ABOUT THE SPEAKER
Peter van Manen - Electronic systems expert
Peter van Manen is the Managing Director of McLaren Electronics, which provides data systems to major motorsports series.

Why you should listen

To say that Peter van Manen has a high-speed job would be an understatement. As Managing Director of McLaren Electronics, which provides electronics and data collection software to motorsports events, he and his team work in real time during a race to improve cars on about 500 different parameters. That's about 750 million data points in two hours.

But recently van Manen and his team have been wondering: Why can't the extremely precise and subtle data-collection and analysis systems used in motorsports be applied elsewhere, for the benefit of all? They have applied their systems to ICU units at Birmingham Children's Hospital with real-time analysis that allows them to proactively prevent cardiac arrests. The unit has seen a 25 percent decrease in life-threatening events. And it's just the beginning.

More profile about the speaker
Peter van Manen | Speaker | TED.com
TEDxNijmegen

Peter van Manen: Better baby care -- thanks to Formula 1

Peter van Manen: Kako utrke Formule 1 mogu pomoći...djeci?

Filmed:
845,406 views

Tijekom utrke formule 1, automobil šalje stotine milijuna podataka u garažu koje se analiziraju i šalju natrag u realnom vremenu. Zašto ne koristiti ovaj detaljan i rigorozan sustav podataka drugdje, kao u dječjim bolnicama? Peter van Manen će nam reći više.
- Electronic systems expert
Peter van Manen is the Managing Director of McLaren Electronics, which provides data systems to major motorsports series. Full bio

Double-click the English transcript below to play the video.

00:12
MotorMotora racingtrkaći is a funnysmiješno oldstar businessPoslovni.
0
336
2257
Utrke automobila star su i smiješan posao.
00:14
We make a newnovi carautomobil everysvaki yeargodina,
1
2593
2317
Stvaramo nove automobile svake godine,
00:16
and then we spendprovesti the restodmor of the seasonsezona
2
4910
2188
a ostatak godine provodimo
00:19
tryingtežak to understandrazumjeti what it is we'veimamo builtizgrađen
3
7098
2776
pokušavajući razumjeti što smo napravili
00:21
to make it better, to make it fasterbrže.
4
9874
3221
da bude bolje, da bude brže.
00:25
And then the nextSljedeći yeargodina, we startpočetak again.
5
13095
3275
A sljedeće godine, počinjemo iz početka.
00:28
Now, the carautomobil you see in frontispred of you is quitedosta complicatedsložen.
6
16370
4238
Automobil koji vidite ispred sebe prilično je kompliciran.
00:32
The chassisšasija is madenapravljen up of about 11,000 componentskomponente,
7
20608
3619
Šasija je izrađena od oko 11.000 komponenti,
00:36
the enginemotor anotherjoš 6,000,
8
24227
2468
motor od još 6.000,
00:38
the electronicselektronika about eightosam and a halfpola thousandtisuću.
9
26695
3093
elektronika od oko 8.500.
00:41
So there's about 25,000 things there that can go wrongpogrešno.
10
29788
4401
Dakle ovdje je oko 25.000 stvari koje mogu poći po zlu.
00:46
So motormotor racingtrkaći is very much about attentionpažnja to detaildetalj.
11
34189
4826
Utrke automobila su uglavnom obraćanje
pažnje na detalje.
00:51
The other thing about FormulaFormulu 1 in particularposebno
12
39015
3263
Druga osobita stvar u Formuli 1
00:54
is we're always changingmijenjanje the carautomobil.
13
42278
2124
je da uvijek mijenjamo automobil.
00:56
We're always tryingtežak to make it fasterbrže.
14
44402
2280
Uvijek ga pokušavamo napraviti da bude brži.
00:58
So everysvaki two weeksTjedni, we will be makingizrađivanje
15
46682
2984
Svaka dva tjedna, napravit ćemo
01:01
about 5,000 newnovi componentskomponente to fitodgovara to the carautomobil.
16
49666
4200
oko 5.000 novih komponenti za automobil.
01:05
FivePet to 10 percentposto of the raceutrka carautomobil
17
53866
2178
5 do 10 posto trkaćih automobila
01:08
will be differentdrugačiji everysvaki two weeksTjedni of the yeargodina.
18
56044
3752
bit će drugačije svaka dva tjedna tokom godine.
01:11
So how do we do that?
19
59796
2309
Kako to radimo?
01:14
Well, we startpočetak our life with the racingtrkaći carautomobil.
20
62105
3744
Započinjemo život sa trkaćim automobilom.
01:17
We have a lot of sensorssenzori on the carautomobil to measuremjera things.
21
65849
3991
Postoji mnogo senzora u automobilu koji mjere stvari.
01:21
On the raceutrka carautomobil in frontispred of you here
22
69840
1882
Trkaći automobil ispred vas
01:23
there are about 120 sensorssenzori when it goeside into a raceutrka.
23
71722
3159
ima oko 120 senzora kada se utrkuje.
01:26
It's measuringmjerenje all sortsvrste of things around the carautomobil.
24
74881
3652
Mjere se razne komponente automobila.
01:30
That datapodaci is loggedKreiranje datoteke poruka. We're loggingsječa drveta about
25
78533
2052
Ti podatci se prijavljuju. Dobivamo oko
01:32
500 differentdrugačiji parametersparametri withinunutar the datapodaci systemssustavi,
26
80585
3704
500 različitih parametara unutar sustava podataka
01:36
about 13,000 healthzdravlje parametersparametri and eventsdogađaji
27
84289
3665
oko 13.000 zdravstvenih parametara i događanja
01:39
to say when things are not workingrad the way they should do,
28
87954
4565
koja nam govore kada nešto ne radi kako bi trebalo,
01:44
and we're sendingslanje that datapodaci back to the garagegaraža
29
92519
2825
i te podatke šaljemo natrag u garažu
01:47
usingkoristeći telemetrytelemetrija at a ratestopa of two to fourčetiri megabitsmegabita perpo seconddrugi.
30
95344
4979
koristeći telemetriju, brzinom dva
do četri megabita u sekundi.
01:52
So duringza vrijeme a two-hourdva sata raceutrka, eachsvaki carautomobil will be sendingslanje
31
100323
3127
Tijekom dvosatne utrke, svaki automobil će poslati
01:55
750 millionmilijuna numbersbrojevi.
32
103450
2275
750 milijuna brojeva.
01:57
That's twicedvaput as manymnogi numbersbrojevi as wordsriječi that eachsvaki of us
33
105725
3143
To je dvostruko više brojeva nego riječi koje
02:00
speaksgovori in a lifetimedoživotno.
34
108868
1631
mi izgovorimo tokom života.
02:02
It's a hugeogroman amountiznos of datapodaci.
35
110499
2618
To je velika količina podataka.
02:05
But it's not enoughdovoljno just to have datapodaci and measuremjera it.
36
113117
2645
Ali nije dovoljno samo imati podatke i mjeriti ih.
02:07
You need to be ableu stanju to do something with it.
37
115762
2158
Treba moći nešto učiniti s njima.
02:09
So we'veimamo spentpotrošen a lot of time and effortnapor
38
117920
2394
Pa smo potrošili mnogo vremena i truda
02:12
in turningtokarenje the datapodaci into storiespriče
39
120314
1869
kako bismo pretvorili podatke u priče
02:14
to be ableu stanju to tell, what's the statedržava of the enginemotor,
40
122183
3105
koje nam mogu reći kakvo je stanje motora,
02:17
how are the tiresgume degradingponižavajuće,
41
125288
2272
kako se gume troše,
02:19
what's the situationsituacija with fuelgorivo consumptionpotrošnja?
42
127560
3748
kakva je situacija s potrošnjom goriva.
02:23
So all of this is takinguzimanje datapodaci
43
131308
2788
Dakle, to je prikupljanje i pretvaranje
02:26
and turningtokarenje it into knowledgeznanje that we can actčin uponna.
44
134096
3802
podataka u znanje na koje možemo djelovati.
02:29
Okay, so let's have a look at a little bitbit of datapodaci.
45
137898
2638
U redu, pogledajmo malu količinu podataka.
02:32
Let's pickodabrati a bitbit of datapodaci from
46
140536
2030
Prikupimo podatke od
02:34
anotherjoš three-month-old3-mjesečna patientpacijent.
47
142566
3079
jednog pacijenta, starog tri mjeseca.
02:37
This is a childdijete, and what you're seeingvidim here is realstvaran datapodaci,
48
145645
4171
Ovo je dijete, a ovo što vidite pravi su podatci.
02:41
and on the fardaleko right-handdesna ruka sidestrana,
49
149816
1977
Na desnoj strani ekrana,
02:43
where everything startspočinje gettinguzimajući a little bitbit catastrophickatastrofalan,
50
151793
2587
gdje sve postaje pomalo katastrofično,
02:46
that is the patientpacijent going into cardiacsrčani arrestuhapsiti.
51
154380
3584
vidimo da pacijentu počinje zatajivati srce.
02:49
It was deemedsmatra to be an unpredictablenepredvidiv eventdogađaj.
52
157964
3232
To smatramo nepredviđenim događajem.
02:53
This was a heartsrce attacknapad that no one could see comingdolazak.
53
161196
3789
To je bio srčani udar kojeg nitko
nije mogao predvidjeti.
02:56
But when we look at the informationinformacija there,
54
164985
2550
Kada pogledamo informacije ovdje,
02:59
we can see that things are startingpolazeći to becomepostati
55
167535
2349
možemo vidjeti kako stvari postaju
03:01
a little fuzzynejasan about fivepet minutesminuta or so before the cardiacsrčani arrestuhapsiti.
56
169884
4029
pomalo nejasne oko pet minuta prije zastoja srca.
03:05
We can see smallmali changespromjene
57
173913
2037
Možemo vidjeti male promjene
03:07
in things like the heartsrce ratestopa movingkreće.
58
175950
2383
u nekim stvarima poput otkucaja srca.
03:10
These were all undetectedneopažen by normalnormalan thresholdspragovi
59
178333
2486
Sve je bilo neotkriveno normalnim pragovima
03:12
whichkoji would be appliedprimijenjen to datapodaci.
60
180819
2408
koji bi bili primijenjeni podatcima.
03:15
So the questionpitanje is, why couldn'tne mogu we see it?
61
183227
3143
Pitanje je, zašto to nismo vidjeli?
03:18
Was this a predictablepredvidiv eventdogađaj?
62
186370
2581
Je li ovo bio očekivani događaj?
03:20
Can we look more at the patternsobrasci in the datapodaci
63
188951
3010
Možemo li pogledati malo više na uzorke u podatcima
03:23
to be ableu stanju to do things better?
64
191961
3380
da bismo mogli stvari raditi bolje?
03:27
So this is a childdijete,
65
195341
2650
Dakle ovo je dijete,
03:29
about the sameisti agedob as the racingtrkaći carautomobil on stagefaza,
66
197991
3232
otprilike iste starosti kao i vozilo na pozornici,
03:33
threetri monthsmjeseci oldstar.
67
201223
1630
tri mjeseca staro.
03:34
It's a patientpacijent with a heartsrce problemproblem.
68
202853
2605
Ono je pacijent sa srčanim problemom.
03:37
Now, when you look at some of the datapodaci on the screenzaslon aboveiznad,
69
205458
3468
Sada, kad pogledate u neke podatke na zaslonu,
03:40
things like heartsrce ratestopa, pulsepuls, oxygenkisik, respirationdisanje ratesstope,
70
208926
4902
stvari poput otkucaja srca, pulsa, kisika, udisaja,
03:45
they're all unusualneuobičajen for a normalnormalan childdijete,
71
213828
3076
svi su neobičajeni za normalno dijete,
03:48
but they're quitedosta normalnormalan for the childdijete there,
72
216904
2642
ali oni su prilično normalni za ono dijete,
03:51
and so one of the challengesizazovi you have in healthzdravlje carebriga is,
73
219546
4138
jedan od izazova koje imate u zdravstvu je,
03:55
how can I look at the patientpacijent in frontispred of me,
74
223684
2851
kako mogu pogledati pacijenta ispred sebe,
03:58
have something whichkoji is specificspecifično for her,
75
226535
3047
koji ima nešto specifično,
04:01
and be ableu stanju to detectotkriti when things startpočetak to changepromijeniti,
76
229582
2788
kako detektirati kad se pojave promjene,
04:04
when things startpočetak to deterioratepogoršati?
77
232370
2099
kada se počinji stvarati greške?
04:06
Because like a racingtrkaći carautomobil, any patientpacijent,
78
234469
3050
Kao i kod trkaćeg automobila, kod svakog pacijenta
04:09
when things startpočetak to go badloše, you have a shortkratak time
79
237519
2976
kada stvari krenu krivo, imate vrlo kratko vrijeme
04:12
to make a differencerazlika.
80
240495
1831
za raditi razliku.
04:14
So what we did is we tookuzeo a datapodaci systemsistem
81
242326
2754
Mi smo uzeli sustav podataka
04:17
whichkoji we runtrčanje everysvaki two weeksTjedni of the yeargodina in FormulaFormulu 1
82
245080
3131
s kojim svakih dva tjedna u godini vozimo Formulu 1
04:20
and we installedinstaliran it on the hospitalbolnica computersračunala
83
248211
3002
i instalirali ga na bolnička računala
04:23
at BirminghamBirmingham Children'sDječje HospitalBolnica.
84
251213
2290
u dječjoj bolnici Birmingham.
04:25
We streamedna vjetru datapodaci from the bedsidenoćni instrumentsinstrumenti
85
253503
2439
Prenosili smo podatke s instrumenata
koji su bili na krevetu
04:27
in theirnjihov pediatricPedijatrijska intensiveintenzivan carebriga
86
255942
2557
njihovim pedijatrima na intenzivnoj njezi
04:30
so that we could bothoba look at the datapodaci in realstvaran time
87
258499
3456
mogli smo gledati u podatke u stvarnom vremenu
04:33
and, more importantlyvažnije, to storedućan the datapodaci
88
261955
2871
a što je još važnije, mogli smo pohraniti te podatke
04:36
so that we could startpočetak to learnnaučiti from it.
89
264826
3057
kako bismo mogli učiti iz njih.
04:39
And then, we appliedprimijenjen an applicationprimjena on topvrh
90
267883
4384
Tada smo počeli primjenjivati aplikaciju
04:44
whichkoji would allowdopustiti us to teasezafrkavati out the patternsobrasci in the datapodaci
91
272267
3270
koja nam je dopustila da pročešljamo
po obrascima unutar podataka
04:47
in realstvaran time so we could see what was happeningdogađa,
92
275537
2956
u stvarnom vremenu te smo mogli
vidjeti što se događa,
04:50
so we could determineodrediti when things startedpočeo to changepromijeniti.
93
278493
3713
mogli smo utvrditi kada su se stvari počele mijenjati.
04:54
Now, in motormotor racingtrkaći, we're all a little bitbit ambitiousambiciozni,
94
282206
3863
Sada, u automobilskim utrkama,
svi smo malo ambiciozni,
04:58
audaciousSuludo hrabar, a little bitbit arrogantarogantni sometimesponekad,
95
286069
2549
odvažni, a ponekad pomalo arogantni,
05:00
so we decidedodlučio we would alsotakođer look at the childrendjeca
96
288618
3398
zato smo odlučili da ćemo gledati djecu
05:04
as they were beingbiće transportedprevozi to intensiveintenzivan carebriga.
97
292016
2957
koja su prevezena na intenzivnu njegu.
05:06
Why should we wait untildo they arrivedstigao in the hospitalbolnica
98
294973
2154
Zašto da čekamo da dođu u bolnicu
05:09
before we startedpočeo to look?
99
297127
1994
prije nego što ih počnemo pregledavati?
05:11
And so we installedinstaliran a real-timestvarno vrijeme linkveza
100
299121
2997
Instalirali smo vezu u realnom vremenu
05:14
betweenizmeđu the ambulancehitna pomoć and the hospitalbolnica,
101
302118
2836
između kola hitne pomoći i bolnice
05:16
just usingkoristeći normalnormalan 3G telephonytelefonija to sendposlati that datapodaci
102
304954
3776
koristeći samo normalnu 3G
telefoniju za poslati te podatke
05:20
so that the ambulancehitna pomoć becamepostao an extraekstra bedkrevet
103
308730
2487
tako su kola hitne pomoći postala dodatni ležaj
05:23
in intensiveintenzivan carebriga.
104
311217
3136
na intenzivnoj njezi.
05:26
And then we startedpočeo looking at the datapodaci.
105
314353
3702
Počeli smo gledati u podatke.
05:30
So the wigglyWiggly lineslinije at the topvrh, all the colorsboje,
106
318055
2921
valovite linije na vrhu, svih boja,
05:32
this is the normalnormalan sortvrsta of datapodaci you would see on a monitormonitor --
107
320976
3194
ovo su normalne vrste podataka
koje se vide na zaslonu --
05:36
heartsrce ratestopa, pulsepuls, oxygenkisik withinunutar the bloodkrv,
108
324170
3772
otkucaji srca, puls, kisik u krvi,
05:39
and respirationdisanje.
109
327942
2635
i disanje.
05:42
The lineslinije on the bottomdno, the blueplava and the redcrvena,
110
330577
2753
Linije na dnu, plava i crvena,
05:45
these are the interestingzanimljiv onesone.
111
333330
1360
vrlo su zanimljive.
05:46
The redcrvena linecrta is showingpokazivanje an automatedautomatizirana versionverzija
112
334690
3209
Crvena linija prikazuje automatiziranu verziju
05:49
of the earlyrano warningupozorenje scorepostići
113
337899
1597
o ranom upozorenju
05:51
that BirminghamBirmingham Children'sDječje HospitalBolnica were alreadyveć runningtrčanje.
114
339496
2487
koje dječja bolnica Birmingham već vidi.
05:53
They'dOni bi been runningtrčanje that sinceod 2008,
115
341983
2338
Oni to pokreću od 2008,
05:56
and alreadyveć have stoppedprestao cardiacsrčani arrestsuhićenja
116
344321
2256
i već su zaustavili zastoje srca
05:58
and distressnevolja withinunutar the hospitalbolnica.
117
346577
2757
i nevolje unutar bolnice.
06:01
The blueplava linecrta is an indicationnaznaka
118
349334
2432
Plava linija pokazuje
06:03
of when patternsobrasci startpočetak to changepromijeniti,
119
351766
2500
kada se uzorak počinje mijenjati,
06:06
and immediatelyodmah, before we even startedpočeo
120
354266
2309
i trenutno, prije nego počne
06:08
puttingstavljanje in clinicalklinički interpretationtumačenje,
121
356575
1708
klinička obrada,
06:10
we can see that the datapodaci is speakinggovor to us.
122
358283
2870
možemo vidjeti što nam taj podatak govori.
06:13
It's tellingreći us that something is going wrongpogrešno.
123
361153
3536
Govori da nešto nije uredu.
06:16
The plotzemljište with the redcrvena and the greenzelena blobsMrljica,
124
364689
3816
grafički podaci s crvenom i zelenom mrljom,
06:20
this is plottingplotanje differentdrugačiji componentskomponente
125
368505
2805
to su grafički podaci različitih komponenti
06:23
of the datapodaci againstprotiv eachsvaki other.
126
371310
2547
od međusobnih podataka.
06:25
The greenzelena is us learningučenje what is normalnormalan for that childdijete.
127
373857
3840
Zelena nas uči što je normalno za to dijete.
06:29
We call it the cloudoblak of normalitynormalnost.
128
377697
2610
To zovemo oblak normalnosti.
06:32
And when things startpočetak to changepromijeniti,
129
380307
2241
A kada se stvari počinju mijenjati,
06:34
when conditionsUvjeti startpočetak to deterioratepogoršati,
130
382548
2564
kada se uvijeti počinju mijenjati,
06:37
we movepotez into the redcrvena linecrta.
131
385112
2238
prelazimo u crvenu liniju.
06:39
There's no rocketraketa scienceznanost here.
132
387350
1657
Ovdje nema raketne tehnologije.
06:41
It is displayingprikazivanje datapodaci that existspostoji alreadyveć in a differentdrugačiji way,
133
389007
4113
To prikazuje podatke koji već
postoje u drugom obliku,
06:45
to amplifypojačati it, to providepružiti cuesštapovi to the doctorsliječnici,
134
393120
3391
za pojačati ih, osigurati signale doktorima,
06:48
to the nursesmedicinske sestre, so they can see what's happeningdogađa.
135
396511
2738
sestrama, kako bi vidjeli što se događa.
06:51
In the sameisti way that a good racingtrkaći drivervozač
136
399249
3130
Na isti način dobar vozač automobilskih utrka
06:54
reliesoslanja se on cuesštapovi to decideodlučiti when to applyprimijeniti the brakeskočnice,
137
402379
4044
oslanja se na signale da odluči kada će početi kočiti,
06:58
when to turnskretanje into a cornerugao,
138
406423
1476
kada će skrenuti u zavoj,
06:59
we need to help our physiciansliječnici and our nursesmedicinske sestre
139
407899
2918
mi moramo pomoći svojim doktorima i sestrama
07:02
to see when things are startingpolazeći to go wrongpogrešno.
140
410817
3620
da vide kada stvari krenu u krivom smjeru.
07:06
So we have a very ambitiousambiciozni programprogram.
141
414437
2946
Stoga imamo vrlo ambiciozan program.
07:09
We think that the raceutrka is on to do something differentlyrazličito.
142
417383
4736
Mislimo da je utrka mjesto
gdje možemo učiniti nešto drukčije.
07:14
We are thinkingmišljenje bigvelika. It's the right thing to do.
143
422119
2904
Razmišljamo na veliko. To je ispravna stvar za učiniti.
07:17
We have an approachpristup whichkoji, if it's successfuluspješan,
144
425023
3412
Imamo pristup koji je uspješan,
07:20
there's no reasonrazlog why it should stayboravak withinunutar a hospitalbolnica.
145
428435
2531
nema razloga zašto bi stajalo unutar bolnice.
07:22
It can go beyondIznad the wallszidovi.
146
430966
1841
Može se smjestiti iza zidova.
07:24
With wirelessbežični connectivityPovezivanje these daysdana,
147
432807
2071
Bežičnom vezom,
07:26
there is no reasonrazlog why patientspacijenti, doctorsliječnici and nursesmedicinske sestre
148
434878
3444
nema razloga da su pacijenti, doktori i sestre
07:30
always have to be in the sameisti placemjesto
149
438322
2171
uvijek na istom mjestu,
07:32
at the sameisti time.
150
440493
1993
u isto vrijeme.
07:34
And meanwhileu međuvremenu, we'lldobro take our little three-month-old3-mjesečna babydijete,
151
442486
3995
U međuvremenu, mi ćemo
našu tri mjeseca staru bebu,
07:38
keep takinguzimanje it to the trackstaza, keepingčuvanje it safesef,
152
446481
3757
nastaviti pratiti, čuvati sigurnom,
07:42
and makingizrađivanje it fasterbrže and better.
153
450238
2333
i raditi da bude brže i bolje.
07:44
Thank you very much.
154
452571
1405
Hvala vam puno.
07:45
(ApplausePljesak)
155
453976
4954
(Pljesak)
Translated by Kristina Gottwald
Reviewed by Senzos Osijek

▲Back to top

ABOUT THE SPEAKER
Peter van Manen - Electronic systems expert
Peter van Manen is the Managing Director of McLaren Electronics, which provides data systems to major motorsports series.

Why you should listen

To say that Peter van Manen has a high-speed job would be an understatement. As Managing Director of McLaren Electronics, which provides electronics and data collection software to motorsports events, he and his team work in real time during a race to improve cars on about 500 different parameters. That's about 750 million data points in two hours.

But recently van Manen and his team have been wondering: Why can't the extremely precise and subtle data-collection and analysis systems used in motorsports be applied elsewhere, for the benefit of all? They have applied their systems to ICU units at Birmingham Children's Hospital with real-time analysis that allows them to proactively prevent cardiac arrests. The unit has seen a 25 percent decrease in life-threatening events. And it's just the beginning.

More profile about the speaker
Peter van Manen | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee