ABOUT THE SPEAKER
Laura Schulz - Cognitive scientist
Developmental behavior studies spearheaded by Laura Schulz are changing our notions of how children learn.

Why you should listen

MIT Early Childhood Cognition Lab lead investigator Laura Schulz studies learning in early childhood. Her research bridges computational models of cognitive development and behavioral studies in order to understand the origins of inquiry and discovery.

Working in play labs, children’s museums, and a recently-launched citizen science website, Schultz is reshaping how we view young children’s perceptions of the world around them. Some of the surprising results of her research: before the age of four, children expect hidden causes when events happen probabilistically, use simple experiments to distinguish causal hypotheses, and trade off learning from instruction and exploration.

More profile about the speaker
Laura Schulz | Speaker | TED.com
TED2015

Laura Schulz: The surprisingly logical minds of babies

羅拉·舒爾茨: 嬰兒令人驚訝的邏輯思維

Filmed:
1,888,975 views

嬰兒如何從零開始,快速地學到這麼多的事情? 在這個有趣和引用了很多實驗的講座中,認知科學家羅拉·舒爾茨分享嬰兒如何在懂得說話前,已經能用令人驚訝的邏輯思維作出決定。
- Cognitive scientist
Developmental behavior studies spearheaded by Laura Schulz are changing our notions of how children learn. Full bio

Double-click the English transcript below to play the video.

00:12
Mark標記 Twain吐溫 summed總結 up
what I take to be
0
835
2155
馬克.吐溫用一句妙語概括了,
我認為是認知科學的一個最根本問題。
00:14
one of the fundamental基本的 problems問題
of cognitive認知 science科學
1
2990
3120
00:18
with a single witticism妙語.
2
6110
1710
00:20
He said, "There's something
fascinating迷人 about science科學.
3
8410
3082
他說:「科學的有趣之處在於,
00:23
One gets得到 such這樣 wholesale批發
returns回報 of conjecture推測
4
11492
3228
一個人可從微不足道的事得出了偉大的猜想。」
00:26
out of such這樣 a trifling輕微
investment投資 in fact事實."
5
14720
3204
00:29
(Laughter笑聲)
6
17924
1585
(笑聲)
00:32
Twain吐溫 meant意味著 it as a joke玩笑,
of course課程, but he's right:
7
20199
2604
馬克.吐溫當然只是開玩笑,但他是對的。
00:34
There's something
fascinating迷人 about science科學.
8
22803
2876
科學有其有趣之處。
00:37
From a few少數 bones骨頭, we infer推斷
the existence存在 of dinosuarsdinosuars.
9
25679
4261
從幾塊骨頭,我們推測了恐龍的存在;
00:42
From spectral光譜 lines,
the composition組成 of nebulae星雲.
10
30910
3871
從譜線得出了星雲的成份;
00:47
From fruit水果 flies蒼蠅,
11
35471
2938
從果蠅得出了遺傳的機制;
00:50
the mechanisms機制 of heredity遺傳,
12
38409
2943
00:53
and from reconstructed重建 images圖片
of blood血液 flowing流動 through通過 the brain,
13
41352
4249
以及從血液流入大腦的重建影像,
00:57
or in my case案件, from the behavior行為
of very young年輕 children孩子,
14
45601
4708
在我的研究則是從幼兒的行為中,
01:02
we try to say something about
the fundamental基本的 mechanisms機制
15
50309
2829
我們嘗試解釋人類認知的基本機制。
01:05
of human人的 cognition認識.
16
53138
1618
01:07
In particular特定, in my lab實驗室 in the Department
of Brain and Cognitive認知 Sciences科學 at MITMIT,
17
55716
4759
我在麻省理工大腦及認知科學系實驗室中,
01:12
I have spent花費 the past過去 decade
trying to understand理解 the mystery神秘
18
60475
3654
花了過去十年研究一個謎團,
01:16
of how children孩子 learn學習 so much
from so little so quickly很快.
19
64129
3977
就是兒童如何從零開始,
快速地學到那麼多的東西。
01:20
Because, it turns out that
the fascinating迷人 thing about science科學
20
68666
2978
科學令人著迷之處,
01:23
is also a fascinating迷人
thing about children孩子,
21
71644
3529
亦正是孩子令人著迷的地方。
01:27
which哪一個, to put a gentler溫和
spin on Mark標記 Twain吐溫,
22
75173
2581
回應馬克.吐溫的話,
01:29
is precisely恰恰 their ability能力
to draw rich豐富, abstract抽象 inferences推論
23
77754
4650
那就是孩子從零碎和離亂的訊息中,
能夠得出豐富而抽象的推論的能力。
01:34
rapidly急速 and accurately準確
from sparse, noisy嘈雜 data數據.
24
82404
4661
01:40
I'm going to give you
just two examples例子 today今天.
25
88355
2398
我將舉出兩個例子:
01:42
One is about a problem問題 of generalization概括,
26
90753
2287
一個是關於廣義化的問題,
01:45
and the other is about a problem問題
of causal因果 reasoning推理.
27
93040
2850
另一個則是關於因果推理的。
01:47
And although雖然 I'm going to talk
about work in my lab實驗室,
28
95890
2525
雖然我將會談及我實驗室的研究,
01:50
this work is inspired啟發 by
and indebted感激的 to a field領域.
29
98415
3460
但這個研究的靈感是來自一個領域,
01:53
I'm grateful感激 to mentors導師, colleagues同事,
and collaborators合作者 around the world世界.
30
101875
4283
一個我要感謝世界各地的導師、
同事和工作夥伴付出的領域。
01:59
Let me start開始 with the problem問題
of generalization概括.
31
107308
2974
讓我先談談廣義化的問題。
02:02
Generalizing泛化 from small samples樣本 of data數據
is the bread麵包 and butter牛油 of science科學.
32
110652
4133
歸納數據樣本在科學上是不可或缺的,
02:06
We poll輪詢 a tiny fraction分數 of the electorate選民
33
114785
2554
如我們調查一部分的選民,
02:09
and we predict預測 the outcome結果
of national國民 elections選舉.
34
117339
2321
然後預測國家大選的結果。
02:12
We see how a handful少數 of patients耐心
responds響應 to treatment治療 in a clinical臨床 trial審訊,
35
120240
3925
我們觀察一小撮病人在臨床試驗中的反應,
02:16
and we bring帶來 drugs毒品 to a national國民 market市場.
36
124165
3065
然後把藥物帶入市場,
02:19
But this only works作品 if our sample樣品
is randomly隨機 drawn from the population人口.
37
127230
4365
但只有在整個人口中隨機抽樣才可行。
02:23
If our sample樣品 is cherry-picked櫻桃採摘
in some way --
38
131595
2735
當我們刻意挑選樣本,
02:26
say, we poll輪詢 only urban城市的 voters選民,
39
134330
2072
如我們只調查城市中的選民,
02:28
or say, in our clinical臨床 trials試驗
for treatments治療 for heart disease疾病,
40
136402
4388
又或在治療心臟病的臨床試驗中,
02:32
we include包括 only men男人 --
41
140790
1881
我們只研究男性,
02:34
the results結果 may可能 not generalize概括
to the broader更廣泛 population人口.
42
142671
3158
這樣的結果便不能代表整個人口。
02:38
So scientists科學家們 care關心 whether是否 evidence證據
is randomly隨機 sampled取樣 or not,
43
146479
3581
因此科學家著緊抽樣的方法是否隨機。
02:42
but what does that have to do with babies嬰兒?
44
150060
2015
但這又跟嬰兒有甚麼關係?
02:44
Well, babies嬰兒 have to generalize概括
from small samples樣本 of data數據 all the time.
45
152585
4621
嬰兒在任何時候都要歸納數據樣本,
02:49
They see a few少數 rubber橡膠 ducks鴨子
and learn學習 that they float浮動,
46
157206
3158
當他們看到幾隻橡皮鴨,
並知道它們浮在水面。
02:52
or a few少數 balls and learn學習 that they bounce彈跳.
47
160364
3575
又或見到幾個皮球,
並知道它們能彈跳。
02:55
And they develop發展 expectations期望
about ducks鴨子 and balls
48
163939
2951
從中他們建立對橡膠鴨和皮球的概念,
02:58
that they're going to extend延伸
to rubber橡膠 ducks鴨子 and balls
49
166890
2716
並將這概念延伸至日後會見到的
所有橡膠鴨和皮球。
03:01
for the rest休息 of their lives生活.
50
169606
1879
03:03
And the kinds of generalizations概括
babies嬰兒 have to make about ducks鴨子 and balls
51
171485
3739
嬰兒對橡膠鴨和皮球的這種概括,
03:07
they have to make about almost幾乎 everything:
52
175224
2089
他們會運用在每一件事上:
03:09
shoes and ships船舶 and sealing密封 wax
and cabbages捲心菜 and kings國王.
53
177313
3917
鞋子、船、封蠟、捲心菜和皇帝。
03:14
So do babies嬰兒 care關心 whether是否
the tiny bit of evidence證據 they see
54
182200
2961
因此嬰兒留意這些細節能否代表整體。
03:17
is plausibly振振有詞 representative代表
of a larger population人口?
55
185161
3692
03:21
Let's find out.
56
189763
1900
我們一起看看吧。
03:23
I'm going to show顯示 you two movies電影,
57
191663
1723
我將讓你看兩段短片,
03:25
one from each of two conditions條件
of an experiment實驗,
58
193386
2462
這兩段短片分別代表實驗的兩個情況。
03:27
and because you're going to see
just two movies電影,
59
195848
2438
由於你將看到兩段短片,
03:30
you're going to see just two babies嬰兒,
60
198286
2136
你只會看到兩個嬰兒,
03:32
and any two babies嬰兒 differ不同 from each other
in innumerable無數 ways方法.
61
200422
3947
而這兩個嬰兒在很多地方都是不同的。
03:36
But these babies嬰兒, of course課程,
here stand in for groups of babies嬰兒,
62
204369
3051
但這兩個嬰兒將代表更大的群組,
03:39
and the differences分歧 you're going to see
63
207420
1895
你將看到的不同之處則代表
嬰兒行為中的平均差異。
03:41
represent代表 average平均 group differences分歧
in babies'嬰兒 behavior行為 across橫過 conditions條件.
64
209315
5195
03:47
In each movie電影, you're going to see
a baby寶寶 doing maybe
65
215160
2583
在每一段短片中你會見到嬰兒
在做些他們正常會做的事。
03:49
just exactly究竟 what you might威力
expect期望 a baby寶寶 to do,
66
217743
3460
03:53
and we can hardly幾乎不 make babies嬰兒
more magical神奇 than they already已經 are.
67
221203
4017
嬰兒本身已是十分神奇的,
03:58
But to my mind心神 the magical神奇 thing,
68
226090
2010
但對我來說他們的神奇之處,
04:00
and what I want you to pay工資 attention注意 to,
69
228100
2089
也是我想你們留意的地方,
04:02
is the contrast對比 between之間
these two conditions條件,
70
230189
3111
就是這兩種情況之間的分別。
04:05
because the only thing
that differs不同 between之間 these two movies電影
71
233300
3529
因為這兩段短片唯一不同的地方,
04:08
is the statistical統計 evidence證據
the babies嬰兒 are going to observe.
72
236829
3466
正是嬰兒將要觀察的資料。
04:13
We're going to show顯示 babies嬰兒
a box of blue藍色 and yellow黃色 balls,
73
241425
3183
我們把一些藍色和黃色的球給嬰兒看。
04:16
and my then-graduate那麼研究生 student學生,
now colleague同事 at Stanford斯坦福, HyowonHyowon GweonGweon,
74
244608
4620
權孝媛當時是我的學生,
現在則是史丹佛大學的同事。
04:21
is going to pull three blue藍色 balls
in a row out of this box,
75
249228
3077
她將拿出三個藍色的球,
04:24
and when she pulls those balls out,
she's going to squeeze them,
76
252305
3123
而當她拿出這些球時,
她會把球擠一下,
04:27
and the balls are going to squeak.
77
255428
2113
讓這些球發出吱吱聲。
04:29
And if you're a baby寶寶,
that's like a TEDTED Talk.
78
257541
2763
這對於嬰兒來說就像TED一樣,
04:32
It doesn't get better than that.
79
260304
1904
是件很美好的事。
04:34
(Laughter笑聲)
80
262208
2561
(笑聲)
04:38
But the important重要 point is it's really
easy簡單 to pull three blue藍色 balls in a row
81
266968
3659
從一個裝滿藍色球的箱中,
抽出三個藍色球是件很容易的事。
04:42
out of a box of mostly大多 blue藍色 balls.
82
270627
2305
04:44
You could do that with your eyes眼睛 closed關閉.
83
272932
2060
你閉上眼睛也能做到,
04:46
It's plausibly振振有詞 a random隨機 sample樣品
from this population人口.
84
274992
2996
這就像隨機抽樣。
04:49
And if you can reach達到 into a box at random隨機
and pull out things that squeak,
85
277988
3732
因此當你可以在箱中隨機地抽出
能吱吱叫的物件時,
04:53
then maybe everything in the box squeaks尖叫聲.
86
281720
2839
也許箱中所有物件都能吱吱叫,
04:56
So maybe babies嬰兒 should expect期望
those yellow黃色 balls to squeak as well.
87
284559
3650
所以嬰兒可能會假設黃色球也能吱吱叫。
05:00
Now, those yellow黃色 balls
have funny滑稽 sticks on the end結束,
88
288209
2519
但這些黃色球都有一根棒,
05:02
so babies嬰兒 could do other things
with them if they wanted to.
89
290728
2857
所以嬰兒可用它們做些不同的事,
05:05
They could pound them or whack重打 them.
90
293585
1831
他們可以拍打或搖動這些球。
05:07
But let's see what the baby寶寶 does.
91
295416
2586
就讓我們看看這嬰兒會做甚麼。
05:12
(Video視頻) HyowonHyowon GweonGweon: See this?
(Ball squeaks尖叫聲)
92
300548
3343
(影片) 權孝媛: 看看這個。
(球發出吱吱聲)
05:16
Did you see that?
(Ball squeaks尖叫聲)
93
304531
3045
看到這個嗎?
(球發出吱吱聲)
05:20
Cool.
94
308036
3066
很酷吧!
05:24
See this one?
95
312706
1950
看看這個。
05:26
(Ball squeaks尖叫聲)
96
314656
1881
(球發出吱吱聲)
05:28
Wow.
97
316537
2653
哇!
05:33
Laura勞拉 Schulz舒爾茨: Told you. (Laughs)
98
321854
2113
羅拉·舒爾茨: 早就說了。 (笑聲)
05:35
(Video視頻) HGHG: See this one?
(Ball squeaks尖叫聲)
99
323967
4031
(影片) 孝媛: 看到這個嗎?
(球發出吱吱聲)
05:39
Hey Clara克拉拉, this one's那些 for you.
You can go ahead and play.
100
327998
4619
克拉拉, 這個是給你的, 你拿去玩吧。
05:51
(Laughter笑聲)
101
339854
4365
(笑聲)
05:56
LSLS: I don't even have to talk, right?
102
344219
2995
羅拉: 我不用解釋, 對吧?
05:59
All right, it's nice不錯 that babies嬰兒
will generalize概括 properties性能
103
347214
2899
嬰兒把藍色球的特性套用到黃色球上。
06:02
of blue藍色 balls to yellow黃色 balls,
104
350113
1528
嬰兒從模仿我們中學習,這是很神奇的,
06:03
and it's impressive有聲有色 that babies嬰兒
can learn學習 from imitating冒充 us,
105
351641
3096
06:06
but we've我們已經 known已知 those things about babies嬰兒
for a very long time.
106
354737
3669
但我們早就知道嬰兒能這樣做。
06:10
The really interesting有趣 question
107
358406
1811
有趣的地方是當把一樣的東西給嬰兒看時,
甚麼事會發生。
06:12
is what happens發生 when we show顯示 babies嬰兒
exactly究竟 the same相同 thing,
108
360217
2852
我們能肯定這是完全一樣的,
因我們有個秘密的空間,
06:15
and we can ensure確保 it's exactly究竟 the same相同
because we have a secret秘密 compartment隔室
109
363069
3611
06:18
and we actually其實 pull the balls from there,
110
366680
2110
從中我們抽出這些球。
06:20
but this time, all we change更改
is the apparent明顯的 population人口
111
368790
3478
但這次我們改變了抽樣的母體。
06:24
from which哪一個 that evidence證據 was drawn.
112
372268
2902
06:27
This time, we're going to show顯示 babies嬰兒
three blue藍色 balls
113
375170
3553
這次我們在一個裝滿黃色球的箱中,
抽出三個藍色球給嬰兒看。
06:30
pulled out of a box
of mostly大多 yellow黃色 balls,
114
378723
3384
想想甚麼事會發生?
06:34
and guess猜測 what?
115
382107
1322
06:35
You [probably大概 won't慣於] randomly隨機 draw
three blue藍色 balls in a row
116
383429
2840
你大概不能隨機地在裝滿黃色球的箱中,
連續抽出三個藍色球,
06:38
out of a box of mostly大多 yellow黃色 balls.
117
386269
2484
06:40
That is not plausibly振振有詞
randomly隨機 sampled取樣 evidence證據.
118
388753
3747
因此這很可能不是隨機抽樣。
06:44
That evidence證據 suggests提示 that maybe HyowonHyowon
was deliberately故意 sampling採樣 the blue藍色 balls.
119
392500
5123
這反映了孝媛可能是刻意抽出藍色球,
06:49
Maybe there's something special特別
about the blue藍色 balls.
120
397623
2583
可能這些藍色球是特別的,
06:52
Maybe only the blue藍色 balls squeak.
121
400846
2976
可能只有藍色球能吱吱叫。
06:55
Let's see what the baby寶寶 does.
122
403822
1895
一起看看這嬰兒會做甚麼。
06:57
(Video視頻) HGHG: See this?
(Ball squeaks尖叫聲)
123
405717
2904
(影片) 孝媛: 看看這個。
(球發出吱吱聲)
07:02
See this toy玩具?
(Ball squeaks尖叫聲)
124
410851
2645
看到這個玩具嗎? (球發出吱吱聲)
07:05
Oh, that was cool. See?
(Ball squeaks尖叫聲)
125
413496
5480
哇, 這很酷, 看到嗎? (球發出吱吱聲)
07:10
Now this one's那些 for you to play.
You can go ahead and play.
126
418976
4394
這個是給你的, 你拿去玩吧。
07:18
(Fussing大驚小怪)
(Laughter笑聲)
127
426074
6347
(不耐煩的)
(笑聲)
07:26
LSLS: So you just saw
two 15-month-old個月大 babies嬰兒
128
434901
2748
羅拉: 你剛剛看到兩個15月大的嬰兒,
07:29
do entirely完全 different不同 things
129
437649
1942
按他們觀察到樣本出現的機率,
而做出完全不同的事。
07:31
based基於 only on the probability可能性
of the sample樣品 they observed觀察到的.
130
439591
3599
07:35
Let me show顯示 you the experimental試驗 results結果.
131
443190
2321
一起看看實驗的結果,
07:37
On the vertical垂直 axis, you'll你會 see
the percentage百分比 of babies嬰兒
132
445511
2764
垂直軸代表在每一個情況中,
有多少百分比的嬰兒擠壓球。
07:40
who squeezed擠壓 the ball in each condition條件,
133
448275
2530
你可看見嬰兒在樣本和整體一致時,
07:42
and as you'll你會 see, babies嬰兒 are much
more likely容易 to generalize概括 the evidence證據
134
450805
3715
07:46
when it's plausibly振振有詞 representative代表
of the population人口
135
454520
3135
比刻意挑選的樣本,
07:49
than when the evidence證據
is clearly明確地 cherry-picked櫻桃採摘.
136
457655
3738
較會歸納他們看到的特徵。
07:53
And this leads引線 to a fun開玩笑 prediction預測:
137
461393
2415
因此這帶出一個有趣的預測。
07:55
Suppose假設 you pulled just one blue藍色 ball
out of the mostly大多 yellow黃色 box.
138
463808
4868
假設你在一個裝滿黃色球的箱中
只拿出一個藍色球,
08:00
You [probably大概 won't慣於] pull three blue藍色 balls
in a row at random隨機 out of a yellow黃色 box,
139
468896
3869
當然你很難隨機地連續抽出三個藍色球,
08:04
but you could randomly隨機 sample樣品
just one blue藍色 ball.
140
472765
2455
但你可以只用一個藍色球作樣本,
08:07
That's not an improbable難以置信 sample樣品.
141
475220
1970
這不一定是個不可行的樣本。
08:09
And if you could reach達到 into
a box at random隨機
142
477190
2224
當你隨機抽出一個會吱吱叫的東西時,
08:11
and pull out something that squeaks尖叫聲,
maybe everything in the box squeaks尖叫聲.
143
479414
3987
可能箱中所有的東西都會吱吱叫,
08:15
So even though雖然 babies嬰兒 are going to see
much less evidence證據 for squeaking吱吱,
144
483875
4445
因此雖然嬰兒會看到較少吱吱叫的例子,
08:20
and have many許多 fewer actions行動 to imitate模擬
145
488320
2242
而且在只抽出一個球的情況下,
他們會有較少的動作去模仿,
08:22
in this one ball condition條件 than in
the condition條件 you just saw,
146
490562
3343
08:25
we predicted預料到的 that babies嬰兒 themselves他們自己
would squeeze more,
147
493905
3892
但我們預計會有更多嬰兒擠壓球。
08:29
and that's exactly究竟 what we found發現.
148
497797
2894
這正是我們發現的結果。
08:32
So 15-month-old個月大 babies嬰兒,
in this respect尊重, like scientists科學家們,
149
500691
4411
因此15月大的嬰兒在這方面就像科學家,
08:37
care關心 whether是否 evidence證據
is randomly隨機 sampled取樣 or not,
150
505102
3088
他們留意抽樣的方法是否隨機,
08:40
and they use this to develop發展
expectations期望 about the world世界:
151
508190
3507
並以此建立對事物的概念:
08:43
what squeaks尖叫聲 and what doesn't,
152
511697
2182
甚麼會吱吱叫而甚麼不會,
08:45
what to explore探索 and what to ignore忽視.
153
513879
3145
甚麼需要探索而甚麼可忽略。
08:50
Let me show顯示 you another另一個 example now,
154
518384
2066
現在讓我給你們看看另一個例子,
08:52
this time about a problem問題
of causal因果 reasoning推理.
155
520450
2730
這次是關於因果推理的。
08:55
And it starts啟動 with a problem問題
of confounded混淆 evidence證據
156
523180
2439
每人都要面對這個問題,
08:57
that all of us have,
157
525619
1672
因為我們都是這世界的一部份。
08:59
which哪一個 is that we are part部分 of the world世界.
158
527291
2020
09:01
And this might威力 not seem似乎 like a problem問題
to you, but like most problems問題,
159
529311
3436
這看似不是一個問題,
但和其他問題一樣,
09:04
it's only a problem問題 when things go wrong錯誤.
160
532747
2337
事情會出狀況。
09:07
Take this baby寶寶, for instance.
161
535464
1811
以這個嬰兒為例,
09:09
Things are going wrong錯誤 for him.
162
537275
1705
所有事都出了問題,
09:10
He would like to make
this toy玩具 go, and he can't.
163
538980
2271
他想開動這個玩具,但他做不到。
09:13
I'll show顯示 you a few-second幾秒鐘 clip.
164
541251
2529
我會讓你看一段幾秒的影片。
09:21
And there's two possibilities可能性, broadly寬廣地:
165
549340
1920
這有兩個可能的原因,
09:23
Maybe he's doing something wrong錯誤,
166
551260
2634
可能是他做錯了一些事,
09:25
or maybe there's something
wrong錯誤 with the toy玩具.
167
553894
4216
又或是那個玩具有些問題。
09:30
So in this next下一個 experiment實驗,
168
558110
2111
因此在這個實驗中,
09:32
we're going to give babies嬰兒
just a tiny bit of statistical統計 data數據
169
560221
3297
我們會給嬰兒們少許資料。
09:35
supporting支持 one hypothesis假設 over the other,
170
563518
2582
這些資料會傾向支持其中一個可能性,
09:38
and we're going to see if babies嬰兒
can use that to make different不同 decisions決定
171
566100
3455
我們將研究這些嬰兒能否運用這些資料,
09:41
about what to do.
172
569555
1834
而作出不同的決定。
09:43
Here's這裡的 the setup建立.
173
571389
2022
這個實驗是這樣的:
09:46
HyowonHyowon is going to try to make
the toy玩具 go and succeed成功.
174
574071
3030
孝媛嘗試開動那個玩具並成功了,
09:49
I am then going to try twice兩次
and fail失敗 both times,
175
577101
3320
而我的兩次嘗試都失敗了,
09:52
and then HyowonHyowon is going
to try again and succeed成功,
176
580421
3112
之後孝媛再嘗試,並再次成功了。
09:55
and this roughly大致 sums總和 up my relationship關係
to my graduate畢業 students學生們
177
583533
3172
這就像我和我的學生在使用新科技的情況。
09:58
in technology技術 across橫過 the board.
178
586705
2835
10:02
But the important重要 point here is
it provides提供 a little bit of evidence證據
179
590030
3292
重要的是這提供了少許的資料,
10:05
that the problem問題 isn't with the toy玩具,
it's with the person.
180
593322
3668
這反映玩具並沒有問題,而是人的問題。
10:08
Some people can make this toy玩具 go,
181
596990
2350
有些人可以開動這玩具,
10:11
and some can't.
182
599340
959
有些人則不能。
10:12
Now, when the baby寶寶 gets得到 the toy玩具,
he's going to have a choice選擇.
183
600799
3413
當這嬰兒拿到玩具時,他要作一個選擇。
10:16
His mom媽媽 is right there,
184
604212
2188
他的母親在旁,
10:18
so he can go ahead and hand off the toy玩具
and change更改 the person,
185
606400
3315
所以他可以把玩具交給母親,
換另一人嘗試。
10:21
but there's also going to be
another另一個 toy玩具 at the end結束 of that cloth,
186
609715
3158
同時在毛巾上有另一個玩具,
10:24
and he can pull the cloth towards him
and change更改 the toy玩具.
187
612873
3552
所以他也可以把玩具拉向自己,
換另一個玩具。
10:28
So let's see what the baby寶寶 does.
188
616425
2090
一起看看嬰兒會怎樣做。
10:30
(Video視頻) HGHG: Two, three. Go!
(Music音樂)
189
618515
4183
(影片) 孝媛: 二、三、開始!
(音樂)
10:34
LSLS: One, two, three, go!
190
622698
3131
羅拉: 一、二、三、開始!
10:37
Arthur亞瑟, I'm going to try again.
One, two, three, go!
191
625829
7382
亞瑟,讓我再試一次,
一、二、三、開始!
10:45
YGYG: Arthur亞瑟, let me try again, okay?
192
633677
2600
孝媛: 亞瑟,讓我再試吧,好嗎?
10:48
One, two, three, go!
(Music音樂)
193
636277
4550
一、二、三、開始!
(音樂)
10:53
Look at that. Remember記得 these toys玩具?
194
641583
1883
看看這裡,記得這些玩具嗎?
10:55
See these toys玩具? Yeah, I'm going
to put this one over here,
195
643466
3264
看到嗎? 對,我會把這個放在這裡,
10:58
and I'm going to give this one to you.
196
646730
2062
把另一個給你。
11:00
You can go ahead and play.
197
648792
2335
你拿去玩吧。
11:23
LSLS: Okay, Laura勞拉, but of course課程,
babies嬰兒 love their mommies媽媽們.
198
671213
4737
羅拉: 你或許會說嬰兒都愛他們的母親,
11:27
Of course課程 babies嬰兒 give toys玩具
to their mommies媽媽們
199
675950
2182
因此當玩具出現問題時,
嬰兒自然會把它交給母親。
11:30
when they can't make them work.
200
678132
2030
因此,問題在於當我們稍微改變資料時,
甚麼事會發生。
11:32
So again, the really important重要 question
is what happens發生 when we change更改
201
680162
3593
11:35
the statistical統計 data數據 ever so slightly.
202
683755
3154
11:38
This time, babies嬰兒 are going to see the toy玩具
work and fail失敗 in exactly究竟 the same相同 order訂購,
203
686909
4087
這次,嬰兒將看到這玩具
按同一次序成功運作和失敗,
11:42
but we're changing改變
the distribution分配 of evidence證據.
204
690996
2415
但我們改變了資料的分佈。
11:45
This time, HyowonHyowon is going to succeed成功
once一旦 and fail失敗 once一旦, and so am I.
205
693411
4411
這次孝媛和我各有一次成功和一次失敗,
11:49
And this suggests提示 it doesn't matter
who tries嘗試 this toy玩具, the toy玩具 is broken破碎.
206
697822
5637
這代表誰人嘗試都沒有分別,
那件玩具是壞的,
11:55
It doesn't work all the time.
207
703459
1886
它不是每次都能運作的。
11:57
Again, the baby's寶寶 going to have a choice選擇.
208
705345
1965
同樣地,嬰兒要作出一個選擇,
11:59
Her mom媽媽 is right next下一個 to her,
so she can change更改 the person,
209
707310
3396
她的母親在旁,所以她可換另一人嘗試,
12:02
and there's going to be another另一個 toy玩具
at the end結束 of the cloth.
210
710706
3204
同時另一個玩具就在毛巾上。
12:05
Let's watch what she does.
211
713910
1378
看看她會怎樣做。
12:07
(Video視頻) HGHG: Two, three, go!
(Music音樂)
212
715288
4348
(影片) 孝媛: 二、三、開始!
(音樂)
12:11
Let me try one more time.
One, two, three, go!
213
719636
4984
讓我再試一次,
一、二、三、開始!
12:17
Hmm.
214
725460
1697
嗯...
12:19
LSLS: Let me try, Clara克拉拉.
215
727950
2692
羅拉: 讓我試試吧,克拉拉。
12:22
One, two, three, go!
216
730642
3945
一、二、三、開始!
12:27
Hmm, let me try again.
217
735265
1935
嗯...讓我再試試。
12:29
One, two, three, go!
(Music音樂)
218
737200
5670
一、二、三、開始!
(音樂)
12:35
HGHG: I'm going
to put this one over here,
219
743009
2233
孝媛: 我把這個放在這裡,
12:37
and I'm going to give this one to you.
220
745242
2001
這個則交給你,
12:39
You can go ahead and play.
221
747243
3597
你拿去玩吧。
12:58
(Applause掌聲)
222
766376
4897
(掌聲)
13:04
LSLS: Let me show顯示 you
the experimental試驗 results結果.
223
772993
2392
羅拉: 看看這個實驗的結果,
13:07
On the vertical垂直 axis,
you'll你會 see the distribution分配
224
775385
2475
在垂直軸上,你會看到在每種情況下,
嬰兒作出不同選擇的分佈。
13:09
of children's兒童 choices選擇 in each condition條件,
225
777860
2577
你會發現他們作的選擇是
基於他們觀察到的資料。
13:12
and you'll你會 see that the distribution分配
of the choices選擇 children孩子 make
226
780437
4551
13:16
depends依靠 on the evidence證據 they observe.
227
784988
2787
13:19
So in the second第二 year of life,
228
787775
1857
因此當他們兩歲時,
13:21
babies嬰兒 can use a tiny bit
of statistical統計 data數據
229
789632
2577
嬰兒已經可以運用細微的資料,
13:24
to decide決定 between之間 two
fundamentally從根本上 different不同 strategies策略
230
792209
3367
在兩個完全不同的選項中作出決定:
13:27
for acting演戲 in the world世界:
231
795576
1881
13:29
asking for help and exploring探索.
232
797457
2743
尋求幫忙或自行探索。
13:33
I've just shown顯示 you
two laboratory實驗室 experiments實驗
233
801700
3434
我剛才讓你們看了兩個實驗,
13:37
out of literally按照字面 hundreds數以百計 in the field領域
that make similar類似 points,
234
805134
3691
在這領域中有數千個得出相同結果的實驗。
13:40
because the really critical危急 point
235
808825
2392
當中反映的重點是,
13:43
is that children's兒童 ability能力
to make rich豐富 inferences推論 from sparse data數據
236
811217
5108
兒童擁有充分解讀零碎資訊的能力,
13:48
underliesunderlies all the species-specific種屬特異性
cultural文化 learning學習 that we do.
237
816325
5341
這超出了所有文化的學習方式。
13:53
Children孩子 learn學習 about new tools工具
from just a few少數 examples例子.
238
821666
4597
孩子從少數的例子便能學到新技能,
13:58
They learn學習 new causal因果 relationships關係
from just a few少數 examples例子.
239
826263
4717
他們從少數的例子便能領略到新的因果關係,
14:03
They even learn學習 new words,
in this case案件 in American美國 Sign標誌 Language語言.
240
831928
4871
他們甚至能學到新的生字,如美國手語。
14:08
I want to close with just two points.
241
836799
2311
我會提出兩個重點作總結。
14:12
If you've been following以下 my world世界,
the field領域 of brain and cognitive認知 sciences科學,
242
840050
3688
如果你近年有留意大腦和認知科學領域,
14:15
for the past過去 few少數 years年份,
243
843738
1927
你會聽到三個重要的概念。
14:17
three big ideas思路 will have come
to your attention注意.
244
845665
2415
14:20
The first is that this is
the era時代 of the brain.
245
848080
3436
第一,現在是大腦的時代。
14:23
And indeed確實, there have been
staggering踉蹌 discoveries發現 in neuroscience神經科學:
246
851516
3669
的確,神經科學近來有不少驚人的發現,
14:27
localizing本地化 functionally功能 specialized專門
regions地區 of cortex皮質,
247
855185
3436
例如標記了大腦皮層負責不同功能的位置、
14:30
turning車削 mouse老鼠 brains大腦 transparent透明,
248
858621
2601
製造出透明的老鼠大腦、
14:33
activating激活 neurons神經元 with light.
249
861222
3776
以及利用光線啟動神經元。
14:36
A second第二 big idea理念
250
864998
1996
第二個重要的概念是,
14:38
is that this is the era時代 of big data數據
and machine learning學習,
251
866994
4104
現在是大數據和機器學習的時代,
14:43
and machine learning學習 promises許諾
to revolutionize革命化 our understanding理解
252
871098
3141
而機器學習能徹底改變我們對任何事的理解,
14:46
of everything from social社會 networks網絡
to epidemiology流行病學.
253
874239
4667
從社交網站到流行病學。
14:50
And maybe, as it tackles鏟球 problems問題
of scene現場 understanding理解
254
878906
2693
當機器學習能理解埸合和處理自然語言時,
14:53
and natural自然 language語言 processing處理,
255
881599
1993
也許我們能藉此了解人類的認知。
14:55
to tell us something
about human人的 cognition認識.
256
883592
3324
14:59
And the final最後 big idea理念 you'll你會 have heard聽說
257
887756
1937
最後一個你會聽過的重要概念是,
15:01
is that maybe it's a good idea理念 we're going
to know so much about brains大腦
258
889693
3387
我們將對大腦有很深入的認識,
並能掌握大數據,而這很可能是件好事。
15:05
and have so much access訪問 to big data數據,
259
893080
1917
15:06
because left to our own擁有 devices設備,
260
894997
2507
因為相比機器而言,
15:09
humans人類 are fallible易錯的, we take shortcuts快捷鍵,
261
897504
3831
人類易犯錯誤,我們會走捷徑,
15:13
we err, we make mistakes錯誤,
262
901335
3437
我們會做錯,
15:16
we're biased, and in innumerable無數 ways方法,
263
904772
3684
我們在很多方面都有偏見,
15:20
we get the world世界 wrong錯誤.
264
908456
2969
我們會有錯誤的理解。
15:24
I think these are all important重要 stories故事,
265
912843
2949
我認為這都是重要的,
15:27
and they have a lot to tell us
about what it means手段 to be human人的,
266
915792
3785
因為這反映了人類的特質,
15:31
but I want you to note注意 that today今天
I told you a very different不同 story故事.
267
919577
3529
但我今天想帶出事情的另一面。
15:35
It's a story故事 about minds頭腦 and not brains大腦,
268
923966
3807
這是關於思維而非大腦的,
15:39
and in particular特定, it's a story故事
about the kinds of computations計算
269
927773
3006
尤其是人類獨有的運算能力,
15:42
that uniquely獨特地 human人的 minds頭腦 can perform演出,
270
930779
2590
這牽涉了豐富、有條理的知識,
15:45
which哪一個 involve涉及 rich豐富, structured結構化的 knowledge知識
and the ability能力 to learn學習
271
933369
3944
以及從少量的數據和例子中學習的能力。
15:49
from small amounts of data數據,
the evidence證據 of just a few少數 examples例子.
272
937313
5268
15:56
And fundamentally從根本上, it's a story故事
about how starting開始 as very small children孩子
273
944301
4299
再者,這是關於我們如何從幼童,
16:00
and continuing繼續 out all the way
to the greatest最大 accomplishments成就
274
948600
4180
一路發展至成為文化中偉大的成就,
16:04
of our culture文化,
275
952780
3843
16:08
we get the world世界 right.
276
956623
1997
我們能正確地理解這個世界。
16:12
Folks鄉親, human人的 minds頭腦 do not only learn學習
from small amounts of data數據.
277
960433
5267
大家,
人腦不只是懂得從少量的數據中學習。
16:18
Human人的 minds頭腦 think
of altogether new ideas思路.
278
966285
2101
人腦能想到新的主意。
16:20
Human人的 minds頭腦 generate生成
research研究 and discovery發現,
279
968746
3041
人腦能創造出研究和發明。
16:23
and human人的 minds頭腦 generate生成
art藝術 and literature文學 and poetry詩歌 and theater劇院,
280
971787
5273
人腦能創作藝術、文學、寫詩和戲劇。
16:29
and human人的 minds頭腦 take care關心 of other humans人類:
281
977070
3760
人腦可照顧其他人,
16:32
our old, our young年輕, our sick生病.
282
980830
3427
包括年老的、年輕的、患病的,
16:36
We even heal癒合 them.
283
984517
2367
我們甚至能治癒他們。
16:39
In the years年份 to come, we're going
to see technological技術性 innovations創新
284
987564
3103
在未來,我們將會看到
超乎現在能想像的科技發展,
16:42
beyond anything I can even envision預見,
285
990667
3797
16:46
but we are very unlikely不會
286
994464
2150
但在我或你們的一生中,
我們不太可能目睹比得上嬰兒運算能力的機器。
16:48
to see anything even approximating逼近
the computational計算 power功率 of a human人的 child兒童
287
996614
5709
16:54
in my lifetime一生 or in yours你的.
288
1002323
4298
16:58
If we invest投資 in these most powerful強大
learners學習者 and their development發展,
289
1006621
5047
假如我們投資在最厲害的學習者和其發展身上,
17:03
in babies嬰兒 and children孩子
290
1011668
2917
在嬰兒和兒童身上、
17:06
and mothers母親 and fathers父親
291
1014585
1826
在母親和父親身上、
17:08
and caregivers護理人員 and teachers教師
292
1016411
2699
在照顧者和老師身上,
17:11
the ways方法 we invest投資 in our other
most powerful強大 and elegant優雅 forms形式
293
1019110
4170
如同我們投資在最厲害的科技、工程和設計上時,
17:15
of technology技術, engineering工程 and design設計,
294
1023280
3218
17:18
we will not just be dreaming做夢
of a better future未來,
295
1026498
2939
我們不只是夢想有個更好的將來,
17:21
we will be planning規劃 for one.
296
1029437
2127
而是在計劃一個更好的將來。
17:23
Thank you very much.
297
1031564
2345
謝謝。
17:25
(Applause掌聲)
298
1033909
3421
(掌聲)
17:29
Chris克里斯 Anderson安德森: Laura勞拉, thank you.
I do actually其實 have a question for you.
299
1037810
4426
克里斯·安德森: 羅拉, 謝謝你,
我其實想問你一個問題。
17:34
First of all, the research研究 is insane.
300
1042236
2359
首先,這項研究真是太瘋狂了。
17:36
I mean, who would design設計
an experiment實驗 like that? (Laughter笑聲)
301
1044595
3725
我的意思是,有誰會想到這些實驗? (笑聲)
17:41
I've seen看到 that a couple一對 of times,
302
1049150
1790
我見過很多類似的實驗,
17:42
and I still don't honestly老老實實 believe
that that can truly be happening事件,
303
1050940
3222
但我仍然覺得難以置信,
17:46
but other people have doneDONE
similar類似 experiments實驗; it checks檢查 out.
304
1054162
3158
儘管很多人做了類似的實驗,而事實的確如此。
17:49
The babies嬰兒 really are that genius天才.
305
1057320
1633
這些嬰兒根本是天才。
17:50
LSLS: You know, they look really impressive有聲有色
in our experiments實驗,
306
1058953
3007
羅拉: 在實驗中這看似很神奇,
17:53
but think about what they
look like in real真實 life, right?
307
1061960
2652
但想想在現實生活中是怎樣的,對嗎?
17:56
It starts啟動 out as a baby寶寶.
308
1064612
1150
一出世時,他只是個嬰兒,
17:57
Eighteen十八 months個月 later後來,
it's talking to you,
309
1065762
2007
但18個月後他開始說話,
17:59
and babies'嬰兒 first words aren't just
things like balls and ducks鴨子,
310
1067769
3041
而嬰兒最初說的話不只是物件,
如皮球和鴨子,
18:02
they're things like "all gone走了,"
which哪一個 refer參考 to disappearance消失,
311
1070810
2881
他們更能表達「不見了」的概念,
18:05
or "uh-oh嗯,哦," which哪一個 refer參考
to unintentional無意 actions行動.
312
1073691
2283
又或是以「哎喲」表達無心之失。
18:07
It has to be that powerful強大.
313
1075974
1562
這必須是那麼厲害的,
18:09
It has to be much more powerful強大
than anything I showed顯示 you.
314
1077536
2775
這必須比我剛才展示的還要厲害。
18:12
They're figuring盤算 out the entire整個 world世界.
315
1080311
1974
嬰兒在弄清楚整個世界,
18:14
A four-year-old四十歲 can talk to you
about almost幾乎 anything.
316
1082285
3144
一個四歲的小孩幾乎懂得說所有東西。
18:17
(Applause掌聲)
317
1085429
1601
(掌聲)
18:19
CACA: And if I understand理解 you right,
the other key point you're making製造 is,
318
1087030
3414
克里斯: 如果我沒錯的話,
你想指出的另一個重點是,
18:22
we've我們已經 been through通過 these years年份
where there's all this talk
319
1090444
2754
這些年來,我們都聽說
我們的腦袋是不可信和會出錯的,
18:25
of how quirky詭詐的 and buggy越野車 our minds頭腦 are,
320
1093198
1932
18:27
that behavioral行為的 economics經濟學
and the whole整個 theories理論 behind背後 that
321
1095130
2867
行為經濟學和其他新理論都指出我們不是理性的。
18:29
that we're not rational合理的 agents代理.
322
1097997
1603
18:31
You're really saying that the bigger
story故事 is how extraordinary非凡,
323
1099600
4216
但你指出了我們的腦袋是非凡的,
18:35
and there really is genius天才 there
that is underappreciated懷才不遇.
324
1103816
4944
我們一直忽略了我們的腦袋是多麼神奇。
18:40
LSLS: One of my favorite喜愛
quotes報價 in psychology心理學
325
1108760
2070
羅拉: 我最喜愛的心理學名言之一,
18:42
comes from the social社會
psychologist心理學家 Solomon所羅門 Asch阿希,
326
1110830
2290
來自社會心理學家所羅門·阿希,
18:45
and he said the fundamental基本的 task任務
of psychology心理學 is to remove去掉
327
1113120
2807
他說心理學首要的任務是
去除那些毋需証明的事物的面紗。
18:47
the veil面紗 of self-evidence自明 from things.
328
1115927
2626
18:50
There are orders命令 of magnitude大小
more decisions決定 you make every一切 day
329
1118553
4551
每天你作出大大小小的決定去理解這個世界。
18:55
that get the world世界 right.
330
1123104
1347
18:56
You know about objects對象
and their properties性能.
331
1124451
2132
你知道不同物件及其特性,
18:58
You know them when they're occluded閉塞.
You know them in the dark黑暗.
332
1126583
3029
即使被覆蓋和在黑暗中你也知道。
19:01
You can walk步行 through通過 rooms客房.
333
1129612
1308
你能在空間中行走。
19:02
You can figure數字 out what other people
are thinking思維. You can talk to them.
334
1130920
3532
你能猜到別人在想甚麼,你能和別人交談。
你能探索空間,你明白數字。
19:06
You can navigate導航 space空間.
You know about numbers數字.
335
1134452
2230
你明白因果關係,
你懂得分辨是非。
19:08
You know causal因果 relationships關係.
You know about moral道德 reasoning推理.
336
1136682
3022
你毫不費力便能做到,
所以我們不會察覺,
19:11
You do this effortlessly毫不費力,
so we don't see it,
337
1139704
2356
但這就是我們理解這個世界的方法,
19:14
but that is how we get the world世界 right,
and it's a remarkable卓越
338
1142060
2912
這是個神奇而又難以理解的成就。
19:16
and very difficult-to-understand很難理解的
accomplishment成就.
339
1144972
2318
克里斯: 我相信在坐有人認為科技正急速發展,
19:19
CACA: I suspect疑似 there are people
in the audience聽眾 who have
340
1147290
2628
19:21
this view視圖 of accelerating加速
technological技術性 power功率
341
1149918
2238
他們可能不認同你說電腦
不能做到三歲小孩能做到的事。
19:24
who might威力 dispute爭議 your statement聲明
that never in our lifetimes壽命
342
1152156
2958
19:27
will a computer電腦 do what
a three-year-old三十歲 child兒童 can do,
343
1155114
2618
但可以肯定的是,無論在甚麼場合,
19:29
but what's clear明確 is that in any scenario腳本,
344
1157732
3248
19:32
our machines have so much to learn學習
from our toddlers幼兒.
345
1160980
3770
嬰兒有很多地方值得我們的機器學習。
19:38
LSLS: I think so. You'll你會 have some
machine learning學習 folks鄉親 up here.
346
1166230
3216
羅拉: 我同意。有些人認同機器學習。
19:41
I mean, you should never bet賭注
against反對 babies嬰兒 or chimpanzees黑猩猩
347
1169446
4203
我的意思是,你不應將嬰兒和黑猩猩跟科技比較,
19:45
or technology技術 as a matter of practice實踐,
348
1173649
3645
因為這不是數量上的不同,
19:49
but it's not just
a difference區別 in quantity數量,
349
1177294
4528
19:53
it's a difference區別 in kind.
350
1181822
1764
而是性質上的不同。
19:55
We have incredibly令人難以置信 powerful強大 computers電腦,
351
1183586
2160
我們有十分厲害的電腦,
19:57
and they do do amazingly令人驚訝
sophisticated複雜的 things,
352
1185746
2391
它們能做到複雜的事情,
20:00
often經常 with very big amounts of data數據.
353
1188137
3204
和處理大量的資料。
20:03
Human人的 minds頭腦 do, I think,
something quite相當 different不同,
354
1191341
2607
我認為人類的腦袋做的事是不同的,
20:05
and I think it's the structured結構化的,
hierarchical分級 nature性質 of human人的 knowledge知識
355
1193948
3895
人類的知識是有系統和條理分明的,
20:09
that remains遺跡 a real真實 challenge挑戰.
356
1197843
2032
這對機器仍然是一個挑戰。
20:11
CACA: Laura勞拉 Schulz舒爾茨, wonderful精彩
food餐飲 for thought. Thank you so much.
357
1199875
3061
克里斯: 勞拉·舒爾茨,十分精彩。謝謝。
20:14
LSLS: Thank you.
(Applause掌聲)
358
1202936
2922
羅拉: 謝謝。
(掌聲)
Translated by Kitty Lau
Reviewed by Ricardo Jack

▲Back to top

ABOUT THE SPEAKER
Laura Schulz - Cognitive scientist
Developmental behavior studies spearheaded by Laura Schulz are changing our notions of how children learn.

Why you should listen

MIT Early Childhood Cognition Lab lead investigator Laura Schulz studies learning in early childhood. Her research bridges computational models of cognitive development and behavioral studies in order to understand the origins of inquiry and discovery.

Working in play labs, children’s museums, and a recently-launched citizen science website, Schultz is reshaping how we view young children’s perceptions of the world around them. Some of the surprising results of her research: before the age of four, children expect hidden causes when events happen probabilistically, use simple experiments to distinguish causal hypotheses, and trade off learning from instruction and exploration.

More profile about the speaker
Laura Schulz | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee