ABOUT THE SPEAKER
Peter van Manen - Electronic systems expert
Peter van Manen is the Managing Director of McLaren Electronics, which provides data systems to major motorsports series.

Why you should listen

To say that Peter van Manen has a high-speed job would be an understatement. As Managing Director of McLaren Electronics, which provides electronics and data collection software to motorsports events, he and his team work in real time during a race to improve cars on about 500 different parameters. That's about 750 million data points in two hours.

But recently van Manen and his team have been wondering: Why can't the extremely precise and subtle data-collection and analysis systems used in motorsports be applied elsewhere, for the benefit of all? They have applied their systems to ICU units at Birmingham Children's Hospital with real-time analysis that allows them to proactively prevent cardiac arrests. The unit has seen a 25 percent decrease in life-threatening events. And it's just the beginning.

More profile about the speaker
Peter van Manen | Speaker | TED.com
TEDxNijmegen

Peter van Manen: Better baby care -- thanks to Formula 1

Si munden garat e Formula 1 te ndihmojne...foshnjet?

Filmed:
845,406 views

Gjate nje gare te Formula 1, nje makine dergon qindra milione te dhena numerike ne garazh per analize ne kohe reale dhe reagim. Pra pse mos te perdorim kete sistem te detajuar dhe rigoroz diku tjeter si... ne nje spital femijesh? Peter van Manen na tregon me shume.
- Electronic systems expert
Peter van Manen is the Managing Director of McLaren Electronics, which provides data systems to major motorsports series. Full bio

Double-click the English transcript below to play the video.

00:12
Motor racing is a funny old business.
0
336
2257
Garat me makina jane nje biznes i vjeter dhe i kendshem.
00:14
We make a new car every year,
1
2593
2317
Ne krijojme nje makine te re cdo vit,
00:16
and then we spend the rest of the season
2
4910
2188
dhe pastaj e kalojme pjesen tjeter te sezonit
00:19
trying to understand what it is we've built
3
7098
2776
duke u perpjekur te kuptojme se c'kemi ndertuar
00:21
to make it better, to make it faster.
4
9874
3221
per ta bere me te mire, per ta bere me te shpejte.
00:25
And then the next year, we start again.
5
13095
3275
Dhe pastaj vitin tjeter, rifillojme perseri.
00:28
Now, the car you see in front of you is quite complicated.
6
16370
4238
Kjo makine qe shikoni eshte disi e komplikuar.
00:32
The chassis is made up of about 11,000 components,
7
20608
3619
Shasia eshte krijuar me rreth 11.000 komponenente,
00:36
the engine another 6,000,
8
24227
2468
motorri me 6.000 te tjera,
00:38
the electronics about eight and a half thousand.
9
26695
3093
pjesa elektronike me rreth tete mije e 500.
00:41
So there's about 25,000 things there that can go wrong.
10
29788
4401
Pra, ka rreth 25.000 gjera aty qe mund te shkojne keq.
00:46
So motor racing is very much about attention to detail.
11
34189
4826
Pra garat me makina jane pak a shume kujdesi ndaj detajeve.
00:51
The other thing about Formula 1 in particular
12
39015
3263
Pjesa tjeter e Formula 1 ne vecanti
00:54
is we're always changing the car.
13
42278
2124
eshte se perhere e ndryshojme makinen.
00:56
We're always trying to make it faster.
14
44402
2280
Perhere perpiqemi ta bejme me te shpejte.
00:58
So every two weeks, we will be making
15
46682
2984
Pra cdo dy jave, ne do jemi duke krijuar
01:01
about 5,000 new components to fit to the car.
16
49666
4200
rreth 5.000 komponente te rinj qe ti pershtaten makines.
01:05
Five to 10 percent of the race car
17
53866
2178
Pese ne 10 perqind te makines garuese
01:08
will be different every two weeks of the year.
18
56044
3752
do jete ndryshe cdo dy jave te vitit.
01:11
So how do we do that?
19
59796
2309
Pra si e bejme kete?
01:14
Well, we start our life with the racing car.
20
62105
3744
Ne e fillojme jeten tone me makinen garuese.
01:17
We have a lot of sensors on the car to measure things.
21
65849
3991
Kemi shume sensore ne makine per te matur gjerat.
01:21
On the race car in front of you here
22
69840
1882
Ne kete makine garuese para jush
01:23
there are about 120 sensors when it goes into a race.
23
71722
3159
ka rreth 120 sensor kur ajo shkon per nje gare.
01:26
It's measuring all sorts of things around the car.
24
74881
3652
Masin gjithcka rreth makines.
01:30
That data is logged. We're logging about
25
78533
2052
Te dhenat jane te regjistruara. Regjistrojme rreth
01:32
500 different parameters within the data systems,
26
80585
3704
500 parametra te ndryshme ne sistemin e te dhenave,
01:36
about 13,000 health parameters and events
27
84289
3665
rreth 13.000 parametra shendetesore dhe ngjarje
01:39
to say when things are not working the way they should do,
28
87954
4565
per te treguar kur gjerat nuk shkojne ashtu sic duhet,
01:44
and we're sending that data back to the garage
29
92519
2825
dhe i dergojme te dhenat pas ne garazh
01:47
using telemetry at a rate of two to four megabits per second.
30
95344
4979
duke perdorur telemetrine ne shkallen dy deri kater megabit per sekond.
01:52
So during a two-hour race, each car will be sending
31
100323
3127
Pra cdo gare dy oreshe, cdo makine do dergoje
01:55
750 million numbers.
32
103450
2275
750 milion numra.
01:57
That's twice as many numbers as words that each of us
33
105725
3143
Kjo eshte dyfishi i numrave te fjaleve qe secili nga ne perdor
02:00
speaks in a lifetime.
34
108868
1631
per te folur gjate gjithe jetes se tij.
02:02
It's a huge amount of data.
35
110499
2618
Eshte nje sasi e madhe te dhenash.
02:05
But it's not enough just to have data and measure it.
36
113117
2645
Por te pasurit vec te dhena dhe matje nuk mjafton.
02:07
You need to be able to do something with it.
37
115762
2158
Duhet te jesh i afte te besh dicka me te.
02:09
So we've spent a lot of time and effort
38
117920
2394
Pra kemi shpenzuar shume kohe dhe mund
02:12
in turning the data into stories
39
120314
1869
per ti kthyer te dhenat ne histori
02:14
to be able to tell, what's the state of the engine,
40
122183
3105
per te qene te afte te tregojme se cila eshte situata e motorit,
02:17
how are the tires degrading,
41
125288
2272
si po degradojne gomat,
02:19
what's the situation with fuel consumption?
42
127560
3748
cila eshte situata me konsumin e karburantit?
02:23
So all of this is taking data
43
131308
2788
Keto jane te dhena te marra
02:26
and turning it into knowledge that we can act upon.
44
134096
3802
dhe te kthyera ne njohuri per te vepruar me pas.
02:29
Okay, so let's have a look at a little bit of data.
45
137898
2638
Ne rregull, le ti hedhim nje sy disa te dhenave.
02:32
Let's pick a bit of data from
46
140536
2030
Le te marim disa te dhena nga
02:34
another three-month-old patient.
47
142566
3079
nje pacient tre-muajsh.
02:37
This is a child, and what you're seeing here is real data,
48
145645
4171
Ky eshte nje femije, dhe ajo cka shikoni ketu jane te dhena te verteta,
02:41
and on the far right-hand side,
49
149816
1977
dhe ne fundin e anes se krahut te djathte,
02:43
where everything starts getting a little bit catastrophic,
50
151793
2587
aty ku gjithcka fillon te behet disi katastrofike,
02:46
that is the patient going into cardiac arrest.
51
154380
3584
e cila eshte qe ky pacient eshte nen arrest kardiak.
02:49
It was deemed to be an unpredictable event.
52
157964
3232
Mendohet se ishte nje ngjarje e paparishikueshme.
02:53
This was a heart attack that no one could see coming.
53
161196
3789
Ky ishte nje infarkt i zemres ku asnje nuk e priti.
02:56
But when we look at the information there,
54
164985
2550
Por kur shohim informacionin ketu,
02:59
we can see that things are starting to become
55
167535
2349
mund te shohim se gjerat po fillojne te behen
03:01
a little fuzzy about five minutes or so before the cardiac arrest.
56
169884
4029
disi te turbulla per rreth pese minuta para arrestit kardiak.
03:05
We can see small changes
57
173913
2037
Mund te shohim ndryshime te vogla
03:07
in things like the heart rate moving.
58
175950
2383
ne gjera si levizja e rrahjes se zemres.
03:10
These were all undetected by normal thresholds
59
178333
2486
Keto ishin te padallueshme nga pragjet normale
03:12
which would be applied to data.
60
180819
2408
te cilat mund te aplikoheshin ne te dhena.
03:15
So the question is, why couldn't we see it?
61
183227
3143
Pra pyetja eshte, pse nuk mund ta shikonim?
03:18
Was this a predictable event?
62
186370
2581
Ishte kjo nje ngjarje e parashikueshme?
03:20
Can we look more at the patterns in the data
63
188951
3010
Mund te shohim me shume ne strukturen e te dhenave
03:23
to be able to do things better?
64
191961
3380
per te mundur ti bejme gjerat me mire?
03:27
So this is a child,
65
195341
2650
Pra ky eshte nje femije,
03:29
about the same age as the racing car on stage,
66
197991
3232
ne te njejten moshe sa nje makine garuese ne skene
03:33
three months old.
67
201223
1630
tre muajsh.
03:34
It's a patient with a heart problem.
68
202853
2605
Eshte nje pacient me nje problem kardiak.
03:37
Now, when you look at some of the data on the screen above,
69
205458
3468
Nese mund te shikoni disa te dhena ne monitorin e mesiperm,
03:40
things like heart rate, pulse, oxygen, respiration rates,
70
208926
4902
gjera si ritmi kardiak, pulsi, oksigjeni, ritmi i frymemarrjes,
03:45
they're all unusual for a normal child,
71
213828
3076
jane te gjitha te pazakonte per nje femije normal,
03:48
but they're quite normal for the child there,
72
216904
2642
por jane shume normale per kete femije ketu,
03:51
and so one of the challenges you have in health care is,
73
219546
4138
dhe nje nga sfidat qe keni ne kujdesin ndaj shendetit eshte,
03:55
how can I look at the patient in front of me,
74
223684
2851
si mund ta shoh pacientin para meje,
03:58
have something which is specific for her,
75
226535
3047
te kete dicka qe eshte specifike per ate,
04:01
and be able to detect when things start to change,
76
229582
2788
dhe te mundem te zbuloj kur gjerat fillojne te ndryshojne,
04:04
when things start to deteriorate?
77
232370
2099
kur gjerat fillojne te perkeqesohen?
04:06
Because like a racing car, any patient,
78
234469
3050
Sepse ashtu si nje makine garuese, cdo pacient,
04:09
when things start to go bad, you have a short time
79
237519
2976
kur gjerat fillojne te shkojne keq, ke nje kohe te shkurter
04:12
to make a difference.
80
240495
1831
per te bere ndryshimin.
04:14
So what we did is we took a data system
81
242326
2754
Pra ajo cka beme ishte, morem nje sistem te dhenash
04:17
which we run every two weeks of the year in Formula 1
82
245080
3131
te cilen e perdorim cdo dy jave te vitit ne Formula 1
04:20
and we installed it on the hospital computers
83
248211
3002
dhe e instaluam ne kompjuterat e spitalit
04:23
at Birmingham Children's Hospital.
84
251213
2290
ne Spitalin e Femijeve te Birmingham.
04:25
We streamed data from the bedside instruments
85
253503
2439
I morem te dhenat nga aparatet ne ane te krevatit
04:27
in their pediatric intensive care
86
255942
2557
ne pavionin e kujdesit intensiv pediatrik
04:30
so that we could both look at the data in real time
87
258499
3456
ne menyre qe te shikonim te dhenat ne kohe reale
04:33
and, more importantly, to store the data
88
261955
2871
dhe, me e rendesishmja, te ruanim te dhenat
04:36
so that we could start to learn from it.
89
264826
3057
ne menyre qe te fillonim te mesonim nga ato.
04:39
And then, we applied an application on top
90
267883
4384
Me pas, aplikuam nje aplikacion mbi to
04:44
which would allow us to tease out the patterns in the data
91
272267
3270
i cili do na lejonte te nxirrnim strukturat ne te dhenat
04:47
in real time so we could see what was happening,
92
275537
2956
ne kohe reale ne menyre qe te shikonim cka po ndodhte,
04:50
so we could determine when things started to change.
93
278493
3713
qe te percaktonim nisjen e ndryshimit te gjerave.
04:54
Now, in motor racing, we're all a little bit ambitious,
94
282206
3863
Ne garat me makina, ne jemi disi ambicioz,
04:58
audacious, a little bit arrogant sometimes,
95
286069
2549
guximtar, pak arrogant disa here,
05:00
so we decided we would also look at the children
96
288618
3398
dhe keshtu vendosem qe te shikonim dhe tek femijet
05:04
as they were being transported to intensive care.
97
292016
2957
ndersa po transportoheshin ne kujdesin intesiv.
05:06
Why should we wait until they arrived in the hospital
98
294973
2154
Pse te prisnim deri sa ata te mberrinin ne spital
05:09
before we started to look?
99
297127
1994
para se te fillonim shikimin?
05:11
And so we installed a real-time link
100
299121
2997
Dhe per kete instaluam nje lidhje ne kohe reale
05:14
between the ambulance and the hospital,
101
302118
2836
mes ambulances dhe spitalit,
05:16
just using normal 3G telephony to send that data
102
304954
3776
duke perdorur thjesht telefoni 3G per te derguar te dhenat
05:20
so that the ambulance became an extra bed
103
308730
2487
ne menyre qe ambulanca te behej nje krevat shtese
05:23
in intensive care.
104
311217
3136
ne kujdesin intesiv.
05:26
And then we started looking at the data.
105
314353
3702
Dhe me pas filluam te shikonim te dhenat.
05:30
So the wiggly lines at the top, all the colors,
106
318055
2921
Linjat e dredhuar ketu lart, te gjitha ngjyrat,
05:32
this is the normal sort of data you would see on a monitor --
107
320976
3194
keto jane tipi i te dhenave normale qe do shikonin ne nje monitor--
05:36
heart rate, pulse, oxygen within the blood,
108
324170
3772
ritmi kardiak, pulsi, oksigjen ne gjak
05:39
and respiration.
109
327942
2635
dhe frymemarrja.
05:42
The lines on the bottom, the blue and the red,
110
330577
2753
Linjat ne fund, blu-ja dhe e kuq-ja,
05:45
these are the interesting ones.
111
333330
1360
jane ato interesantet.
05:46
The red line is showing an automated version
112
334690
3209
Linja e kuqe tregon nje version automatizes
05:49
of the early warning score
113
337899
1597
te pikave fillestare paralajmeruese
05:51
that Birmingham Children's Hospital were already running.
114
339496
2487
te cilat Spitali i Femijeve Birmingham po perdorte fillimisht.
05:53
They'd been running that since 2008,
115
341983
2338
Po e perdornin qe prej 2008,
05:56
and already have stopped cardiac arrests
116
344321
2256
dhe kishin ndaluar arreste kardiake
05:58
and distress within the hospital.
117
346577
2757
dhe shqetesime brenda spitalit.
06:01
The blue line is an indication
118
349334
2432
Linja blu eshte nje tregues
06:03
of when patterns start to change,
119
351766
2500
se kur struktura fillon te ndryshoje
06:06
and immediately, before we even started
120
354266
2309
dhe menjehere, para se ne te fillonim
06:08
putting in clinical interpretation,
121
356575
1708
duke i vendosur ne interpretim klinik,
06:10
we can see that the data is speaking to us.
122
358283
2870
mund te shohim se te dhenat po flasin me ne.
06:13
It's telling us that something is going wrong.
123
361153
3536
Na tregojne se dicka po shkon gabim.
06:16
The plot with the red and the green blobs,
124
364689
3816
Subjekti me pikat e kuqe dhe jeshile,
06:20
this is plotting different components
125
368505
2805
kjo tregon komponente te ndryshem
06:23
of the data against each other.
126
371310
2547
nga te dhenat kundrejt njera tjetres.
06:25
The green is us learning what is normal for that child.
127
373857
3840
Jeshilja jemi ne duke mesuar cka eshte normale per ate femije.
06:29
We call it the cloud of normality.
128
377697
2610
Ne e quajme reja e normalitetit.
06:32
And when things start to change,
129
380307
2241
Dhe kur gjerat fillojne te ndryshojne,
06:34
when conditions start to deteriorate,
130
382548
2564
kur kushtet fillojne te perkeqesohen,
06:37
we move into the red line.
131
385112
2238
ne kalojme ne linjen e kuqe.
06:39
There's no rocket science here.
132
387350
1657
Nuk ka shkence raketash ketu.
06:41
It is displaying data that exists already in a different way,
133
389007
4113
Tregon te dhena qe ekzistojne ne nje menyre ndryshe,
06:45
to amplify it, to provide cues to the doctors,
134
393120
3391
per ta plotesuar ate, per te ti dhene sugjerime mjekeve,
06:48
to the nurses, so they can see what's happening.
135
396511
2738
infermiereve, qe te shohin cka po ndodh.
06:51
In the same way that a good racing driver
136
399249
3130
Ne te njejten menyre qe nje shofer i mire garash
06:54
relies on cues to decide when to apply the brakes,
137
402379
4044
mbeshtetet ne te dhenat per te percaktuar se kur duhet te perdori frenat,
06:58
when to turn into a corner,
138
406423
1476
kur te marre kthesen,
06:59
we need to help our physicians and our nurses
139
407899
2918
duhet te ndihmojne mjeket dhe infermieret tane
07:02
to see when things are starting to go wrong.
140
410817
3620
per te pare gjerat kur fillojne te shkojne keq.
07:06
So we have a very ambitious program.
141
414437
2946
Pra kemi nje program shume ambicioz.
07:09
We think that the race is on to do something differently.
142
417383
4736
Mendojme se gara eshte per te bere dicka ndryshe.
07:14
We are thinking big. It's the right thing to do.
143
422119
2904
Ne mendojme ne shkalle te gjere. Eshte gjeja e duhur per te bere.
07:17
We have an approach which, if it's successful,
144
425023
3412
Kemi nje rruge e cila, nese eshte e sukseshme,
07:20
there's no reason why it should stay within a hospital.
145
428435
2531
nuk ka arsye pse duhet te qendroje brenda spitalit.
07:22
It can go beyond the walls.
146
430966
1841
Mund te dali jashte mureve.
07:24
With wireless connectivity these days,
147
432807
2071
Me lidhjen jo kabllor te ketyre diteve,
07:26
there is no reason why patients, doctors and nurses
148
434878
3444
nuk ka arsye pse pacientet, mjeket dhe infermieret
07:30
always have to be in the same place
149
438322
2171
duhet gjithmone te jene ne te njejtin vend
07:32
at the same time.
150
440493
1993
ne te njejten kohe.
07:34
And meanwhile, we'll take our little three-month-old baby,
151
442486
3995
Dhe nderkohe, ne do marrim foshnjen tone tre muajshe
07:38
keep taking it to the track, keeping it safe,
152
446481
3757
duke e mbajtur ne gjurme, duke e mbajtur te sigurte
07:42
and making it faster and better.
153
450238
2333
dhe ta bejme me te shpejte dhe me te mire.
07:44
Thank you very much.
154
452571
1405
Ju faleminderit shume.
07:45
(Applause)
155
453976
4954
(Duartrokitje)
Translated by Alisa Xholi
Reviewed by Iris Xholi

▲Back to top

ABOUT THE SPEAKER
Peter van Manen - Electronic systems expert
Peter van Manen is the Managing Director of McLaren Electronics, which provides data systems to major motorsports series.

Why you should listen

To say that Peter van Manen has a high-speed job would be an understatement. As Managing Director of McLaren Electronics, which provides electronics and data collection software to motorsports events, he and his team work in real time during a race to improve cars on about 500 different parameters. That's about 750 million data points in two hours.

But recently van Manen and his team have been wondering: Why can't the extremely precise and subtle data-collection and analysis systems used in motorsports be applied elsewhere, for the benefit of all? They have applied their systems to ICU units at Birmingham Children's Hospital with real-time analysis that allows them to proactively prevent cardiac arrests. The unit has seen a 25 percent decrease in life-threatening events. And it's just the beginning.

More profile about the speaker
Peter van Manen | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee