots of different不同 types類型 of cells細胞,
228
584000
2000
就是有很多種不同細胞的群落,
10:01
working加工 together一起 as a single organism生物.
229
586000
2000
作為有機體一起合作。
10:03
And in fact事實, we're such這樣 a multi-cellular多細胞 community社區.
230
588000
3000
實際上,我們就是這樣的多細胞族群。
10:06
We have lots of cells細胞
231
591000
2000
我們有很多細胞,
10:08
that are not out for themselves他們自己 anymore.
232
593000
2000
它們不再是是只為自己存活。
10:10
Your skin皮膚 cell細胞 is really useless無用
233
595000
3000
皮膚細胞根本沒用,
10:13
without a heart cell細胞, muscle肌肉 cell細胞,
234
598000
2000
要是沒有心臟細胞,肌肉細胞,
10:15
a brain cell細胞 and so on.
235
600000
2000
腦細胞等等。
10:17
So these communities社區 began開始 to evolve發展
236
602000
2000
所以這些族群開始進化
10:19
so that the interesting有趣 level水平 on which哪一個 evolution演化 was taking服用 place地點
237
604000
3000
這樣發生有趣的進化的
10:22
was no longer a cell細胞,
238
607000
2000
不再僅僅是單一細胞。
10:24
but a community社區 which哪一個 we call an organism生物.
239
609000
3000
而是我們稱為機體的族群。
10:28
Now the next下一個 step that happened發生
240
613000
2000
接下來發生
10:30
is within these communities社區.
241
615000
2000
就是在這些族群中。
10:32
These communities社區 of cells細胞,
242
617000
2000
這些細胞群落,
10:34
again, began開始 to abstract抽象 information信息.
243
619000
2000
再次,開始提取資訊。
10:36
And they began開始 building建造 very special特別 structures結構
244
621000
3000
它們開始構建非常特別的
10:39
that did nothing but process處理 information信息 within the community社區.
245
624000
3000
專門處理群落內資訊的結構。
10:42
And those are the neural神經 structures結構.
246
627000
2000
這些就是神經結構。
10:44
So neurons神經元 are the information信息 processing處理 apparatus儀器
247
629000
3000
所以神經元是
10:47
that those communities社區 of cells細胞 built內置 up.
248
632000
3000
這些細胞群建立的資訊處理儀器。
10:50
And in fact事實, they began開始 to get specialists專家 in the community社區
249
635000
2000
實際上,群落裡開始出現專家
10:52
and special特別 structures結構
250
637000
2000
以及特殊結構
10:54
that were responsible主管 for recording記錄,
251
639000
2000
負責記錄,
10:56
understanding理解, learning學習 information信息.
252
641000
3000
理解,學習資訊。
10:59
And that was the brains大腦 and the nervous緊張 system系統
253
644000
2000
這就是這些細胞群的
11:01
of those communities社區.
254
646000
2000
大腦和神經系統。
11:03
And that gave them an evolutionary發展的 advantage優點.
255
648000
2000
這給了它們進化的有力條件。
11:05
Because at that point,
256
650000
3000
因為這樣的話,
11:08
an individual個人 --
257
653000
3000
對每個個體——
11:11
learning學習 could happen發生
258
656000
2000
學習可以發生
11:13
within the time span跨度 of a single organism生物,
259
658000
2000
在單個機體的時間範圍內,
11:15
instead代替 of over this evolutionary發展的 time span跨度.
260
660000
3000
而不是整個進化時間跨度。
11:18
So an organism生物 could, for instance,
261
663000
2000
所以一個機體能夠,比如說,
11:20
learn學習 not to eat a certain某些 kind of fruit水果
262
665000
2000
學會不吃某種水果
11:22
because it tasted bad and it got sick生病 last time it ate it.
263
667000
4000
因為它不好吃而且上次吃的覺得噁心。
11:26
That could happen發生 within the lifetime一生 of a single organism生物,
264
671000
3000
這可以發生在一個機體的一生中,
11:29
whereas before they'd他們會 built內置 these special特別 information信息 processing處理 structures結構,
265
674000
4000
然後在這種特殊信心處理結構建成前,
11:33
that would have had to be learned學到了 evolutionarily進化
266
678000
2000
這得要進化學習
11:35
over hundreds數以百計 of thousands數千 of years年份
267
680000
3000
千萬年,
11:38
by the individuals個人 dying垂死 off that ate that kind of fruit水果.
268
683000
3000
通過吃了這種水果前赴後繼死去的個體。
11:41
So that nervous緊張 system系統,
269
686000
2000
所以神經系統,
11:43
the fact事實 that they built內置 these special特別 information信息 structures結構,
270
688000
3000
生物組建這種特殊結構的事實,
11:46
tremendously異常 sped加快 up the whole整個 process處理 of evolution演化.
271
691000
3000
極大地加速了進化的進程。
11:49
Because evolution演化 could now happen發生 within an individual個人.
272
694000
3000
因為至此進化可以在個體中發生了。
11:52
It could happen發生 in learning學習 time scales.
273
697000
3000
它能發生在學習的時間刻度內。
11:55
But then what happened發生
274
700000
2000
但是接下來發生的
11:57
was the individuals個人 worked工作 out,
275
702000
2000
是每個個體發現了,
11:59
of course課程, tricks技巧 of communicating通信.
276
704000
2000
當然,交流的秘訣。
12:01
And for example,
277
706000
2000
比如說,
12:03
the most sophisticated複雜的 version that we're aware知道的 of is human人的 language語言.
278
708000
3000
我們所知道的最精密的版本就是人類語言。
12:06
It's really a pretty漂亮 amazing驚人 invention發明 if you think about it.
279
711000
3000
想想看,這真是個奇妙的發明。
12:09
Here I have a very complicated複雜, messy,
280
714000
2000
我腦子裡有個很複雜,混亂,
12:11
confused困惑 idea理念 in my head.
281
716000
3000
疑惑的的想法。
12:14
I'm sitting坐在 here making製造 grunting呼嚕 sounds聲音 basically基本上,
282
719000
3000
我坐在這,基本上就是吐字發聲,
12:17
and hopefully希望 constructing建設 a similar類似 messy, confused困惑 idea理念 in your head
283
722000
3000
希望在你們頭腦裡建立一個類似的混亂
12:20
that bears some analogy比喻 to it.
284
725000
2000
跟它有點類似的想法。
12:22
But we're taking服用 something very complicated複雜,
285
727000
2000
但是我們正在把很複雜的東西
12:24
turning車削 it into sound聲音, sequences序列 of sounds聲音,
286
729000
3000
轉化成聲音,一連串的聲音,
12:27
and producing生產 something very complicated複雜 in your brain.
287
732000
4000
並在你們大腦產生很複雜的東西。
12:31
So this allows允許 us now
288
736000
2000
所以現在這推動我們
12:33
to begin開始 to start開始 functioning功能
289
738000
2000
開始運作,
12:35
as a single organism生物.
290
740000
3000
作為單個機體。
12:38
And so, in fact事實, what we've我們已經 doneDONE
291
743000
3000
所以,實際上,我們已經完成的
12:41
is we, humanity人性,
292
746000
2000
就是我們,人類,
12:43
have started開始 abstracting抽象 out.
293
748000
2000
開始抽離出來。
12:45
We're going through通過 the same相同 levels水平
294
750000
2000
我們正在經歷多細胞機體經歷的
12:47
that multi-cellular多細胞 organisms生物 have gone走了 through通過 --
295
752000
2000
相同的階段——
12:49
abstracting抽象 out our methods方法 of recording記錄,
296
754000
3000
提取我們記錄,
12:52
presenting呈現, processing處理 information信息.
297
757000
2000
展示,處理資訊的方式。
12:54
So for example, the invention發明 of language語言
298
759000
2000
比如說,語言的發明
12:56
was a tiny step in that direction方向.
299
761000
3000
就是這個方向上很小一步。
12:59
Telephony電話, computers電腦,
300
764000
2000
電話,電腦,
13:01
videotapes錄像帶, CD-ROMs光盤 and so on
301
766000
3000
影碟,光碟等等
13:04
are all our specialized專門 mechanisms機制
302
769000
2000
都是我們的特殊機制,
13:06
that we've我們已經 now built內置 within our society社會
303
771000
2000
我們正在社會裡構建
13:08
for handling處理 that information信息.
304
773000
2000
用來處理資訊的機制。
13:10
And it all connects所連接 us together一起
305
775000
3000
這些都是把我們聯繫在一起,
13:13
into something
306
778000
2000
變的
13:15
that is much bigger
307
780000
2000
比我們之前
13:17
and much faster更快
308
782000
2000
更大,
13:19
and able能夠 to evolve發展
309
784000
2000
更快,
13:21
than what we were before.
310
786000
2000
更有能力進化。
13:23
So now, evolution演化 can take place地點
311
788000
2000
所以,現在進化可以發生在
13:25
on a scale規模 of microseconds微秒.
312
790000
2000
微秒的數量級上。
13:27
And you saw Ty's泰公司 little evolutionary發展的 example
313
792000
2000
你們看過泰伊的那個的進化的小例子
13:29
where he sort分類 of did a little bit of evolution演化
314
794000
2000
他好像就在你們眼前在卷積程式上
13:31
on the Convolution卷積 program程序 right before your eyes眼睛.
315
796000
3000
展現了一點進化了。
13:34
So now we've我們已經 speeded加快 up the time scales once一旦 again.
316
799000
3000
所以現在我們再次加快時間跨度。
13:37
So the first steps腳步 of the story故事 that I told you about
317
802000
2000
我講的故事的第一步
13:39
took a billion十億 years年份 a piece.
318
804000
2000
每一塊花費了幾十億年。
13:41
And the next下一個 steps腳步,
319
806000
2000
下一步,
13:43
like nervous緊張 systems系統 and brains大腦,
320
808000
2000
像神經系統和大腦,
13:45
took a few少數 hundred million百萬 years年份.
321
810000
2000
消耗幾百萬年。
13:47
Then the next下一個 steps腳步, like language語言 and so on,
322
812000
3000
再接下來,像語言等等,
13:50
took less than a million百萬 years年份.
323
815000
2000
需要不到一百萬年。
13:52
And these next下一個 steps腳步, like electronics電子產品,
324
817000
2000
再下一步,像電子器件,
13:54
seem似乎 to be taking服用 only a few少數 decades幾十年.
325
819000
2000
仿佛只要幾十年。
13:56
The process處理 is feeding饋送 on itself本身
326
821000
2000
這個過程是自給自足,
13:58
and becoming變得, I guess猜測, autocatalytic自催化 is the word for it --
327
823000
3000
並且變成,我猜,應該自我催化描述更合適——
14:01
when something reinforces加強 its rate of change更改.
328
826000
3000
當事物加快改變的速度。
14:04
The more it changes變化, the faster更快 it changes變化.
329
829000
3000
變化越多,變化就越快。
14:07
And I think that that's what we're seeing眼看 here in this explosion爆炸 of curve曲線.
330
832000
3000
我想這就是我們在這看到的激增曲線。
14:10
We're seeing眼看 this process處理 feeding饋送 back on itself本身.
331
835000
3000
我們看到這個過程回饋到自己。
14:13
Now I design設計 computers電腦 for a living活的,
332
838000
3000
我現在工作就是自己設計電腦,
14:16
and I know that the mechanisms機制
333
841000
2000
我知道用來設計電腦的
14:18
that I use to design設計 computers電腦
334
843000
3000
這些機制
14:21
would be impossible不可能
335
846000
2000
不可能存在,
14:23
without recent最近 advances進步 in computers電腦.
336
848000
2000
要是沒有近期電腦的進步。
14:25
So right now, what I do
337
850000
2000
現在,我做的
14:27
is I design設計 objects對象 at such這樣 complexity複雜
338
852000
3000
是設計複雜到
14:30
that it's really impossible不可能 for me to design設計 them in the traditional傳統 sense.
339
855000
3000
不可能從傳統意義上設計的物體。
14:33
I don't know what every一切 transistor晶體管 in the connection連接 machine does.
340
858000
4000
我不知道連接機器上每個電晶體的作用。
14:37
There are billions數十億 of them.
341
862000
2000
有幾十億電晶體。
14:39
Instead代替, what I do
342
864000
2000
實際上,我所做的
14:41
and what the designers設計師 at Thinking思維 Machines do
343
866000
3000
思考機器的設計師們做的,
14:44
is we think at some level水平 of abstraction抽象化
344
869000
2000
我們認為是在某種程度的資訊抽取,
14:46
and then we hand it to the machine
345
871000
2000
然後把它傳給機器
14:48
and the machine takes it beyond what we could ever do,
346
873000
3000
而機器把它運用到超出我們所能做的範圍,
14:51
much farther更遠 and faster更快 than we could ever do.
347
876000
3000
而且比我們從前所做的更遠更快。
14:54
And in fact事實, sometimes有時 it takes it by methods方法
348
879000
2000
實際上,有時候他採用的方法
14:56
that we don't quite相當 even understand理解.
349
881000
3000
我們並不很懂。
14:59
One method方法 that's particularly尤其 interesting有趣
350
884000
2000
有個尤其有趣
15:01
that I've been using運用 a lot lately最近
351
886000
3000
我最近一直在用的
15:04
is evolution演化 itself本身.
352
889000
2000
就是進化本身。
15:06
So what we do
353
891000
2000
我們做的就是
15:08
is we put inside the machine
354
893000
2000
在機器裡
15:10
a process處理 of evolution演化
355
895000
2000
放入一個進化進程,
15:12
that takes place地點 on the microsecond微秒 time scale規模.
356
897000
2000
這個進程在微妙級別上就能發生。
15:14
So for example,
357
899000
2000
比如,
15:16
in the most extreme極端 cases,
358
901000
2000
大部分極端情況下,
15:18
we can actually其實 evolve發展 a program程序
359
903000
2000
我們實際上能
15:20
by starting開始 out with random隨機 sequences序列 of instructions說明.
360
905000
4000
通過從隨機的指令序列開始進化一個程式。
15:24
Say, "Computer電腦, would you please make
361
909000
2000
(就像)說“電腦,請你產生
15:26
a hundred million百萬 random隨機 sequences序列 of instructions說明.
362
911000
3000
一億隨機指令序列。
15:29
Now would you please run all of those random隨機 sequences序列 of instructions說明,
363
914000
3000
現在請你運行所有這些隨機指令列,
15:32
run all of those programs程式,
364
917000
2000
運行所有程式,
15:34
and pick out the ones那些 that came來了 closest最近的 to doing what I wanted."
365
919000
3000
並選出最接近我想要的。”
15:37
So in other words, I define確定 what I wanted.
366
922000
2000
也就是說,我定義我要什麼。
15:39
Let's say I want to sort分類 numbers數字,
367
924000
2000
假設我需要分類資料,
15:41
as a simple簡單 example I've doneDONE it with.
368
926000
2000
這是個我用它試驗過的簡單例子。
15:43
So find the programs程式 that come closest最近的 to sorting排序 numbers數字.
369
928000
3000
找到最接近資料分類的程式。
15:46
So of course課程, random隨機 sequences序列 of instructions說明
370
931000
3000
當然,隨機的指令序列
15:49
are very unlikely不會 to sort分類 numbers數字,
371
934000
2000
很不可能分類資料,
15:51
so none沒有 of them will really do it.
372
936000
2000
所有它們中沒有一個能完成。
15:53
But one of them, by luck運氣,
373
938000
2000
但是中間有一個,運氣很好,
15:55
may可能 put two numbers數字 in the right order訂購.
374
940000
2000
可能會把兩個數按順序排列。
15:57
And I say, "Computer電腦,
375
942000
2000
我說,“電腦,
15:59
would you please now take the 10 percent百分
376
944000
3000
請你現在選出序列中百分之十
16:02
of those random隨機 sequences序列 that did the best最好 job工作.
377
947000
2000
完成得最好的。
16:04
Save保存 those. Kill off the rest休息.
378
949000
2000
保存這些。刪掉其他的。
16:06
And now let's reproduce複製
379
951000
2000
現在來複製
16:08
the ones那些 that sorted分類 numbers數字 the best最好.
380
953000
2000
資料分類得最好的這些。
16:10
And let's reproduce複製 them by a process處理 of recombination重組
381
955000
3000
以類似交配的重組過程
16:13
analogous類似 to sex性別."
382
958000
2000
來複製他們。”
16:15
Take two programs程式 and they produce生產 children孩子
383
960000
3000
取兩個程式
16:18
by exchanging交換 their subroutines子程序,
384
963000
2000
交換他們的副程式讓它們產生子女,
16:20
and the children孩子 inherit繼承 the traits性狀 of the subroutines子程序 of the two programs程式.
385
965000
3000
這些子女繼承了兩個程式副程式的特徵。
16:23
So I've got now a new generation of programs程式
386
968000
3000
所以我得到新一代的
16:26
that are produced生成 by combinations組合
387
971000
2000
由組合做的比較好的程式
16:28
of the programs程式 that did a little bit better job工作.
388
973000
2000
而產生的程式。
16:30
Say, "Please repeat重複 that process處理."
389
975000
2000
(指令)說,“請重複這個過程。”
16:32
Score得分了 them again.
390
977000
2000
再做一次。
16:34
Introduce介紹 some mutations突變 perhaps也許.
391
979000
2000
可能引入一些突變。
16:36
And try that again and do that for another另一個 generation.
392
981000
3000
再試一次並用在新的一代上。
16:39
Well every一切 one of those generations just takes a few少數 milliseconds毫秒.
393
984000
3000
這一代上每個程式只需要幾毫秒。
16:42
So I can do the equivalent當量
394
987000
2000
所以我在電腦上用幾分鐘
16:44
of millions百萬 of years年份 of evolution演化 on that
395
989000
2000
能做等同於
16:46
within the computer電腦 in a few少數 minutes分鐘,
396
991000
3000
幾百萬年的進化過程,
16:49
or in the complicated複雜 cases, in a few少數 hours小時.
397
994000
2000
或者,情況複雜時,在幾小時內完成。
16:51
At the end結束 of that, I end結束 up with programs程式
398
996000
3000
結束時,我得到
16:54
that are absolutely絕對 perfect完善 at sorting排序 numbers數字.
399
999000
2000
絕對完美地分類資料的程式。
16:56
In fact事實, they are programs程式 that are much more efficient高效
400
1001000
3000
實際上,這些程式比我手寫的
16:59
than programs程式 I could have ever written書面 by hand.
401
1004000
2000
任何程式都要有效率。
17:01
Now if I look at those programs程式,
402
1006000
2000
現在,如果我讀這些程式,
17:03
I can't tell you how they work.
403
1008000
2000
我說不出他們怎麼工作的。
17:05
I've tried試著 looking at them and telling告訴 you how they work.
404
1010000
2000
我嘗試過閱讀並且解釋他們如何工作的。
17:07
They're obscure朦朧, weird奇怪的 programs程式.
405
1012000
2000
他們很抽象,奇怪。
17:09
But they do the job工作.
406
1014000
2000
但是他們能完成任務。
17:11
And in fact事實, I know, I'm very confident信心 that they do the job工作
407
1016000
3000
實際上,我知道,我很有信心他們能完成任務
17:14
because they come from a line
408
1019000
2000
因為他們來自于一行
17:16
of hundreds數以百計 of thousands數千 of programs程式 that did the job工作.
409
1021000
2000
上千萬能完成認為的程式。
17:18
In fact事實, their life depended依賴 on doing the job工作.
410
1023000
3000
事實上,他們的生命就是靠著這工作。
17:21
(Laughter笑聲)
411
1026000
4000
(笑聲)
17:26
I was riding騎術 in a 747
412
1031000
2000
我曾經有一次
17:28
with Marvin馬文 Minsky明斯基 once一旦,
413
1033000
2000
和馬文明斯基一起坐747,
17:30
and he pulls out this card and says, "Oh look. Look at this.
414
1035000
3000
他拿出一張卡,說,“看,看這。
17:33
It says, 'This'這個 plane平面 has hundreds數以百計 of thousands數千 of tiny parts部分
415
1038000
4000
這上面說“本飛機有很多精密部件
17:37
working加工 together一起 to make you a safe安全 flight飛行.'
416
1042000
4000
協作,保障您飛行安全。”
17:41
Doesn't that make you feel confident信心?"
417
1046000
2000
這是不是讓你很有信心?”
17:43
(Laughter笑聲)
418
1048000
2000
(笑聲)
17:45
In fact事實, we know that the engineering工程 process處理 doesn't work very well
419
1050000
3000
事實上,我們知道工程過程複雜化
17:48
when it gets得到 complicated複雜.
420
1053000
2000
並不能很好工作。
17:50
So we're beginning開始 to depend依靠 on computers電腦
421
1055000
2000
所以我們開始依賴電腦
17:52
to do a process處理 that's very different不同 than engineering工程.
422
1057000
4000
來做與工程有很大不同的一個過程。
17:56
And it lets讓我們 us produce生產 things of much more complexity複雜
423
1061000
3000
它能讓我們生產出
17:59
than normal正常 engineering工程 lets讓我們 us produce生產.
424
1064000
2000
比普通工程能生產的更複雜的東西。
18:01
And yet然而, we don't quite相當 understand理解 the options選項 of it.
425
1066000
3000
然而,我們還不明白他的選擇。
18:04
So in a sense, it's getting得到 ahead of us.
426
1069000
2000
從某種意義上說,它比我們超前。
18:06
We're now using運用 those programs程式
427
1071000
2000
我們現在正用這些程式
18:08
to make much faster更快 computers電腦
428
1073000
2000
創造更快的電腦
18:10
so that we'll be able能夠 to run this process處理 much faster更快.
429
1075000
3000
以便能更快的運行這個進程。
18:13
So it's feeding饋送 back on itself本身.
430
1078000
3000
所以它是自我回饋的。
18:16
The thing is becoming變得 faster更快
431
1081000
2000
這正變得更快,
18:18
and that's why I think it seems似乎 so confusing撲朔迷離.
432
1083000
2000
這也是為什麼我覺得它似乎很讓人摸不清。
18:20
Because all of these technologies技術 are feeding饋送 back on themselves他們自己.
433
1085000
3000
由於所有這些技術都回饋到自己。
18:23
We're taking服用 off.
434
1088000
2000
我們正在起飛。
18:25
And what we are is we're at a point in time
435
1090000
3000
我們正是在時間的某一點,
18:28
which哪一個 is analogous類似 to when single-celled單細胞 organisms生物
436
1093000
2000
這一點類似於單細胞機體
18:30
were turning車削 into multi-celled多細胞 organisms生物.
437
1095000
3000
正轉變成多細胞機體的時刻。
18:33
So we're the amoebas變形蟲
438
1098000
2000
我們就像變形蟲,
18:35
and we can't quite相當 figure數字 out what the hell地獄 this thing is we're creating創建.
439
1100000
3000
搞不清自己正在創造的是什麼東西。
18:38
We're right at that point of transition過渡.
440
1103000
2000
我們正在轉捩點上。
18:40
But I think that there really is something coming未來 along沿 after us.
441
1105000
3000
不過我認為一定有跟隨著我們的東西。
18:43
I think it's very haughty傲慢 of us
442
1108000
2000
我想它是很崇拜我們的,
18:45
to think that we're the end結束 product產品 of evolution演化.
443
1110000
3000
認為我們是進化的終級產物。
18:48
And I think all of us here
444
1113000
2000
我認為我們這所有人
18:50
are a part部分 of producing生產
445
1115000
2000
都是繁衍的一部分,
18:52
whatever隨你 that next下一個 thing is.
446
1117000
2000
無論下一步是什麼。
18:54
So lunch午餐 is coming未來 along沿,
447
1119000
2000
午飯時間快到了,
18:56
and I think I will stop at that point,
448
1121000
2000
趁我還沒被選走,
18:58
before I get selected out.
449
1123000
2000
我就在這停下。/我想我就在這裡結束。
19:00
(Applause掌聲)
450
1125000
3000
(掌聲)
Translated by yinxi zhang
Reviewed by Zoe Chen 陳柔伊

▲Back to top

ABOUT THE SPEAKER
Danny Hillis - Computer theorist
Inventor, scientist, author, engineer -- over his broad career, Danny Hillis has turned his ever-searching brain on an array of subjects, with surprising results.

Why you should listen

Danny Hillis is an inventor, scientist, author and engineer. While completing his doctorate at MIT, he pioneered the concept of parallel computers that is now the basis for graphics processors and cloud computing. He holds more than 300 US patents, covering parallel computers, disk arrays, forgery prevention methods, various electronic and mechanical devices, and the pinch-to-zoom display interface. He has recently been working on problems in medicine as well. He is also the designer of a 10,000-year mechanical clock, and he gave a TED Talk in 1994 that is practically prophetic. Throughout his career, Hillis has worked at places like Disney, and now MIT and Applied Invention, always looking for the next fascinating problem.

More profile about the speaker
Danny Hillis | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee