ABOUT THE SPEAKER
Emily Oster - Assumption-busting economist
Emily Oster, a University of Chicago economist, uses the dismal science to rethink conventional wisdom, from her Harvard doctoral thesis that took on famed economist Amartya Sen to her recent work debunking assumptions on HIV prevalence in Africa.

Why you should listen

Emily Oster, an Assistant Professor of Economics at the University of Chicago, has a history of rethinking conventional wisdom.

Her Harvard doctoral thesis took on famed economist Amartya Sen and his claim that 100 million women were statistically missing from the developing world. He blamed misogynist medical care and outright sex-selective abortion for the gap, but Oster pointed to data indicating that in countries where Hepetitis B infections were higher, more boys were born. Through her unorthodox analysis of medical data, she accounted for 50% of the missing girls. Three years later, she would publish another paper amending her findings, stating that, after further study, the relationship between Hepetitis B and missing women was not apparent. This concession, along with her audacity to challenge economic assumptions and her dozens of other influential papers, has earned her the respect of the global academic community. 

She's also investigated the role of bad weather in the rise in witchcraft trials in Medieval Europe and what drives people to play the Powerball lottery. Her latest target: busting assumptions on HIV in Africa.

And she's an advice columnist too >>

 

More profile about the speaker
Emily Oster | Speaker | TED.com
TED2007

Emily Oster: Flip your thinking on AIDS in Africa

艾蜜莉·奧斯特(Emily Oster)顛覆我們對非洲愛滋病的想法

Filmed:
921,618 views

艾蜜莉·奧斯特從經濟學角度,重新檢視非洲愛滋病的數據,有了驚人的結論:我們對愛滋病病毒在非洲的傳播認知是錯誤的。
- Assumption-busting economist
Emily Oster, a University of Chicago economist, uses the dismal science to rethink conventional wisdom, from her Harvard doctoral thesis that took on famed economist Amartya Sen to her recent work debunking assumptions on HIV prevalence in Africa. Full bio

Double-click the English transcript below to play the video.

00:26
So I want to talk to you today今天 about AIDS艾滋病 in sub-Saharan撒哈拉以南 Africa非洲.
0
1000
3000
我今天要講的是撒哈拉以南非洲的愛滋病情形
00:29
And this is a pretty漂亮 well-educated受過良好教育 audience聽眾,
1
4000
2000
各位教育程度都很高
00:31
so I imagine想像 you all know something about AIDS艾滋病.
2
6000
3000
所以大家應該都知道愛滋病
00:34
You probably大概 know that roughly大致 25 million百萬 people in Africa非洲
3
9000
2000
在非洲有2500萬人
00:36
are infected感染 with the virus病毒, that AIDS艾滋病 is a disease疾病 of poverty貧窮,
4
11000
4000
感染愛滋病病毒,而且它也是窮人的疾病
00:40
and that if we can bring帶來 Africa非洲 out of poverty貧窮, we would decrease減少 AIDS艾滋病 as well.
5
15000
4000
如果能幫助非洲脫離貧窮,那愛滋病也會減少
00:44
If you know something more, you probably大概 know that Uganda烏干達, to date日期,
6
19000
3000
還有,烏干達現在是撒哈拉以南非洲地區
00:47
is the only country國家 in sub-Saharan撒哈拉以南 Africa非洲
7
22000
2000
唯一成功對抗這流行病
00:49
that has had success成功 in combating打擊 the epidemic疫情.
8
24000
3000
的國家
00:52
Using運用 a campaign運動 that encouraged鼓勵 people to abstain避免, be faithful可信, and use condoms避孕套 --
9
27000
4000
他們宣導ABC運動:戒絕、忠貞、保險套
00:56
the ABCABC campaign運動 -- they decreased下降 their prevalence流行 in the 1990s
10
31000
4000
成功在1990年,減低愛滋傳播率
01:00
from about 15 percent百分 to 6 percent百分 over just a few少數 years年份.
11
35000
4000
幾年間,從15%降到6%
01:04
If you follow跟隨 policy政策, you probably大概 know that a few少數 years年份 ago
12
39000
3000
如果你關心政策,你應該知道幾年前
01:07
the president主席 pledged承諾 15 billion十億 dollars美元 to fight鬥爭 the epidemic疫情 over five years年份,
13
42000
4000
總統投入15億美元,對抗愛滋病
01:11
and a lot of that money is going to go to programs程式 that try to replicate複製 Uganda烏干達
14
46000
3000
大部分的資金,都投入類似烏干達的計畫
01:14
and use behavior行為 change更改 to encourage鼓勵 people and decrease減少 the epidemic疫情.
15
49000
6000
利用行為改變,來鼓勵人們,以減低傳染
01:20
So today今天 I'm going to talk about some things
16
55000
2000
所以我今天要談一些
01:22
that you might威力 not know about the epidemic疫情,
17
57000
2000
關於愛滋,你們所不知道的事
01:24
and I'm actually其實 also going to challenge挑戰
18
59000
2000
再來我要挑戰一些
01:26
some of these things that you think that you do know.
19
61000
2000
你們已知的事
01:28
To do that I'm going to talk about my research研究
20
63000
3000
我先談我身為經濟學家
01:31
as an economist經濟學家 on the epidemic疫情.
21
66000
2000
對於愛滋病所做的研究
01:33
And I'm not really going to talk much about the economy經濟.
22
68000
2000
我不會談太多經濟的東西
01:35
I'm not going to tell you about exports出口 and prices價格.
23
70000
3000
也不會講進出口價格
01:38
But I'm going to use tools工具 and ideas思路 that are familiar to economists經濟學家
24
73000
4000
但我要用一些經濟學家常用的方法
01:42
to think about a problem問題 that's more traditionally傳統
25
77000
2000
來解釋流行病學、公共衛生
01:44
part部分 of public上市 health健康 and epidemiology流行病學.
26
79000
2000
衍生出的問題
01:46
And I think in that sense, this fits適合 really nicely很好 with this lateral thinking思維 idea理念.
27
81000
4000
這樣很符合橫向思維的概念
01:50
Here I'm really using運用 the tools工具 of one academic學術的 discipline學科
28
85000
3000
運用一種學術領域的工具
01:53
to think about problems問題 of another另一個.
29
88000
2000
來解決其他領域的問題
01:55
So we think, first and foremost最重要的是, AIDS艾滋病 is a policy政策 issue問題.
30
90000
3000
首先,愛滋病跟政策有關
01:58
And probably大概 for most people in this room房間, that's how you think about it.
31
93000
3000
可能在座大部分的人,也是這麼認為
02:01
But this talk is going to be about understanding理解 facts事實 about the epidemic疫情.
32
96000
4000
但我要講的是,關於理解疫情傳播的事實
02:05
It's going to be about thinking思維 about how it evolves演變, and how people respond響應 to it.
33
100000
3000
關於思考它的形成原因,人們的反應
02:08
I think it may可能 seem似乎 like I'm ignoring無視 the policy政策 stuff東東,
34
103000
3000
看來我可能會忽略政策之類的東西
02:11
which哪一個 is really the most important重要,
35
106000
2000
雖然政策是最重要的
02:13
but I'm hoping希望 that at the end結束 of this talk you will conclude得出結論
36
108000
2000
但演講結束你會明白
02:15
that we actually其實 cannot不能 develop發展 effective有效 policy政策
37
110000
2000
除非了解疾病的傳播
02:17
unless除非 we really understand理解 how the epidemic疫情 works作品.
38
112000
3000
我們是無法訂定有效政策的
02:20
And the first thing that I want to talk about,
39
115000
2000
我想講的第一點
02:22
the first thing I think we need to understand理解 is:
40
117000
2000
我們必須理解的第一點是
02:24
how do people respond響應 to the epidemic疫情?
41
119000
2000
人們對於愛滋病的反應是什麼?
02:26
So AIDS艾滋病 is a sexually transmitted發送 infection感染, and it kills殺死 you.
42
121000
4000
愛滋病是性傳播疾病,會致死
02:30
So this means手段 that in a place地點 with a lot of AIDS艾滋病,
43
125000
2000
所以愛滋病盛行的地方
02:32
there's a really significant重大 cost成本 of sex性別.
44
127000
2000
性行為的代價也高
02:34
If you're an uninfected未感染 man living活的 in Botswana博茨瓦納, where the HIVHIV rate is 30 percent百分,
45
129000
4000
波紮那的病毒感染率30%,如果你是個健康的男人
02:38
if you have one more partner夥伴 this year -- a long-term長期 partner夥伴, girlfriend女朋友, mistress情婦 --
46
133000
4000
你今年多了一個性伴侶-長期的、女友、情婦也好
02:42
your chance機會 of dying垂死 in 10 years年份 increases增加 by three percentage百分比 points.
47
137000
4000
你十年內死亡率會提高三個百分點
02:46
That is a huge巨大 effect影響.
48
141000
2000
這是很驚人的
02:48
And so I think that we really feel like then people should have less sex性別.
49
143000
3000
所以我們會覺得,人們真的要減少性行為
02:51
And in fact事實 among其中 gay同性戀者 men男人 in the US
50
146000
2000
事實上,美國的同性戀中
02:53
we did see that kind of change更改 in the 1980s.
51
148000
2000
在1980年代,我們確實看到這種改變
02:55
So if we look in this particularly尤其 high-risk高風險 sample樣品, they're being存在 asked,
52
150000
4000
仔細觀察高危險群,當他們被問到:
02:59
"Did you have more than one unprotected無保護 sexual有性 partner夥伴 in the last two months個月?"
53
154000
3000
「過去的兩個月內,你是否有一個以上,未採取保護措施的性伴侶?」
03:02
Over a period from '84 to '88, that share分享 drops滴劑 from about 85 percent百分 to 55 percent百分.
54
157000
6000
數據顯示,從84到88年,比例從85%下降到55%
03:08
It's a huge巨大 change更改 in a very short period of time.
55
163000
2000
這麼短時間內,這是很大的改變
03:10
We didn't see anything like that in Africa非洲.
56
165000
2000
在非洲我們從未看到這樣的改變
03:12
So we don't have quite相當 as good data數據, but you can see here
57
167000
3000
我們沒有足夠的數據,但你可以看到
03:15
the share分享 of single men男人 having pre-marital婚前 sex性別,
58
170000
2000
這是單身男人婚前性行為
03:17
or married已婚 men男人 having extra-marital婚外 sex性別,
59
172000
2000
或已婚男人的婚外性行為的數據比例
03:19
and how that changes變化 from the early '90s to late晚了 '90s,
60
174000
3000
從90年代初期到末期的改變
03:22
and late晚了 '90s to early 2000s. The epidemic疫情 is getting得到 worse更差.
61
177000
3000
以及90年末到2000年初期的改變,疫情變嚴重了
03:25
People are learning學習 more things about it.
62
180000
2000
人們對疾病的瞭解更多
03:27
We see almost幾乎 no change更改 in sexual有性 behavior行為.
63
182000
2000
但性行為上卻幾乎沒有變化
03:29
These are just tiny decreases降低 -- two percentage百分比 points -- not significant重大.
64
184000
4000
只有降低極少的2%而已
03:33
This seems似乎 puzzling令人費解. But I'm going to argue爭論 that you shouldn't不能 be surprised詫異 by this,
65
188000
4000
看來很怪,但你不應該對此感到吃驚
03:37
and that to understand理解 this you need to think about health健康
66
192000
3000
想要理解原因,你要用經濟學家的思維
03:40
the way than an economist經濟學家 does -- as an investment投資.
67
195000
3000
來思考健康議題,用投資的概念
03:43
So if you're a software軟件 engineer工程師 and you're trying to think about
68
198000
3000
如果你是個軟體設計師,當你在想
03:46
whether是否 to add some new functionality功能 to your program程序,
69
201000
3000
是否要在你的設計裡,加一些新的功能時
03:49
it's important重要 to think about how much it costs成本.
70
204000
2000
成本是必須考慮的
03:51
It's also important重要 to think about what the benefit效益 is.
71
206000
2000
收益也是必須考慮的
03:53
And one part部分 of that benefit效益 is how much longer
72
208000
2000
考慮收益的其中一個方法就是
03:55
you think this program程序 is going to be active活性.
73
210000
2000
你的軟體離推出還有多久
03:57
If version 10 is coming未來 out next下一個 week,
74
212000
2000
如果第十版下週推出
03:59
there's no point in adding加入 more functionality功能 into version nine.
75
214000
3000
那就沒必要更新第九版
04:02
But your health健康 decisions決定 are the same相同.
76
217000
2000
而健康也是如此
04:04
Every一切 time you have a carrot胡蘿蔔 instead代替 of a cookie曲奇餅,
77
219000
2000
每次放棄餅乾而去吃胡蘿蔔時
04:06
every一切 time you go to the gym健身房 instead代替 of going to the movies電影,
78
221000
3000
每次去健身房而不是看電影時
04:09
that's a costly昂貴 investment投資 in your health健康.
79
224000
2000
就是你對健康極大的投資
04:11
But how much you want to invest投資 is going to depend依靠
80
226000
2000
但你要投資多少
04:13
on how much longer you expect期望 to live生活 in the future未來,
81
228000
2000
跟你能活多久有關
04:15
even if you don't make those investments投資.
82
230000
2000
有沒有投資都一樣
04:17
AIDS艾滋病 is the same相同 kind of thing. It's costly昂貴 to avoid避免 AIDS艾滋病.
83
232000
3000
愛滋病也是如此,防疫愛滋也是昂貴的
04:20
People really like to have sex性別.
84
235000
3000
大家都喜歡做愛
04:23
But, you know, it has a benefit效益 in terms條款 of future未來 longevity長壽.
85
238000
6000
以未來長壽來講,它確實有好處
04:29
But life expectancy期待 in Africa非洲, even without AIDS艾滋病, is really, really low:
86
244000
4000
但在非洲,即使沒有愛滋病,平均壽命還是很低
04:33
40 or 50 years年份 in a lot of places地方.
87
248000
3000
大部分地方是40到50歲
04:36
I think it's possible可能, if we think about that intuition直覺, and think about that fact事實,
88
251000
4000
這樣可以馬上理解
04:40
that maybe that explains說明 some of this low behavior行為 change更改.
89
255000
3000
低行為改變的原因了
04:43
But we really need to test測試 that.
90
258000
2000
但仍需要證實
04:45
And a great way to test測試 that is to look across橫過 areas in Africa非洲 and see:
91
260000
3000
證實的方法就是,看非洲地區
04:48
do people with more life expectancy期待 change更改 their sexual有性 behavior行為 more?
92
263000
4000
平均壽命高的地方,性行為是否有較大的改變?
04:52
And the way that I'm going to do that is,
93
267000
2000
我的作法是
04:54
I'm going to look across橫過 areas with different不同 levels水平 of malaria瘧疾.
94
269000
3000
調查不同程度的瘧疾地區
04:57
So malaria瘧疾 is a disease疾病 that kills殺死 you.
95
272000
3000
瘧疾也是會致命的疾病
05:00
It's a disease疾病 that kills殺死 a lot of adults成年人 in Africa非洲, in addition加成 to a lot of children孩子.
96
275000
3000
在非洲,無數的大人、小孩因此死亡
05:03
And so people who live生活 in areas with a lot of malaria瘧疾
97
278000
3000
所以住在瘧疾病率高地區的人
05:06
are going to have lower降低 life expectancy期待 than people who live生活 in areas with limited有限 malaria瘧疾.
98
281000
4000
平均壽命低於瘧疾不嚴重地區的人
05:10
So one way to test測試 to see whether是否 we can explain說明
99
285000
2000
所以我們研究
05:12
some of this behavior行為 change更改 by differences分歧 in life expectancy期待
100
287000
3000
壽命是否會影響行為改變的方法
05:15
is to look and see is there more behavior行為 change更改
101
290000
3000
就是觀察瘧疾病率低的地區
05:18
in areas where there's less malaria瘧疾.
102
293000
2000
是否有較大的行為改變
05:20
So that's what this figure數字 shows節目 you.
103
295000
2000
這是我們的數據
05:22
This shows節目 you -- in areas with low malaria瘧疾, medium malaria瘧疾, high malaria瘧疾 --
104
297000
4000
分別是低、中、高程度瘧疾病率的地區
05:26
what happens發生 to the number of sexual有性 partners夥伴 as you increase增加 HIVHIV prevalence流行.
105
301000
4000
當愛滋病毒傳播增加時,性伴侶的數量情形
05:30
If you look at the blue藍色 line,
106
305000
2000
看這條藍線
05:32
the areas with low levels水平 of malaria瘧疾, you can see in those areas,
107
307000
3000
在這些瘧疾較少的地區
05:35
actually其實, the number of sexual有性 partners夥伴 is decreasing減少 a lot
108
310000
3000
當愛滋病毒傳播率提高時
05:38
as HIVHIV prevalence流行 goes up.
109
313000
2000
性伴侶數量是大量減少的
05:40
Areas地區 with medium levels水平 of malaria瘧疾 it decreases降低 some --
110
315000
2000
中程度瘧疾地區
05:42
it doesn't decrease減少 as much. And areas with high levels水平 of malaria瘧疾 --
111
317000
3000
雖然也有減少但不明顯,高程度瘧疾地區
05:45
actually其實, it's increasing增加 a little bit, although雖然 that's not significant重大.
112
320000
5000
反而增加,雖然數目不大
05:50
This is not just through通過 malaria瘧疾.
113
325000
2000
還不只是瘧疾
05:52
Young年輕 women婦女 who live生活 in areas with high maternal母系 mortality死亡
114
327000
3000
高產婦死亡率地區的年輕婦女
05:55
change更改 their behavior行為 less in response響應 to HIVHIV
115
330000
3000
為了防止愛滋病毒所做的行為改變
05:58
than young年輕 women婦女 who live生活 in areas with low maternal母系 mortality死亡.
116
333000
3000
比低產婦死亡率地區的年輕婦女還少
06:01
There's another另一個 risk風險, and they respond響應 less to this existing現有 risk風險.
117
336000
4000
因為有其他風險,所以他們對於已知風險的反應不大
06:06
So by itself本身, I think this tells告訴 a lot about how people behave表現.
118
341000
3000
這解釋了許多人類的行為
06:09
It tells告訴 us something about why we see limited有限 behavior行為 change更改 in Africa非洲.
119
344000
3000
像是為什麼非洲的行為改變有限
06:12
But it also tells告訴 us something about policy政策.
120
347000
2000
但還有政策的成效
06:14
Even if you only cared照顧 about AIDS艾滋病 in Africa非洲,
121
349000
3000
即使你只關心在非洲的愛滋病情況
06:17
it might威力 still be a good idea理念 to invest投資 in malaria瘧疾,
122
352000
3000
一起投資改善瘧疾、
06:20
in combating打擊 poor較差的 indoor室內 air空氣 quality質量,
123
355000
2000
室內的空氣品質、
06:22
in improving提高 maternal母系 mortality死亡 rates利率.
124
357000
2000
降低產婦死亡率也是很重要的
06:24
Because if you improve提高 those things,
125
359000
2000
因為改變了這些
06:26
then people are going to have an incentive激勵 to avoid避免 AIDS艾滋病 on their own擁有.
126
361000
4000
人們就會自覺性的防治愛滋病
06:30
But it also tells告訴 us something about one of these facts事實 that we talked about before.
127
365000
4000
這也證實我們先前所提的
06:34
Education教育 campaigns活動, like the one that the president主席 is focusing調焦 on in his funding資金,
128
369000
4000
總統一直投入資金的教育活動
06:38
may可能 not be enough足夠, at least最小 not alone單獨.
129
373000
2000
是不夠的
06:40
If people have no incentive激勵 to avoid避免 AIDS艾滋病 on their own擁有,
130
375000
2000
如果他們沒有防治愛滋病的自覺
06:42
even if they know everything about the disease疾病,
131
377000
2000
就算他們了解這疾病
06:44
they still may可能 not change更改 their behavior行為.
132
379000
2000
還是不會改變他們的行為
06:46
So the other thing that I think we learn學習 here is that AIDS艾滋病 is not going to fix固定 itself本身.
133
381000
3000
我們知道愛滋不會自癒
06:49
People aren't changing改變 their behavior行為 enough足夠
134
384000
2000
就算人們改變行為
06:51
to decrease減少 the growth發展 in the epidemic疫情.
135
386000
3000
傳染率降幅也不大
06:54
So we're going to need to think about policy政策
136
389000
2000
我們要重新考慮政策
06:56
and what kind of policies政策 might威力 be effective有效.
137
391000
2000
找出更有效的政策
06:58
And a great way to learn學習 about policy政策 is to look at what worked工作 in the past過去.
138
393000
3000
了解政策的方法,可以從過去的情形來看
07:01
The reason原因 that we know that the ABCABC campaign運動
139
396000
2000
我們知道,ABC運動
07:03
was effective有效 in Uganda烏干達 is we have good data數據 on prevalence流行 over time.
140
398000
3000
在烏干達這麼有效的原因,是因為當時有數據
07:06
In Uganda烏干達 we see the prevalence流行 went down.
141
401000
2000
可以看出傳染率下降
07:08
We know they had this campaign運動. That's how we learn學習 about what works作品.
142
403000
3000
我們知道是ABC運動的關係,所以做出此結論
07:11
It's not the only place地點 we had any interventions干預措施.
143
406000
2000
但不只有烏干達有活動
07:13
Other places地方 have tried試著 things, so why don't we look at those places地方
144
408000
4000
其他地方也有政策,那我們怎麼
07:17
and see what happened發生 to their prevalence流行?
145
412000
3000
不看看那些地方的情形呢?
07:20
Unfortunately不幸, there's almost幾乎 no good data數據
146
415000
2000
不幸的,我們並沒有2003年
07:22
on HIVHIV prevalence流行 in the general一般 population人口 in Africa非洲 until直到 about 2003.
147
417000
5000
非洲普遍人口的愛滋病毒感染情形
07:27
So if I asked you, "Why don't you go and find me
148
422000
2000
所以如果要找布基那法索國
07:29
the prevalence流行 in Burkina布基納法索 Faso布基納法索 in 1991?"
149
424000
3000
1991年傳染率數據
07:32
You get on Google谷歌, you Google谷歌, and you find,
150
427000
3000
用Google查一下,你會發現
07:35
actually其實 the only people tested測試 in Burkina布基納法索 Faso布基納法索 in 1991
151
430000
3000
1991年布基那法索國受測者
07:38
are STDSTD patients耐心 and pregnant women婦女,
152
433000
2000
都是性病患者和懷孕婦女
07:40
which哪一個 is not a terribly可怕 representative代表 group of people.
153
435000
2000
這群受測對象還可以
07:42
Then if you poked a little more, you looked看著 a little more at what was going on,
154
437000
3000
但如果深入調查,你會發現
07:45
you'd find that actually其實 that was a pretty漂亮 good year,
155
440000
3000
當年的結果是不錯的
07:48
because in some years年份 the only people tested測試 are IVIV drug藥物 users用戶.
156
443000
3000
其他年的受測對象都是靜脈藥癮者
07:51
But even worse更差 -- some years年份 it's only IVIV drug藥物 users用戶,
157
446000
2000
更糟的是,有些年是測靜脈藥癮者
07:53
some years年份 it's only pregnant women婦女.
158
448000
2000
有些年只有測懷孕婦女
07:55
We have no way to figure數字 out what happened發生 over time.
159
450000
2000
根本無法得知當時情形
07:57
We have no consistent一貫 testing測試.
160
452000
2000
也沒有持續抽樣檢察
07:59
Now in the last few少數 years年份, we actually其實 have doneDONE some good testing測試.
161
454000
5000
但幾年後,我們確實做了一些抽檢
08:04
In Kenya肯尼亞, in Zambia贊比亞, and a bunch of countries國家,
162
459000
3000
在肯亞、尚比亞和一些國家
08:07
there's been testing測試 in random隨機 samples樣本 of the population人口.
163
462000
3000
都有一些隨機抽樣
08:10
But this leaves樹葉 us with a big gap間隙 in our knowledge知識.
164
465000
3000
但數據上還是留了很大一片空白
08:13
So I can tell you what the prevalence流行 was in Kenya肯尼亞 in 2003,
165
468000
3000
我能告訴你,肯亞2003年的感染情況
08:16
but I can't tell you anything about 1993 or 1983.
166
471000
3000
但我無法提供1993年或1983年的情況
08:19
So this is a problem問題 for policy政策. It was a problem問題 for my research研究.
167
474000
4000
這是政策的問題,也是我研究遇到的問題
08:23
And I started開始 thinking思維 about how else其他 might威力 we figure數字 out
168
478000
4000
所以我開始想其他可能的辦法
08:27
what the prevalence流行 of HIVHIV was in Africa非洲 in the past過去.
169
482000
2000
以獲得非洲過去的愛滋病毒傳染率數據
08:29
And I think that the answer回答 is, we can look at mortality死亡 data數據,
170
484000
4000
我想到的方法是,利用死亡率數據
08:33
and we can use mortality死亡 data數據 to figure數字 out what the prevalence流行 was in the past過去.
171
488000
4000
來算出過去的愛滋病毒傳染率
08:37
To do this, we're going to have to rely依靠 on the fact事實
172
492000
2000
所以我們只能用愛滋病
08:39
that AIDS艾滋病 is a very specific具體 kind of disease疾病.
173
494000
2000
有個獨特性-
08:41
It kills殺死 people in the prime主要 of their lives生活.
174
496000
2000
會在人類黃金時期致死-這點
08:43
Not a lot of other diseases疾病 have that profile輪廓. And you can see here --
175
498000
3000
其他疾病都沒有這個特點,所以可以看到:
08:46
this is a graph圖形 of death死亡 rates利率 by age年齡 in Botswana博茨瓦納 and Egypt埃及.
176
501000
4000
這是波紮那和埃及的死亡率,以年齡劃分
08:50
Botswana博茨瓦納 is a place地點 with a lot of AIDS艾滋病,
177
505000
2000
波紮那是愛滋盛行的地區
08:52
Egypt埃及 is a place地點 without a lot of AIDS艾滋病.
178
507000
2000
埃及是愛滋不盛行的地區
08:54
And you see they have pretty漂亮 similar類似 death死亡 rates利率 among其中 young年輕 kids孩子 and old people.
179
509000
3000
他們的兒童、老人死亡率相似
08:57
That suggests提示 it's pretty漂亮 similar類似 levels水平 of development發展.
180
512000
3000
表示他們有相似的發展水準
09:00
But in this middle中間 region地區, between之間 20 and 45,
181
515000
3000
但在20到45歲間的死亡率
09:03
the death死亡 rates利率 in Botswana博茨瓦納 are much, much, much higher更高 than in Egypt埃及.
182
518000
4000
波紮那死亡率高出埃及很多
09:07
But since以來 there are very few少數 other diseases疾病 that kill people,
183
522000
4000
但其他會致死的並不多
09:11
we can really attribute屬性 that mortality死亡 to HIVHIV.
184
526000
3000
我們能將死亡率歸因為愛滋
09:14
But because people who died死亡 this year of AIDS艾滋病 got it a few少數 years年份 ago,
185
529000
4000
但愛滋感染到死亡的期間很長
09:18
we can use this data數據 on mortality死亡 to figure數字 out what HIVHIV prevalence流行 was in the past過去.
186
533000
5000
我們就用死亡率推回幾年前愛滋傳染率
09:23
So it turns out, if you use this technique技術,
187
538000
2000
所以,用這方法
09:25
actually其實 your estimates估計 of prevalence流行 are very close
188
540000
2000
我們能估算,受測結果
09:27
to what we get from testing測試 random隨機 samples樣本 in the population人口,
189
542000
3000
與估計的愛滋傳染率是很接近的
09:30
but they're very, very different不同 than what UNAIDS聯合國艾滋病規劃署 tells告訴 us the prevalences患病率 are.
190
545000
5000
但卻與聯合國愛滋病規劃署(UNAIDS)提供的數據大不相同
09:35
So this is a graph圖形 of prevalence流行 estimated預計 by UNAIDS聯合國艾滋病規劃署,
191
550000
3000
這是UNAIDS的傳染率統計
09:38
and prevalence流行 based基於 on the mortality死亡 data數據
192
553000
2000
以及1990年後期非洲九國
09:40
for the years年份 in the late晚了 1990s in nine countries國家 in Africa非洲.
193
555000
4000
的死亡率數據
09:44
You can see, almost幾乎 without exception例外,
194
559000
2000
可以看出,幾乎沒有例外
09:46
the UNAIDS聯合國艾滋病規劃署 estimates估計 are much higher更高 than the mortality-based死亡率為基礎 estimates估計.
195
561000
4000
UNAIDS的估計高出死亡率估計許多
09:50
UNAIDS聯合國艾滋病規劃署 tell us that the HIVHIV rate in Zambia贊比亞 is 20 percent百分,
196
565000
4000
UNAIDS說尚比亞愛滋傳播率20%
09:54
and mortality死亡 estimates估計 suggest建議 it's only about 5 percent百分.
197
569000
4000
但死亡率估計只有5%
09:58
And these are not trivial不重要的 differences分歧 in mortality死亡 rates利率.
198
573000
3000
這種差距是很大的
10:01
So this is another另一個 way to see this.
199
576000
2000
從另一方向來看
10:03
You can see that for the prevalence流行 to be as high as UNAIDS聯合國艾滋病規劃署 says,
200
578000
2000
如果傳播率有UNAIDS說的這麼高
10:05
we have to really see 60 deaths死亡 per 10,000
201
580000
2000
那死亡率應為1萬名中有60人死亡
10:07
rather than 20 deaths死亡 per 10,000 in this age年齡 group.
202
582000
4000
而不是1萬名有20人死亡的比例
10:11
I'm going to talk a little bit in a minute分鐘
203
586000
2000
我想用一分鐘稍微來談
10:13
about how we can use this kind of information信息 to learn學習 something
204
588000
3000
我們要怎麼用這種知識
10:16
that's going to help us think about the world世界.
205
591000
2000
來解決現有的問題
10:18
But this also tells告訴 us that one of these facts事實
206
593000
2000
我也會談到,演講開始時
10:20
that I mentioned提到 in the beginning開始 may可能 not be quite相當 right.
207
595000
3000
提到的某一點,其實是錯誤的
10:23
If you think that 25 million百萬 people are infected感染,
208
598000
2000
如果250萬人感染,
10:25
if you think that the UNAIDS聯合國艾滋病規劃署 numbers數字 are much too high,
209
600000
3000
或者UNAIDS估計太高,
10:28
maybe that's more like 10 or 15 million百萬.
210
603000
2000
那說... 100-150萬好了
10:30
It doesn't mean that AIDS艾滋病 isn't a problem問題. It's a gigantic巨大 problem問題.
211
605000
4000
這樣估計不表示愛滋不是問題,愛滋很嚴重
10:34
But it does suggest建議 that that number might威力 be a little big.
212
609000
4000
但這表示數字有點灌水了
10:38
What I really want to do, is I want to use this new data數據
213
613000
2000
我希望做的是,利用這新數據
10:40
to try to figure數字 out what makes品牌 the HIVHIV epidemic疫情 grow增長 faster更快 or slower比較慢.
214
615000
4000
來解答愛滋病毒傳播快慢的原因
10:44
And I said in the beginning開始, I wasn't going to tell you about exports出口.
215
619000
3000
如我一開始說的,我不談進出口
10:47
When I started開始 working加工 on these projects項目,
216
622000
2000
但我做了一些計畫
10:49
I was not thinking思維 at all about economics經濟學,
217
624000
2000
雖然不是以經濟為出發點
10:51
but eventually終於 it kind of sucks you back in.
218
626000
3000
但最後總會回到經濟來
10:54
So I am going to talk about exports出口 and prices價格.
219
629000
3000
我要說的是進出口價格
10:57
And I want to talk about the relationship關係 between之間 economic經濟 activity活動,
220
632000
3000
各國的經濟活動、出口量以及
11:00
in particular特定 export出口 volume, and HIVHIV infections感染.
221
635000
4000
愛滋病毒感染的關係
11:04
So obviously明顯, as an economist經濟學家, I'm deeply familiar
222
639000
4000
身為經濟學家,我明白
11:08
with the fact事實 that development發展, that openness透明度 to trade貿易,
223
643000
2000
對於發展中國家來說
11:10
is really good for developing發展 countries國家.
224
645000
2000
出口發展、自由是很重要的
11:12
It's good for improving提高 people's人們 lives生活.
225
647000
3000
可以促進生活品質
11:15
But openness透明度 and inter-connectedness相互聯繫, it comes with a cost成本
226
650000
2000
但以疾病角度來說
11:17
when we think about disease疾病. I don't think this should be a surprise.
227
652000
3000
這種自由與交流是有代價的
11:20
On Wednesday星期三, I learned學到了 from Laurie勞瑞 Garrett加勒特
228
655000
2000
星期三,蓋瑞特(全球衛生研究員)說
11:22
that I'm definitely無疑 going to get the bird flu流感,
229
657000
2000
我一定會得禽流感
11:24
and I wouldn't不會 be at all worried擔心 about that
230
659000
3000
但要是我們和亞洲沒有接觸
11:27
if we never had any contact聯繫 with Asia亞洲.
231
662000
3000
根本不必擔心
11:30
And HIVHIV is actually其實 particularly尤其 closely密切 linked關聯 to transit過境.
232
665000
4000
而愛滋病毒與運輸是緊密相連的
11:34
The epidemic疫情 was introduced介紹 to the US
233
669000
2000
愛滋當時傳到美國
11:36
by actually其實 one male steward管家 on an airline航空公司 flight飛行,
234
671000
4000
其實是因為飛機上一名男空服員
11:40
who got the disease疾病 in Africa非洲 and brought it back.
235
675000
2000
從非洲將病毒帶回來
11:42
And that was the genesis創世紀 of the entire整個 epidemic疫情 in the US.
236
677000
3000
也是美國愛滋病的開端
11:45
In Africa非洲, epidemiologists流行病學家 have noted注意 for a long time
237
680000
4000
在非洲,病理學家很早之前就發現
11:49
that truck卡車 drivers司機 and migrants移民 are more likely容易 to be infected感染 than other people.
238
684000
4000
移民者、卡車司機的感染率高於其他人
11:53
Areas地區 with a lot of economic經濟 activity活動 --
239
688000
2000
如果該地有很多經濟活動、
11:55
with a lot of roads道路, with a lot of urbanization城市化 --
240
690000
3000
很多道路、非常都市化
11:58
those areas have higher更高 prevalence流行 than others其他.
241
693000
2000
那麼傳染率則較普及
12:00
But that actually其實 doesn't mean at all
242
695000
2000
但也不代表
12:02
that if we gave people more exports出口, more trade貿易, that that would increase增加 prevalence流行.
243
697000
4000
如果有更多交易、出口,就會增加感染率
12:06
By using運用 this new data數據, using運用 this information信息 about prevalence流行 over time,
244
701000
4000
利用這個傳染率的數據
12:10
we can actually其實 test測試 that. And so it seems似乎 to be --
245
705000
4000
我們可以測試看看
12:14
fortunately幸好, I think -- it seems似乎 to be the case案件
246
709000
2000
結果證明是對的
12:16
that these things are positively積極 related有關.
247
711000
2000
這些東西是相互關聯的
12:18
More exports出口 means手段 more AIDS艾滋病. And that effect影響 is really big.
248
713000
4000
越多出口、越多愛滋,影響極大
12:22
So the data數據 that I have suggests提示 that if you double export出口 volume,
249
717000
4000
數據顯示,如果出口數加一倍
12:26
it will lead to a quadrupling翻兩番 of new HIVHIV infections感染.
250
721000
5000
愛滋感染率會增加四倍
12:31
So this has important重要 implications啟示 both for forecasting預測 and for policy政策.
251
726000
3000
因此在預測、政策上都要將此納入考量
12:34
From a forecasting預測 perspective透視, if we know where trade貿易 is likely容易 to change更改,
252
729000
4000
從預測的角度來看,如果我們知道交易會改變
12:38
for example, because of the African非洲人 Growth發展 and Opportunities機會 Act法案
253
733000
3000
例如,因為「非洲成長及機會法案」
12:41
or other policies政策 that encourage鼓勵 trade貿易,
254
736000
2000
或其他鼓勵交易的法案
12:43
we can actually其實 think about which哪一個 areas are likely容易 to be heavily嚴重 infected感染 with HIVHIV.
255
738000
5000
我們可以知道這些地方感染率會提高
12:48
And we can go and we can try to have pre-emptive先發製人 preventive預防 measures措施 there.
256
743000
6000
那就可以先發製人,做出因應措施
12:54
Likewise同樣, as we're developing發展 policies政策 to try to encourage鼓勵 exports出口,
257
749000
3000
相同的,現在許多政策都鼓勵出口
12:57
if we know there's this externality外部性 --
258
752000
2000
如果我們知道會有外部效應-
12:59
this extra額外 thing that's going to happen發生 as we increase增加 exports出口 --
259
754000
2000
增加出口連帶其他事情的發生
13:01
we can think about what the right kinds of policies政策 are.
260
756000
3000
即可想出正確的因應政策
13:04
But it also tells告訴 us something about one of these things that we think that we know.
261
759000
3000
有些事我們早已清楚
13:07
Even though雖然 it is the case案件 that poverty貧窮 is linked關聯 to AIDS艾滋病,
262
762000
3000
即使我們知道愛滋與貧窮習習相關
13:10
in the sense that Africa非洲 is poor較差的 and they have a lot of AIDS艾滋病,
263
765000
3000
非洲窮、愛滋多
13:13
it's not necessarily一定 the case案件 that improving提高 poverty貧窮 -- at least最小 in the short run,
264
768000
4000
短期來說,不表示改善經濟
13:17
that improving提高 exports出口 and improving提高 development發展 --
265
772000
2000
改善出口、改善當地發展
13:19
it's not necessarily一定 the case案件 that that's going to lead
266
774000
2000
就能有效的
13:21
to a decline下降 in HIVHIV prevalence流行.
267
776000
2000
降低愛滋病毒盛行率
13:24
So throughout始終 this talk I've mentioned提到 a few少數 times
268
779000
2000
剛剛我重複提了
13:26
the special特別 case案件 of Uganda烏干達, and the fact事實 that
269
781000
2000
烏干達成功的案例
13:28
it's the only country國家 in sub-Saharan撒哈拉以南 Africa非洲 with successful成功 prevention預防.
270
783000
4000
它是撒哈拉以南非洲唯一成功預防傳染的國家
13:32
It's been widely廣泛 heralded預示.
271
787000
2000
結果大家都開心
13:34
It's been replicated複製 in Kenya肯尼亞, and Tanzania坦桑尼亞, and South Africa非洲 and many許多 other places地方.
272
789000
6000
相同政策也在肯亞、坦尚尼亞、南非等國實施
13:40
But now I want to actually其實 also question that.
273
795000
4000
但我懷疑它的成效
13:44
Because it is true真正 that there was a decline下降 in prevalence流行
274
799000
3000
因為1990年代,烏干達愛滋傳播率降低
13:47
in Uganda烏干達 in the 1990s. It's true真正 that they had an education教育 campaign運動.
275
802000
4000
一半是因為有教育性的活動
13:51
But there was actually其實 something else其他 that happened發生 in Uganda烏干達 in this period.
276
806000
6000
但事實上,烏干達當時發生了一件事
13:57
There was a big decline下降 in coffee咖啡 prices價格.
277
812000
2000
就是咖啡價格降低
13:59
Coffee咖啡 is Uganda's烏干達 major重大的 export出口.
278
814000
2000
烏干達主要出口是咖啡
14:01
Their exports出口 went down a lot in the early 1990s -- and actually其實 that decline下降 lines up
279
816000
5000
1990年代早期,出口是下降的,可以看出
14:06
really, really closely密切 with this decline下降 in new HIVHIV infections感染.
280
821000
4000
下降幅度與愛滋病毒感染幅度極為相同
14:10
So you can see that both of these series系列 --
281
825000
3000
可以從圖上明顯看出
14:13
the black黑色 line is export出口 value, the red line is new HIVHIV infections感染 --
282
828000
3000
黑線是出口數,紅線是愛滋病毒感染率
14:16
you can see they're both increasing增加.
283
831000
2000
兩個都增加
14:18
Starting開始 about 1987 they're both going down a lot.
284
833000
2000
從1987年開始,大幅下滑
14:20
And then actually其實 they track跟踪 each other
285
835000
2000
最後幾年
14:22
a little bit on the increase增加 later後來 in the decade.
286
837000
2000
兩個數據又同時上升
14:24
So if you combine結合 the intuition直覺 in this figure數字
287
839000
2000
所以用你的直覺以及
14:26
with some of the data數據 that I talked about before,
288
841000
3000
利用我剛剛的數據可以看出
14:29
it suggests提示 that somewhere某處 between之間 25 percent百分 and 50 percent百分
289
844000
4000
烏干達傳染率的下降
14:33
of the decline下降 in prevalence流行 in Uganda烏干達
290
848000
2000
有25%到50%
14:35
actually其實 would have happened發生 even without any education教育 campaign運動.
291
850000
4000
就算沒有教育活動也會減少
14:39
But that's enormously巨大 important重要 for policy政策.
292
854000
2000
這對於後來政策制定很重要
14:41
We're spending開支 so much money to try to replicate複製 this campaign運動.
293
856000
2000
我們花了這麼多錢投入ABC運動
14:43
And if it was only 50 percent百分 as effective有效 as we think that it was,
294
858000
3000
但只有我們預期一半的效果
14:46
then there are all sorts排序 of other things
295
861000
2000
所以或許我們應該
14:48
maybe we should be spending開支 our money on instead代替.
296
863000
2000
想想更多錢應該怎麼花的方法
14:50
Trying to change更改 transmission傳輸 rates利率 by treating治療 other sexually transmitted發送 diseases疾病.
297
865000
4000
像是治療其他性傳染疾病還控制傳染率
14:54
Trying to change更改 them by engaging in male circumcision割禮.
298
869000
2000
像是鼓勵男性割包皮
14:56
There are tons of other things that we should think about doing.
299
871000
2000
還有更多的事可以做
14:58
And maybe this tells告訴 us that we should be thinking思維 more about those things.
300
873000
4000
我想說的是,希望大家能想些其他能做的事
15:02
I hope希望 that in the last 16 minutes分鐘 I've told you something that you didn't know about AIDS艾滋病,
301
877000
5000
我希望剛剛16分鐘內,我分享了你們所不知道的事
15:07
and I hope希望 that I've gotten得到 you questioning疑問 a little bit
302
882000
2000
我希望各位能深入思考
15:09
some of the things that you did know.
303
884000
2000
那些你們已知的事
15:11
And I hope希望 that I've convinced相信 you maybe
304
886000
2000
我希望我成功說服你們
15:13
that it's important重要 to understand理解 things about the epidemic疫情
305
888000
2000
思考政策時
15:15
in order訂購 to think about policy政策.
306
890000
2000
了解疾病是很重要的
15:18
But more than anything, you know, I'm an academic學術的.
307
893000
2000
但是,我是一個學者
15:20
And when I leave離開 here, I'm going to go back
308
895000
2000
當演講結束,我會回到
15:22
and sit in my tiny office辦公室, and my computer電腦, and my data數據.
309
897000
3000
我的小辦公室,對著我的電腦、數據
15:25
And the thing that's most exciting扣人心弦 about that
310
900000
2000
而我最興奮的事
15:27
is every一切 time I think about research研究, there are more questions問題.
311
902000
3000
我每次想到研究,我就會有更多的問題
15:30
There are more things that I think that I want to do.
312
905000
2000
我想做的還有很多
15:32
And what's really, really great about being存在 here
313
907000
2000
能來這裡真的很棒
15:34
is I'm sure that the questions問題 that you guys have
314
909000
2000
我相信你們所思考的問題
15:36
are very, very different不同 than the questions問題 that I think up myself.
315
911000
3000
都和我所想出的問題截然不同
15:39
And I can't wait to hear about what they are.
316
914000
2000
而我非常期待你們想出的問題
15:41
So thank you very much.
317
916000
2000
謝謝大家
Translated by Adrienne Lin
Reviewed by Zhu Jie

▲Back to top

ABOUT THE SPEAKER
Emily Oster - Assumption-busting economist
Emily Oster, a University of Chicago economist, uses the dismal science to rethink conventional wisdom, from her Harvard doctoral thesis that took on famed economist Amartya Sen to her recent work debunking assumptions on HIV prevalence in Africa.

Why you should listen

Emily Oster, an Assistant Professor of Economics at the University of Chicago, has a history of rethinking conventional wisdom.

Her Harvard doctoral thesis took on famed economist Amartya Sen and his claim that 100 million women were statistically missing from the developing world. He blamed misogynist medical care and outright sex-selective abortion for the gap, but Oster pointed to data indicating that in countries where Hepetitis B infections were higher, more boys were born. Through her unorthodox analysis of medical data, she accounted for 50% of the missing girls. Three years later, she would publish another paper amending her findings, stating that, after further study, the relationship between Hepetitis B and missing women was not apparent. This concession, along with her audacity to challenge economic assumptions and her dozens of other influential papers, has earned her the respect of the global academic community. 

She's also investigated the role of bad weather in the rise in witchcraft trials in Medieval Europe and what drives people to play the Powerball lottery. Her latest target: busting assumptions on HIV in Africa.

And she's an advice columnist too >>

 

More profile about the speaker
Emily Oster | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee