ABOUT THE SPEAKER
Jer Thorp - Data artist
Jer Thorp’s work focuses on adding meaning and narrative to huge amounts of data as a way to help people take control of the information that surrounds them.

Why you should listen

Currently the data artist in residence at the New York Times, Jer’s software-based art has been featured all over the world. His former career as a data artist explains why his art often brings big data sets to life and is deeply influenced by science. Originally from Vancouver, he lives in New York City, where, along with his work at the New York Times, he teaches in NYU’s ITP program.

More profile about the speaker
Jer Thorp | Speaker | TED.com
TEDxVancouver

Jer Thorp: Make data more human

Filmed:
300,699 views

Jer Thorp creates beautiful data visualizations to put abstract data into a human context. At TEDxVancouver, he shares his moving projects, from graphing an entire year’s news cycle, to mapping the way people share articles across the internet. (Filmed at TEDxVancouver.)
- Data artist
Jer Thorp’s work focuses on adding meaning and narrative to huge amounts of data as a way to help people take control of the information that surrounds them. Full bio

Double-click the English transcript below to play the video.

我想告诉你们两件非常振奋人心的事,
00:10
I want to talk to you about two
of the most exciting扣人心弦 possible可能 things.
0
1674
6250
你们可能已经猜到是什么了,
00:16
You've probably大概 guessed what they are --
1
7948
1949
数据和历史。
00:18
data数据 and history历史.
2
9921
2319
不是吗?
00:21
Right?
3
13211
1171
00:24
So, I'm not a historian历史学家.
4
15871
1982
我不是个历史学家。
00:26
I'm not going to give you
a definition定义 of history历史.
5
17877
2728
我不是来跟你们讲历史定义的。
00:29
But let's think instead代替
of history历史 within a framework骨架.
6
20629
3113
而是想让你们通过一个框架看待历史。
当我们创造历史
00:32
So, when we're making制造 history历史,
7
23766
1611
或是撰写历史文献时,
00:33
or when we're creating创建
historical历史的 documents文件,
8
25401
2892
00:36
we're taking服用 things
that have happened发生 in the past过去,
9
28317
2428
我们是在把过去发生的事
衔接在一起变成一个故事。
00:39
and we're stitching拼接 them
together一起 into a story故事.
10
30769
2552
让我先来讲一个我自己的故事。
00:41
So let me start开始 with a little bit
of my own拥有 story故事.
11
33345
2530
和大多数年龄相仿的
计算机工作者一样,
00:44
Like anybody任何人 my age年龄
who works作品 creatively创造性 with computers电脑,
12
35899
3678
00:48
I was a popular流行, socially社交上
well-adjusted调整良好 young年轻 man --
13
39601
4456
我曾是个善于社交、受欢迎的年轻人,
00:52
(Laughter笑声)
14
44081
1122
(笑声)
00:53
And sporty运动型!
15
45227
2541
而且擅长运动!
擅长运动的年轻人。
00:56
Sporty运动 young年轻 man.
16
47792
1733
00:58
And like a lot of people my age年龄
in the type类型 of business商业 that I'm in,
17
50075
5353
和大多数年龄差不多的同行一样,
01:03
I was influenced影响 tremendously异常 by Apple苹果.
18
55452
2645
我深受苹果公司的影响,
01:07
But notice注意 my choice选择 of logo商标 here, right?
19
58635
3722
但是注意看我选的这个商标,
01:10
The Apple苹果 on the left,
not the Apple苹果 on the right.
20
62381
3585
左边那个苹果,不是右边那个。
01:15
I'm influenced影响 as much
by the Apple苹果 on the right
21
66621
2293
我深受右边那个苹果的影响,
01:17
as the next下一个 person,
22
68938
2083
就像每个人一样,
01:19
but the Apple苹果 on the left --
I mean, look at that logo商标!
23
71045
2633
但是左边那个苹果,看看这标志,
是个彩虹,但是顺序是错的!
01:22
It's a rainbow彩虹.
It's not even in the right order订购!
24
73702
2397
01:24
(Laughter笑声)
25
76123
1134
(笑声)
01:25
That's how crazy Apple苹果 was.
26
77281
2273
真不知道苹果公司在搞什么鬼。
01:28
(Laughter笑声)
27
79578
1037
(笑声)
01:29
But I don't want to talk too much
about the company公司.
28
80639
2945
但对苹果公司我不想说太多。
01:32
I'll start开始 talking about
a machine, though虽然.
29
83608
2177
我想跟你们说一个机器的事儿。
01:34
How amazing惊人 it is to think about this.
I go back and I think about this.
30
85809
4127
我现在回过头来想,真是不可思议啊。
01:38
Wednesday星期三 -- one Wednesday星期三,
when I was about 12 years年份 old,
31
89960
3314
那是个周三,是我大概12岁的时候,
我还没有电脑。
01:41
I didn't have a computer电脑.
32
93298
2111
01:44
On Thursday星期四, I had a computer电脑.
33
96034
2779
到了周四,我就有了一台电脑。
你能想象这变化吗?
01:48
Can you imagine想像 that change更改?
34
99965
1999
01:50
It's so drastic激烈.
35
102417
1681
翻天覆地的变化。
01:52
I can't even think about anything
that could change更改 our lives生活 that way.
36
104122
3451
没有事物可以像电脑
那样改变我们的生活。
但我其实也不想聊电脑的事儿。
01:56
But I'm actually其实 not even going
to talk about the computer电脑.
37
107597
2767
我想聊聊电脑上的一个程序。
01:58
I'm going to talk about a program程序
that came来了 loaded on that computer电脑.
38
110388
3230
程序的创始人是……不是左边那个,
02:02
And it was build建立 by,
not the guy on the left,
39
113642
2272
右边那个才是。
02:04
but the guy on the right.
40
115938
1435
大家知道右边那人是谁吗?
02:05
Does anybody任何人 know
who the guy on the right is?
41
117397
2144
从来都没人知道。
02:09
Nobody没有人 ever knows知道 the answer回答
to this question.
42
121161
2410
这是比尔·阿特肯森。
02:12
This is Bill法案 Atkinson阿特金森.
43
123595
1686
02:13
And Bill法案 Atkinson阿特金森 was responsible主管
for tons of things
44
125305
3107
多亏比尔·阿特肯森做的很多事,
才有了我们现在
02:16
that you see on your computer电脑 every一切 day.
45
128436
2482
每天在电脑上看到的东西。
但是我想重点说说比尔写的一个程序,
02:19
But I want to talk about one program程序
that Bill法案 Atkinson阿特金森 wrote,
46
130942
3107
02:22
called HyperCardHyperCard的.
47
134073
1500
叫做 HyperCard。
02:25
Someone's别人的 cheering欢呼 over there.
48
137025
2160
我听到那边有观众在欢呼。
02:27
(Laughter笑声)
49
139209
1205
(笑声)
02:28
HyperCardHyperCard的 was a program程序
that shipped with the Mac苹果电脑,
50
140438
2602
HyperCard 曾是苹果电脑的附赠品。
02:31
and it was designed设计
for users用户 of the computer电脑
51
143064
2569
为苹果电脑使用者设计的,
在电脑上编程时用。
02:34
to make programs程式 on their computers电脑.
52
145657
3197
如今听起来很疯狂。
02:38
Crazy idea理念 today今天.
53
149505
1597
02:39
And these programs程式 were not the apps应用
that we think about today今天,
54
151126
2973
这些程序不是我们如今使用的app,
02:42
with their large budgets预算
and their big distribution分配.
55
154123
2449
app是有很大的预算和传播度的。
而这些程序只是很小的程序,
02:45
These were small things,
56
156596
1189
有人用它来记录当地篮球赛的比分,
02:46
people making制造 applications应用 to keep track跟踪
of their local本地 basketball篮球 team球队 scores分数
57
157809
3882
02:50
or to organize组织 their research研究
58
161715
2825
有人用来整理论文,
有人用来做古典音乐的教学
02:53
or to teach people about classical古典 music音乐
59
164564
3016
02:56
or to calculate计算 weird奇怪的 astronomical天文 dates日期.
60
167604
4095
或者计算奇怪的天文日期。
03:00
And then, of course课程,
there were some art艺术 projects项目.
61
171723
2381
当然还有一些是艺术项目。
这是我最喜欢的一个。
03:02
This is my favorite喜爱 one.
62
174128
1220
叫做“If Monks Had Macs,”
03:03
It's called "If Monks僧侣 Had Macs苹果电脑,"
63
175372
2089
03:05
and it's a nonlinear非线性
kind of exploratory探索 environment环境.
64
177485
4534
是个非线性探索环境。
因为HyperCard,我感谢上苍。
03:10
I thank the stars明星 for HyperCardHyperCard的
all of the time.
65
182043
5573
03:16
And I thank the stars明星
for putting me in this era时代
66
187640
2447
感谢上苍让我生在这个时代,
03:18
where I got to use HyperCardHyperCard的.
67
190111
2300
让我有机会使用HyperCard。
03:20
HyperCardHyperCard的 was the last program程序 to ship
on a public上市 computer电脑
68
192435
4640
Hypercard是最后一个
和公共电脑一起寄出
03:25
that was designed设计 for the users用户
of the computer电脑 to make programs程式 with it.
69
197099
5129
设计给用户编程的附赠品。
03:30
If you talked to the people
who invented发明 the computer电脑
70
202252
2705
如果你告诉电脑的发明者们,
03:33
and you told them there would be
a day, a magical神奇 day,
71
204981
2749
有那么一日,
03:36
when everybody每个人 had a computer电脑
but none没有 of them knew知道 how to program程序,
72
207754
5062
所有人都有了电脑,
却没人知道如何编程,
03:41
they would think you were crazy.
73
212840
1811
他们一定会觉得你疯了。
03:43
So let's skip跳跃 forward前锋 a few少数 years年份.
74
215486
1664
让我们快进几年。
03:45
I'm starting开始 my career事业 as an artist艺术家,
75
217174
2588
我最初的职业是艺术家,
03:48
and I'm building建造 things
with my computer电脑, small-scale小型 things,
76
219786
3962
我用电脑创作一些小玩意儿,
03:52
investigating调查 things like
the growth发展 systems系统 of plants植物.
77
223772
3603
比如研究植物的生长系统。
还有,在这个例子中,
03:55
Or, in this example, I'm building建造
a simulated模拟 economy经济
78
227399
2999
03:58
in which哪一个 pixels像素 are trading贸易 color颜色
with one another另一个,
79
230422
3961
我用像素间的颜色互换
来模拟经济模式,
调查这些系统是如何运作的,
04:02
trying to investigate调查 how
these types类型 of systems系统 work,
80
234407
2575
04:05
and just kind of having fun开玩笑.
81
237006
1402
我乐在其中。
04:06
And then this project项目 led me
to start开始 working加工 with data数据.
82
238432
2628
这个项目使我开始从事
数据相关的工作。
04:09
So I'm building建造 graphics图像 like this,
83
241084
2989
我建立这样的图表,
04:12
which哪一个 compare比较 "communism共产主义" --
84
244097
2594
把纽约时代周刊里
“共产主义”和“恐怖主义”
这两个词的使用频率
04:15
the frequency频率 of usage用法 of the word
"communism共产主义" in the New York纽约 Times --
85
246715
3395
进行对比。
04:18
to "terrorism恐怖主义," at the top最佳.
86
250134
1937
04:20
You see "terrorism恐怖主义" kind of appears出现
as "communism共产主义" is going away.
87
252095
4625
我们可以发现“恐怖主义“
逐渐出现,“共产主义“渐渐消失。
04:25
And with these graphics图像, I was really
interested有兴趣 in the aesthetic审美 of the graphs.
88
256744
3816
我对这些图像的美观性也很感兴趣。
这是伊朗和伊拉克。
04:29
This is Iran伊朗 and Iraq伊拉克.
89
260584
1150
04:30
It reads like a clock时钟. It's called
a "timepiece graph图形."
90
261758
3910
看起来像个钟表,叫做“钟表图。”
04:34
This is another另一个 timepiece graph图形,
overlaying覆盖 "despair绝望" over "hope希望."
91
265692
5711
这是另一个钟表图的例子:
在“希望”上叠加“绝望。”
04:39
And there's only three times -- actually其实,
it's "crisis危机" over "hope希望" --
92
271427
3310
实际上,是在“希望”上叠加”危机“——
“希望”只有三次被”危机“覆盖,
04:43
there's only three times
when "crisis危机" eclipses日食 "hope希望."
93
274761
2609
我们目前正身处其中一次。
04:45
We're in the middle中间
of one of them right now.
94
277394
2155
但这事你们还是别多想了。
04:48
But don't think about that too much.
95
279573
1772
(笑声)
04:49
(Laughter笑声)
96
281369
1888
04:51
And finally最后, the culmination大成 of this work
with the New York纽约 Times data数据
97
283281
3780
这一系列纽约时报作品的巅峰是
几年前,
04:55
a few少数 years年份 ago
98
287085
1202
04:56
was the attempt尝试 to combine结合
an entire整个 year's年份 news新闻 cycle周期
99
288311
3176
我尝试把一整年的新闻
整合到一张图中。
05:00
into a single graphic图像.
100
291511
1313
05:01
So these graphics图像 actually其实 show显示 us
a full充分 year of news新闻, all the people,
101
292848
4227
于是这一整年的新闻、人物,
以及他们之间的关系,
05:05
and how they're connected连接的
into a single graphic图像.
102
297099
2630
都在这一张图里了。
05:08
And from there, I started开始 to be
interested有兴趣 again in more active活性 systems系统.
103
299753
3938
由此,我对更活跃的系统产生了兴趣。
05:12
Here's这里的 a project项目 called "Just Landed降落,"
104
303715
2264
这个项目叫“Just Landed,”
05:14
where I'm looking at people
tweeting啁啾 on Twitter推特.
105
306003
3151
我看人们发推特。
05:17
"Hey! I just landed登陆
in Hawaii夏威夷!" -- you know,
106
309178
2060
“我刚飞到夏威夷!”
——你们懂的,
05:19
how people just casually胡乱 try to sneak潜行
that into their Twitter推特 conversation会话.
107
311262
3702
人们总是不经意地在推特上谈到这些。
“我真的不是在炫耀,但我刚到夏威夷。“
05:23
"I'm not showing展示 off. Really.
But I did just land土地 in Hawaii夏威夷."
108
314988
3117
05:26
And then I'm plotting绘制
those people's人们 trips旅行,
109
318129
2743
然后我开始描绘人们的旅程,
05:29
in the hopes希望 that maybe
we can use social社会 network网络
110
320896
3212
希望可以利用社交网络
和背后的数据
05:32
and the data数据 that it leaves树叶 behind背后
111
324132
1681
建立一个模型来跟踪人们的动向,
05:34
to provide提供 a model模型 of how people move移动,
112
325837
2199
对流行病学家来说,
这将是十分宝贵的信息。
05:36
which哪一个 would be valuable有价值
to epidemiologists流行病学家, among其中 other people.
113
328060
2975
05:39
And, more fun开玩笑 -- this
is a similar类似 project项目,
114
331059
2579
这是个类似的项目——它更有趣,
05:42
looking at people
saying "Good morning早上" to each other
115
333662
2491
在推特上看世界各地的人们
互道早安。
05:44
all around the world世界.
116
336177
1183
顺便说一句,我才知道,
05:45
Which哪一个 taught me, by the way,
117
337384
1434
在温哥华西岸的人真的比东岸的人
05:47
that it is true真正 that people in Vancouver温哥华
on the West西 Coast wake唤醒 up much later后来
118
338842
4350
起床晚,
05:51
and say "Good morning早上" much later后来
119
343216
1583
互相道早安也晚,
05:53
than the people on the East Coast,
120
344823
1861
05:55
who are more adventurous爱冒险的.
121
346708
1799
东岸的人也更有冒险精神。
05:57
Here's这里的 a more useful有用 -- maybe -- project项目,
122
348531
1974
再给你们看一个项目
——这个可能更实用,
05:59
where I took all the information信息
from the Kepler开普勒 Project项目
123
350529
3351
我试图把开普勒项目的数据
06:02
and tried试着 to put it into some visual视觉 form形成
that made制作 sense to me.
124
353904
3043
做成更易懂的图像。
我刚才给你们看的所有作品
06:05
And I should say that everything
I've shown显示 you up to now --
125
356971
2884
都是做着玩的。
06:08
these are all things
that I just did for fun开玩笑.
126
359879
2152
听起来有点奇怪,
但这就像HyperCard。
06:10
It may可能 seem似乎 weird奇怪的,
but this comes back from HyperCardHyperCard的.
127
362055
2735
06:13
I'm building建造 tools工具 for myself.
128
364814
1830
我自己创造一些工具,
然后我可以和一些人分享,
06:15
I may可能 share分享 them with a few少数 other people,
129
366668
1983
但都是为了自己开心,做着玩的。
06:17
but they're for fun开玩笑, they're for me.
130
368675
2107
所以其实很难给这些工具明确的定位。
06:21
So, all these tools工具 I show显示 you
kind of occupy占据 this weird奇怪的 space空间
131
373341
3970
06:25
somewhere某处 between之间 science科学, art艺术 and design设计.
132
377335
2544
我的创作介于
科学,艺术和设计之间。
06:28
That's where my practice实践 lies.
133
379903
1805
06:30
And still today今天,
from my experience经验 with HyperCardHyperCard的,
134
381732
3156
从HyperCard开始直到今天,
我都在建立可视化工具
来帮助我理解各种系统。
06:33
what I'm doing is building建造 visual视觉 tools工具
to help me understand理解 systems系统.
135
384912
4230
我今天在纽约时报工作,
06:38
So today今天, I work at the New York纽约 Times.
136
390083
2221
06:40
I'm the data数据 artist艺术家 in residence住宅
at the New York纽约 Times.
137
392328
2873
我是个数据艺术家。
06:43
And I've had an opportunity机会 at the Times
138
395225
1933
工作期间,
我接触到很多有趣的项目,
06:45
to work on a variety品种
of really interesting有趣 projects项目,
139
397182
2464
今天会给你们看其中两个。
06:48
two of which哪一个 I'm going
to share分享 with you today今天.
140
399670
2222
第一个是和马克·汉森一起做的。
06:50
The first one, I've been working加工 on
in conjunction连词 with Mark标记 Hansen汉森.
141
401916
3202
06:53
Mark标记 Hansen汉森 is a professor教授 of statistics统计
at UCLA加州大学洛杉矶分校. He's also a media媒体 artist艺术家.
142
405142
5142
马克是加州洛杉矶的
统计学教授和传媒艺术家。
马克来时报时提过一个有趣
06:58
And Mark标记 came来了 to the Times
with a very interesting有趣 question
143
410308
2786
07:01
to what may可能 seem似乎 like an obvious明显 problem问题:
144
413118
2660
而又似乎显而易见的问题:
当人们在网上传播信息时,
07:04
When people share分享 content内容 on the internet互联网,
145
415802
3151
07:07
how does that content内容 get
from person A to person B?
146
418977
3615
信息是如何从甲传到乙,
或从甲传到乙、丙、丁的?
07:11
Or maybe, person A to person B
to person C to person D?
147
423358
4724
07:16
We know that people share分享 content内容
in the internet互联网,
148
428106
2354
我们都知道人们在网络上分享信息,
却不知道传播过程中
07:18
but what we don't know
is what happens发生 in that gap间隙
149
430484
2358
发生了什么。
07:21
between之间 one person to the other.
150
432866
1791
所以我们决定创造工具来探索这个问题,
07:23
So we decided决定 to build建立
the tool工具 to explore探索 that,
151
434681
2356
这个工具叫做Cascade。
07:25
and this tool工具 is called Cascade级 联.
152
437061
1823
我们看这些系统时,
07:27
If we look at these systems系统
153
439471
2595
07:30
that start开始 with one event事件
that leads引线 to other events事件,
154
442090
4430
一件事导致另一些事,
我们称之为建立cascade。
07:35
we call that structure结构体 a cascade级联.
155
446544
2238
07:37
And these cascades级联
actually其实 happen发生 over time.
156
448806
2409
这些cascade是逐渐发生的,
07:39
So we can model模型 these things over time.
157
451239
2020
所以我们的跟踪建模也需要一段时间。
07:41
Now, the New York纽约 Times has
a lot of people who share分享 our content内容,
158
453283
4031
很多人都在传播纽约时报上的信息,
07:45
so the cascades级联 do not look like that one,
they look more like this.
159
457338
3491
所以Cascade看起来其实是这样的。
这是个常见的Cascade。
07:49
Here's这里的 a typical典型 cascade级联.
160
460853
1540
07:50
At the bottom底部 left, the very first event事件.
161
462417
2714
最左下方是第一个事件。
07:54
And then as people are sharing分享
the content内容 from one person to another另一个,
162
466237
4272
当信息从一个人传播到另一个人时,
这个点向上沿y轴延伸,
y轴是分离程度,
07:59
we go up in the Y axis,
degrees of separation分割,
163
470533
3794
08:02
and over on the X axis, for time.
164
474351
2768
同时向x轴延伸,x轴是时间。
08:05
So we're able能够 to look at that conversation会话
in a couple一对 of different不同 views意见:
165
477143
3501
现在我们可以从很多角度
看这个问题:
这是线型角度,
08:09
this one, which哪一个 shows节目 us
the threads线程 of conversation会话,
166
480668
2615
这个是把线型堆叠,
08:11
and this one, which哪一个 combines联合收割机
that stacked堆叠 view视图
167
483307
3194
08:15
with a view视图 that lets让我们 us see the threads线程.
168
486525
2932
成为这样的立体角度。
08:18
Now, the Times publishes发布
about 7,000 pieces of content内容
169
489924
3345
今天,时报每个月发表
约7000篇文章。
08:21
every一切 month.
170
493293
1210
所以建立这个工具时很重要的一点是,
08:23
So it was important重要 for us,
when we were building建造 this tool工具,
171
494527
2842
把它建成一个可探索的模型,
08:25
to make it an exploratory探索 one,
172
497393
1633
这样人们可以在大量数据中
挖掘他们需要的信息。
08:27
so that people could dig through通过
this vast广大 terrain地形 of data数据.
173
499050
4207
08:31
I think of it as a vehicle车辆
that we're giving people
174
503281
2436
就像是给人们提供了一辆车,
08:34
to traverse横过 this really big
terrain地形 of data数据.
175
505741
3473
在这大量的数据中畅通无阻。
实况中的cascade,
08:37
So here's这里的 what it really looks容貌 like,
176
509238
1718
看起来是这样的。
08:39
and here's这里的 the cascade级联
playing播放 in real真实 time.
177
510980
2740
08:42
I have to say, this was
a tremendous巨大 moment时刻.
178
513744
2079
不得不说,这是一个重要的时刻。
那么久以来,我们应付了太多假新闻,
08:44
We had been working加工 with canned听装
data数据, fake data数据, for so long,
179
515847
4017
08:48
that when we saw this
for the first moment时刻,
180
519888
2805
所以当我们第一次看到这一幕时,
08:51
it was like an archaeologist考古学家 who had
just dusted off these dinosaur恐龙 bones骨头.
181
522717
4878
就好像考古学家把灰尘
从恐龙骨架上抖落一样。
我们发现了并第一次看到,
08:56
We discovered发现 this thing,
and we were seeing眼看 it for the first time,
182
527619
3878
这些网络共享信息的结构。
09:00
these sharing分享 structures结构
that underlie背后 the internet互联网.
183
531521
3712
拿恐龙来打比方好像挺合适的,
09:04
And maybe the dinosaur恐龙
analogy比喻 is a good one,
184
536475
2105
因为我们是在对这些事之间的关联
09:07
because we're actually其实 making制造
some probabilistic概率 guesses猜测
185
538604
3047
09:10
about how these things link链接.
186
541675
1359
做概率性的推测。
09:11
We're looking at some of these
pieces and making制造 some guesses猜测,
187
543058
2926
当我们看着这些碎片信息做出假设时,
09:14
but we try to make sure that those
are as statistically统计学 rigorous严格 as possible可能.
188
546008
3937
我们尽力确保它们的严谨性。
推特是故事的一部分,
09:19
Now tweets微博, in this case案件,
they become成为 parts部分 of stories故事.
189
550720
4662
09:23
They become成为 parts部分 of narratives叙事.
190
555406
1925
叙事的一部分。
09:25
So we are building建造 histories历史 here,
191
557355
2420
我们在创建历史,
09:28
but they're very short-term短期 histories历史.
192
559799
2175
但它们不过是短暂的历史。
09:30
And sometimes有时 these very large cascades级联
are the most interesting有趣 ones那些,
193
561998
3838
这些大型的cascades
往往是最有趣的,
09:34
but sometimes有时 the small ones那些
are also interesting有趣.
194
565860
3135
当然有些小型的cascades
也是很有意思的。
这是我很喜欢的一个,
叫“rabbi cascade”,
09:37
This is one of my favorites最爱.
We call this the "Rabbi拉比 Cascade级 联."
195
569019
3525
是拉比们(犹太教学者)围绕
纽约时报中的一篇文章的对话,
09:41
It's a conversation会话 amongst其中包括 rabbis拉比
about this article文章 in the New York纽约 Times,
196
572568
5089
09:46
about the fact事实 that religious宗教 workers工人
don't get a lot of time off.
197
577681
3772
实际上,宗教工作者
休息时间非常有限。
09:49
I guess猜测 Saturdays星期六 and Sundays周日 are bad days
for them to take off.
198
581477
4035
周六和周日他们好像不太能放假。
于是在这个cascade里,
有一群拉比在谈论
09:54
So, in this cascade级联, there's a group
of rabbis拉比 having a conversation会话
199
585536
3692
一个纽约时报发表的故事。
09:57
about a New York纽约 Times story故事.
200
589252
1402
其中一个拉比给自己取的
推特用户名很厉害——
09:59
One of them has the best最好
Twitter推特 name名称 ever --
201
590678
2124
叫“ The Velveteen Rabbi”
(注:Velve teen Rabbit/绒布小兔子
是一本英国儿童读物,此处取名去掉了t)
10:01
he's called "The Velveteen平绒 Rabbi拉比."
202
592826
1855
10:03
(Laughter笑声)
203
594705
2323
(笑声)
10:05
But we would have never found发现 this
if it weren't for this exploratory探索 tool工具.
204
597052
4507
如果没有这个初步工具,
我们永远不会找到这些信息。
10:10
This would just be sitting坐在 somewhere某处,
205
601583
1802
这些信息只会停留在某些角落,
永不得见天日。
10:11
and we would have never
been able能够 to see that.
206
603409
2186
把信息整合,
10:14
But this exercise行使 of taking服用
single pieces of information信息
207
605619
4141
然后建立叙事性结构,创作历史,
10:18
and building建造 narrative叙述 structures结构,
building建造 histories历史 out of them,
208
609784
4221
10:22
I find tremendously异常 interesting有趣.
209
614029
1925
我发现了无穷的乐趣。
我两年前搬到纽约,
10:24
You know, I moved移动 to New York纽约
about two years年份 ago.
210
616319
2344
在纽约,人人都有一个故事
10:27
And in New York纽约, everybody每个人 has a story故事
211
618687
2720
是关于
10:29
that surrounds围绕着 this
tremendously异常 impactful影响力 event事件
212
621431
2960
发生在2001年9月11日
的那个重大事件。
10:32
that happened发生 on September九月 11 of 2001.
213
624415
2299
我自己的那个故事有些复杂,
10:35
And my own拥有 story故事 with September九月 11
has really become成为 a more intricate错综复杂 one,
214
627373
6367
10:42
because I spent花费 a great deal合同 of time
215
633764
2064
因为我花了很多时间
10:44
working加工 on a piece
of the 9/11 Memorial纪念馆 in Manhattan曼哈顿.
216
635852
4149
在曼哈顿的9/11事件纪念碑。
10:49
The central中央 idea理念 about the 9/11 Memorial纪念馆
217
640530
2564
9/11事件纪念碑的核心理念
10:51
is that the names in the memorial纪念馆
are not laid铺设 out in alphabetical拼音 order订购
218
643118
4459
在于那些纪念碑上的名字
不是按字母顺序排列,
也不是按年份排列,
10:56
or chronological实足 order订购,
219
647601
1685
而是通过
10:57
but instead代替, they're laid铺设 out in a way
220
649310
1824
10:59
in which哪一个 the relationships关系
between之间 the people who were killed杀害
221
651158
3424
可以体现遇难者之间的关系
的方式排列的。
11:03
are embodied体现 in the memorial纪念馆.
222
654606
1960
弟兄和弟兄一起,
11:05
Brothers兄弟 are placed放置 next下一个 to brothers兄弟,
223
657153
2538
同事和同事一起,
11:08
coworkers合作伙伴 are placed放置 together一起.
224
659715
2185
11:10
So this memorial纪念馆 actually其实 considers考虑
all of these myriad无数的 connections连接
225
661924
4665
所以这个纪念碑考虑了种种连接,
11:15
that were part部分 of these people's人们 lives生活.
226
666613
2421
这些人曾经在生活中的连接。
我和一个叫做Local Projects
的公司合作
11:18
I worked工作 with a company公司
called Local本地 Projects项目
227
670310
3433
11:22
to work on an algorithm算法
and a software软件 tool工具
228
673767
2674
做了一个算法软件
来帮助建筑师们决定这个
纪念碑的排列方式:
11:24
to help the architects建筑师 build建立
the layout布局 for the memorial纪念馆:
229
676465
3004
11:28
almost几乎 3,000 names
230
680331
1722
一共有将近3000个名字,
11:30
and almost几乎 1,500 of these
adjacency邻接 requests要求,
231
682077
3627
将近1500个邻接的请求,
11:34
these requests要求 for connection连接 --
232
685728
1610
这些连接的请求——
11:35
so a very dense稠密 story故事,
a very dense稠密 narrative叙述,
233
687362
3386
所以这是一个很密集的故事和叙事,
11:39
that becomes an embodied体现 part部分
of this memorial纪念馆.
234
690772
2816
需要在一个纪念碑上呈现。
11:42
Working加工 with Jake可靠的人 Barton巴顿,
we produce生产 the software软件 tool工具,
235
694195
3331
我和Jake Barton一起制作了这个软件
让建筑师可以首先制作一个
11:46
which哪一个 allows允许 the architects建筑师 to,
first of all, generate生成 a layout布局
236
697550
4119
可以满足所有请求的布局。
11:50
that satisfied满意 all of those
adjacency邻接 requests要求,
237
701693
3129
11:53
but then second第二, make little adjustments调整
where they needed需要 to
238
704846
3033
然后在某些地方做改动,
11:56
to tell the stories故事
that they wanted to tell.
239
707903
2348
从而可以表达他们想要的故事。
我想在我们这个社交网络统领的时代,
11:59
So this memorial纪念馆, I think,
has an incredibly令人难以置信 timely及时 concept概念
240
711219
4135
这个纪念碑是个与时俱进的概念,
12:03
in our era时代 of social社会 networks网络,
241
715378
2990
12:06
because these networks网络 -- these real-life现实生活
networks网络 that make up people's人们 lives生活 --
242
718392
3975
因为这些现实中的社交网络
12:10
are actually其实 embodied体现
inside of the memorial纪念馆.
243
722391
2432
在纪念碑中能够得以呈现。
12:13
And one of the most tremendously异常
moving移动 experiences经验
244
725286
3471
最令人感动的
12:17
is to go to the memorial纪念馆
245
728781
1661
就是前去纪念碑
看到这些人的名字是如何彼此相邻
12:18
and see how these people
are placed放置 next下一个 to each other,
246
730466
4200
来呈现他们在世时的生活的。
12:23
so that this memorial纪念馆
is representing代表 their own拥有 lives生活.
247
734690
2862
那么,这些对于我们的
生活有什么影响呢?
12:27
How does this affect影响 our lives生活?
248
738859
1687
12:29
Well, I don't know if you remember记得,
249
741133
1676
我不知道你们还记不记得,
12:31
but in the spring弹簧,
there was a controversy争议,
250
742833
2713
今年春天出了
这么一件事,饱受争议,
12:34
because it was discovered发现
that on the iPhone苹果手机
251
745570
2198
人们发现在iphone上,
12:36
and, actually其实, on your computer电脑,
252
747792
1606
还有在电脑上,
12:37
we were storing存储 a tremendous巨大 amount
of the location位置 data数据.
253
749422
3315
有大量定位信息被储存。
苹果公司回应说,
这些定位信息跟你们无关,
12:41
So Apple苹果 responded回应, saying,
this was not location位置 data数据 about you,
254
753173
3861
12:45
it was location位置 data数据
about wireless无线 networks网络
255
757058
2805
而跟你们居所的
12:48
that were in the area where you are.
256
759887
2287
无线网络有关。
所以这跟你们无关。
12:50
So it's not about you,
257
762198
1428
而是跟你们在哪有关。
12:52
but it's about where you are.
258
763650
1584
12:53
(Laughter笑声)
259
765258
1648
(笑声)
12:55
This is very valuable有价值 data数据.
260
766930
2808
这是很宝贵的数据。
12:58
It's like gold to researchers研究人员,
this human-mobility人的行动能力 data数据.
261
769762
4625
对研究者来说,这些移动数据
像金子一样宝贵。
13:02
So we thought, "Man!
How many许多 people have iPhonesiPhone手机?"
262
774411
3664
于是我们想到:有多少人
都在用iPhone啊?
13:06
How many许多 of you have iPhonesiPhone手机?
263
778099
1448
在座的有多少人用iPhone?
所以在这个房间里,就有研究者们
13:09
So in this room房间, we have this tremendous巨大
database数据库 of location位置 data数据
264
780608
5478
13:14
that researchers研究人员
would really, really like.
265
786110
3775
很喜欢的大量的定位信息。
13:18
So we built内置 this system系统 called Open打开 Paths路径,
266
789909
2031
于是我们创造了一个叫做
Open Paths的系统,
13:20
which哪一个 lets让我们 people upload上载 their iPhone苹果手机 data数据
267
791964
2656
它可以让人们上传iPhone的数据
13:23
and broker经纪人 relationships关系
with researchers研究人员 to share分享 that data数据,
268
794644
3796
并与研究人员建立代理关系
来共享这些数据,
把这些信息贡献给有需要的人。
13:26
to donate that data数据 to people
that can actually其实 put it to use.
269
798464
3387
13:30
Open打开 Paths路径 was a great
success成功 as a prototype原型.
270
802256
2350
Open Paths的初步模型很成功。
13:33
We received收到 thousands数千 of data数据 sets,
271
804630
3433
我们收到了成千套的数据,
我们制作了一个界面
13:36
and we built内置 this interface接口
272
808087
1349
让人们可以看到自己的
生活是如何展开的,
13:37
which哪一个 allows允许 people to actually其实
see their lives生活 unfolding展开
273
809460
3318
13:41
from these traces痕迹
that are left behind背后 on your devices设备.
274
812802
3156
从这些被你忽视在手机里
的蛛丝马迹中。
13:45
Now, what we didn't expect期望
was how moving移动 this experience经验 would be.
275
816593
5267
我们没有想到这个体验
会是这样感人。
我上传数据的时候心想:
“没什么大不了的,
13:50
When I uploaded上传 my data数据,
I thought, "Big deal合同.
276
821884
2227
我知道我住在哪,我知道我在哪上班,
通过这个我能看到什么?”
13:52
I know where I live生活. I know where I work.
What am I going to see here?"
277
824135
3416
13:56
Well, it turns out, what I saw
was that moment时刻 I got off the plane平面
278
827575
3501
结果我看到了我来到纽约
走下飞机的那一刻;
13:59
to start开始 my new life in New York纽约;
279
831100
1623
14:02
the restaurant餐厅 where I had Thai泰国 food餐饮
that first night,
280
833588
2606
那一晚去吃泰餐的餐馆,
想象着纽约新生活的开始;
14:04
thinking思维 about this new experience经验
of being存在 in New York纽约;
281
836218
2953
14:07
the day that I met会见 my girlfriend女朋友.
282
839195
1623
我遇到女友的那一天。
14:11
This is LaGuardia拉瓜迪亚 airport飞机场.
283
842587
2275
这是拉瓜迪亚机场。
14:13
(Laughter笑声)
284
844886
1487
(笑声)
14:14
This is this Thai泰国 restaurant餐厅
on Amsterdam阿姆斯特丹 Avenue大街.
285
846397
3641
这是在阿姆斯特丹大道上的泰国餐厅。
这是我遇到我女友的时候。
14:19
This is the moment时刻 I met会见 my girlfriend女朋友.
286
850559
2050
14:22
See how that changes变化 the first time
I told you about those stories故事
287
854146
3451
你们看到了吗,我第一次讲这些故事
和我第二次讲的时候,有什么区别?
14:26
and the second第二 time I told
you about those stories故事?
288
857621
2468
14:28
Because what we do
in the tool工具, inadvertently不经意间,
289
860113
3207
我们不经意间
把这些信息放在了人类语境中。
14:31
is we put these pieces of data数据
into a human人的 context上下文.
290
863344
3115
通过把信息放在生活语境中,
14:35
And by placing配售 data数据 into a human人的 context上下文,
291
866935
2498
14:37
it gains收益 meaning含义.
292
869457
1474
信息就产生了意义。
14:39
And I think this is tremendously异常,
tremendously异常 important重要,
293
870955
3328
这非常非常重要,
14:42
because these are our histories历史
that are being存在 stored存储 on these devices设备.
294
874307
4918
因为我们的历史被保存
在这些手机里。
14:49
And by thinking思维 about them that way,
295
880809
1994
从这个角度来看,
14:52
putting them in a human人的 context上下文 --
296
883543
1902
这个人类语境的角度——
14:53
first of all, what we do with our own拥有 data数据
is get a better understanding理解
297
885469
3662
首先,我们可以更好理解我们
14:57
of the type类型 of information信息
that we're sharing分享.
298
889155
2479
分享的是哪一类的信息。
15:00
But if we can do this with other data数据,
if we can put data数据 into a human人的 context上下文,
299
891658
4053
但如果我们可以把其他信息
也放在人类语境中,
15:04
I think we can change更改 a lot of things,
300
895735
2918
我想很多事情都会被改变,
因为它能自动让在这些系统
的人们身临其境。
15:07
because it builds建立, automatically自动, empathy同情
for the people involved参与 in these systems系统.
301
898677
6385
15:14
And that, in turn, results结果
in a fundamental基本的 respect尊重,
302
905602
2953
这会导致最基本的尊重,
在我看来这一点在
技术行业中往往是缺失的,
15:17
which哪一个, I believe, is missing失踪
in a large part部分 of technology技术,
303
908579
3163
15:20
when we start开始 to deal合同
with issues问题 like privacy隐私,
304
912329
2938
当我们在处理一些事情,比如隐私时,
如果我们明白数字不仅仅是数字,
15:25
by understanding理解 that these numbers数字
are not just numbers数字,
305
916765
2717
而是与现实连接在一起的。
15:28
but instead代替 they're attached, tethered to,
pieces of the real真实 world世界.
306
919506
3619
它们就变得举足轻重。
15:31
They carry携带 weight重量.
307
923149
1506
15:33
By understanding理解 that,
the dialog对话 becomes a lot different不同.
308
924679
3332
有了这一层理解,
对话就可以变得不同。
15:38
How many许多 of you have ever clicked点击 a button按键
309
929595
2331
你们中多少人曾点过按钮
许可第三方公司获取
你的定位信息的?
15:40
that enables使 a third第三 party派对 to access访问
your location位置 data数据 on your phone电话?
310
931950
4987
15:46
Lots of you.
311
937595
1555
很多人吧。
15:47
So the third第三 party派对 is the developer开发人员,
312
939174
2245
第三方公司是开发商,
第二方公司是苹果。
15:49
the second第二 party派对 is Apple苹果.
313
941443
1801
可是第一方却从没有获得这些信息!
15:52
The only party派对 that never gets得到 access访问
to this information信息 is the first party派对!
314
943954
4823
15:58
And I think that's because we think
about these pieces of data数据
315
950198
3135
我想这是因为我们把这些信息
看作是抽象的,可以被搁置不顾的。
16:01
in this stranded搁浅, abstract抽象 way.
316
953357
2055
16:03
We don't put them into a context上下文
317
955436
1897
我们没有把它们放入人类语境中
16:05
which哪一个, I think, makes品牌 them
a lot more important重要.
318
957357
2309
使它们的价值变得更重要。
16:08
So what I'm asking you
to do is really simple简单:
319
959690
2166
我请求你们做的事很简单:
从更人类语境的角度看待数据。
16:10
start开始 to think about data数据
in a human人的 context上下文.
320
961880
2323
这真的不难。
16:13
It doesn't really take anything.
321
964918
1657
16:15
When you read stock股票 prices价格,
think about them in a human人的 context上下文.
322
966599
3359
当你看到股价时,
想一下背后的人类语境。
当你看到贷款报告时,
想一下背后的人类语境。
16:18
When you think about mortgage抵押 reports报告,
think about them in a human人的 context上下文.
323
969982
3542
很显然,大数据是巨大的商业。
16:22
There's no doubt怀疑 that big data数据
is big business商业.
324
973548
3930
一个产业巨头在崛起。
16:26
There's an industry行业 being存在 developed发达 here.
325
977502
3018
16:30
Think about how well we've我们已经 doneDONE
326
981520
1501
想一想我们在之前的资源产业中
16:31
in previous以前 industries行业
that we've我们已经 developed发达 involving涉及 resources资源.
327
983045
3369
做得如何。
我们做得不好。
16:34
Not very well at all.
328
986438
1300
16:36
I think part部分 of that problem问题 is, we've我们已经 had
a lack缺乏 of participation参与 in these dialogues对话
329
987762
4522
我想一部分问题在于,
我们没有积极参与到
16:40
from multiple pieces of human人的 society社会.
330
992308
4428
有关人文语境的各方面对话中。
16:45
So the other thing that I'm asking for
331
996760
1992
我要请求你们做的另一件事是
16:48
is an inclusion包容 in this dialogue对话
from artists艺术家, from poets诗人, from writers作家 --
332
999669
4378
让更多人参与到这个对话中,
艺术家,诗人,作家,
让有人文学科背景的人们
加入到讨论中。
16:52
from people who can bring带来 a human人的 element元件
into this discussion讨论.
333
1004071
4013
因为我相信数据世界
16:57
Because I believe that this world世界 of data数据
334
1008725
2356
16:59
is going to be transformative变革 for us.
335
1011105
3025
可以革新我们的生活。
17:03
And unlike不像 our attempts尝试
with the resource资源 industry行业
336
1014687
3169
这和我们在资源产业,
财政产业的尝试不同,
17:06
and our attempts尝试
with the financial金融 industry行业,
337
1017880
2153
让我们把人文元素带到故事中,
17:08
by bringing使 the human人的
element元件 into this story故事,
338
1020057
2931
我相信我们一定能带着它
走向无限潜能的地方。
17:11
I think we can take it
to tremendous巨大 places地方.
339
1023012
2178
17:14
Thank you.
340
1026203
1155
谢谢。
(掌声)
17:15
(Applause掌声)
341
1027382
4052
Translated by 功伟 邢
Reviewed by psjmz mz

▲Back to top

ABOUT THE SPEAKER
Jer Thorp - Data artist
Jer Thorp’s work focuses on adding meaning and narrative to huge amounts of data as a way to help people take control of the information that surrounds them.

Why you should listen

Currently the data artist in residence at the New York Times, Jer’s software-based art has been featured all over the world. His former career as a data artist explains why his art often brings big data sets to life and is deeply influenced by science. Originally from Vancouver, he lives in New York City, where, along with his work at the New York Times, he teaches in NYU’s ITP program.

More profile about the speaker
Jer Thorp | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee