TED2014
Gavin Schmidt: The emergent patterns of climate change
加文·施密特: 气候变化的新形势
Filmed:
Readability: 4
1,270,244 views
你不能把气候变迁拆开来理解,气象学家加文•施密特如是说。这是全有或全无。在这个富有启发性的演说中,他解释了如何用奇妙的模型描绘出小规模环境事件无止尽的复杂交互作用,并以此来研究气候变迁。
Gavin Schmidt - Climate scientist
What goes into a climate model? Gavin Schmidt looks at how we use past and present data to model potential futures. Full bio
What goes into a climate model? Gavin Schmidt looks at how we use past and present data to model potential futures. Full bio
Double-click the English transcript below to play the video.
(掌声)
我们生活在一个非常复杂的环境里,
00:12
We live in a very complex environment:
0
864
2323
00:15
complexity and dynamism
1
3187
1904
我们有来自卫星照片和影像的
复杂性、动态性和模式数据。
复杂性、动态性和模式数据。
00:17
and patterns of evidence
2
5091
2063
00:19
from satellite photographs, from videos.
3
7154
2885
你甚至能从你的窗外看到。
00:22
You can even see it outside your window.
4
10039
3011
00:25
It's endlessly complex, but somehow familiar,
5
13050
3860
无止尽的复杂但又具某种程度的熟悉,
00:28
but the patterns kind of repeat,
6
16910
1960
模式有一定的重复性,
00:30
but they never repeat exactly.
7
18870
2490
但从来不会重复。
00:33
It's a huge challenge to understand.
8
21360
4127
要了解它是一个很大的挑战。
00:37
The patterns that you see
9
25487
2132
你所看到的气候模式
00:39
are there at all of the different scales,
10
27619
3720
都以不同的尺度存在着,
00:43
but you can't chop it into one little bit and say,
11
31339
2906
但你不能切下一小块然后说:
00:46
"Oh, well let me just make a smaller climate."
12
34245
2663
“喔,那我做个小一点的气候。”
00:48
I can't use the normal products of reductionism
13
36908
4212
我不能以一般的简化方法
00:53
to get a smaller and smaller thing that I can study
14
41120
2722
得到愈来愈小的东西
00:55
in a laboratory and say, "Oh,
15
43842
2308
使我能在实验室里研究并且说
00:58
now that's something I now understand."
16
46150
2396
“喔,现在我懂了。”
01:00
It's the whole or it's nothing.
17
48546
3367
这是全有或全无。
01:03
The different scales that give you
18
51913
2552
这些气候模式以不同的尺度呈现,
01:06
these kinds of patterns
19
54465
2122
01:08
range over an enormous range of magnitude,
20
56587
3457
其范围幅度非常大,
01:12
roughly 14 orders of magnitude,
21
60044
2416
大约是 14 数量级的差距,
01:14
from the small microscopic particles
22
62460
2491
从最小的造雨的显微粒子
01:16
that seed clouds
23
64951
2376
01:19
to the size of the planet itself,
24
67327
2560
到这个星球本身,
01:21
from 10 to the minus six
25
69887
1276
从 10 的负六次方到
01:23
to 10 to the eight,
26
71163
1077
10 的八次方,
01:24
14 orders of spatial magnitude.
27
72240
2292
空间数量级的差距为 14。
01:26
In time, from milliseconds to millennia,
28
74532
3411
在时间上,从毫秒到千年,
01:29
again around 14 orders of magnitude.
29
77943
3055
同样也是 14 数量级。
01:32
What does that mean?
30
80998
1387
这意味着什么?
01:34
Okay, well if you think about how
31
82385
1939
好,如果你想一想
你要如何计算这些东西,
01:36
you can calculate these things,
32
84324
2660
01:38
you can take what you can see,
33
86984
1960
你会拿你眼前的东西,
01:40
okay, I'm going to chop it up
34
88944
1026
好,我要把它切碎成这些小方块,
01:41
into lots of little boxes,
35
89970
1379
01:43
and that's the result of physics, right?
36
91349
2355
这就是物理学的结果,对吧?
01:45
And if I think about a weather model,
37
93704
1725
以一个天气模型为例,
01:47
that spans about five orders of magnitude,
38
95429
2494
尺度横跨五数量级,
01:49
from the planet to a few kilometers,
39
97923
3127
也就是从地球的大小到几公里
01:53
and the time scale
40
101050
1538
时间尺度则是
01:54
from a few minutes to 10 days, maybe a month.
41
102588
4412
从几分钟到十天或者一个月。
01:59
We're interested in more than that.
42
107000
1395
我们感兴趣的不只这些。
02:00
We're interested in the climate.
43
108395
1305
我们感兴趣的是气候,
02:01
That's years, that's millennia,
44
109700
2141
那是以年计的,是千年,
02:03
and we need to go to even smaller scales.
45
111841
2573
我们还需要看更小尺度的。
02:06
The stuff that we can't resolve,
46
114414
1601
那些我们无法解决的东西,
02:08
the sub-scale processes,
47
116015
1965
次网格尺度过程,
02:09
we need to approximate in some way.
48
117980
1980
我们必须想办法模拟。
02:11
That is a huge challenge.
49
119960
1762
那是很大的挑战。
02:13
Climate models in the 1990s
50
121722
2188
1990 年代的气候模型
02:15
took an even smaller chunk of that,
51
123910
1970
是拿更小块的尺度来看,
02:17
only about three orders of magnitude.
52
125880
2018
大约只有三数量级。
02:19
Climate models in the 2010s,
53
127898
2095
2010 年代的气候模型
02:21
kind of what we're working with now,
54
129993
1774
就像我们现在正在使用的
02:23
four orders of magnitude.
55
131767
2940
是四数量级。
02:26
We have 14 to go,
56
134707
2303
而我们要扩展到 14 数量级。
02:29
and we're increasing our capability
57
137010
2200
而我们的模拟能力
02:31
of simulating those at about
58
139210
1870
每十年大约增加一数量级
02:33
one extra order of magnitude every decade.
59
141080
3546
空间一数量级等同于1万次的计算。
02:36
One extra order of magnitude in space
60
144626
1895
02:38
is 10,000 times more calculations.
61
146521
3249
02:41
And we keep adding more things,
62
149770
2380
而我们还继续加东西上去,
02:44
more questions to these different models.
63
152150
2374
加更多问题到这些不同的模型上。
02:46
So what does a climate model look like?
64
154524
2733
气候模型是什么样的?
02:49
This is an old climate model, admittedly,
65
157257
2341
无可否认这是旧的气候模型,
02:51
a punch card, a single line of Fortran code.
66
159598
4080
打孔卡,单行福传语言。
02:55
We no longer use punch cards.
67
163678
1978
我们不再使用打孔卡了,
02:57
We do still use Fortran.
68
165656
2241
我们还是用福传语言。
02:59
New-fangled ideas like C
69
167897
1957
新的想法像 C 语言
03:01
really haven't had a big impact
70
169854
3235
在气候模型研究上
还没有什么大的影响力。
还没有什么大的影响力。
03:05
on the climate modeling community.
71
173089
2367
03:07
But how do we go about doing it?
72
175456
1400
但这是怎么做出来的?
03:08
How do we go from that complexity that you saw
73
176856
4624
我们如何把你所看到的复杂现象
03:13
to a line of code?
74
181480
2530
变成一行行的代码?
03:16
We do it one piece at a time.
75
184010
1573
我们一次做一块。
03:17
This is a picture of sea ice
76
185583
1878
这是一张海冰图,
03:19
taken flying over the Arctic.
77
187461
2098
是飞越北极上空时照的。
03:21
We can look at all of the different equations
78
189559
2038
我们可以看所有不同的方程式
03:23
that go into making the ice grow
79
191597
3112
或使结冰量增加
03:26
or melt or change shape.
80
194709
2114
或融化或改变形状。
03:28
We can look at the fluxes.
81
196823
1131
我们可以看各种通量,
03:29
We can look at the rate at which
82
197954
1952
我们可以看雪变成冰的速率,
03:31
snow turns to ice, and we can code that.
83
199906
2845
我们可以为之编写代码。
03:34
We can encapsulate that in code.
84
202751
2329
我们可以用代码封装。
03:37
These models are around
85
205080
1226
这些模型目前大约要以
03:38
a million lines of code at this point,
86
206306
2083
一百万行代码才做的出来,
03:40
and growing by tens of thousands of lines of code
87
208389
3470
每年还在以上万行代码的速度增长。
03:43
every year.
88
211859
1191
03:45
So you can look at that piece,
89
213050
1653
所以你可以看这块,
03:46
but you can look at the other pieces too.
90
214703
1922
你也可以看那块。
03:48
What happens when you have clouds?
91
216625
1933
有云的时候怎么办?
03:50
What happens when clouds form,
92
218558
2159
云形成的时候怎么办?
03:52
when they dissipate, when they rain out?
93
220717
1882
云散了呢?下雨了呢?
03:54
That's another piece.
94
222599
1742
这是另一块。
03:56
What happens when we have radiation
95
224341
1846
有太阳辐射怎么办?
03:58
coming from the sun, going through the atmosphere,
96
226187
2534
辐射穿过大气层
04:00
being absorbed and reflected?
97
228721
1926
被吸收及反射又怎么办?
04:02
We can code each of those
very small pieces as well.
very small pieces as well.
98
230647
3979
我们也能为这些非常小的东西写代码。
04:06
There are other pieces:
99
234626
1416
还有其他的,
04:08
the winds changing the ocean currents.
100
236042
3460
风改变洋流,
04:11
We can talk about the role of vegetation
101
239502
3770
我们也能谈植被的角色,
04:15
in transporting water from the soils
102
243272
2329
它从土壤中输送水分
04:17
back into the atmosphere.
103
245601
1969
回到大气层。
04:19
And each of these different elements
104
247570
2914
每一种不同的要素
04:22
we can encapsulate and put into a system.
105
250484
3624
我们都可以封装写进系统内。
04:26
Each of those pieces ends up adding to the whole.
106
254108
5148
每一块最后都会加在整体上,
你就会得到一个像这样的东西。
04:31
And you get something like this.
107
259256
2297
04:33
You get a beautiful representation
108
261553
2848
你会得到漂亮的图表,
04:36
of what's going on in the climate system,
109
264401
2622
告诉你气候系统的状况,
04:39
where each and every one of those
110
267023
3389
每一个像这样的
04:42
emergent patterns that you can see,
111
270412
2782
你看到的新气候形势,
04:45
the swirls in the Southern Ocean,
112
273194
2003
南冰洋的漩涡,
04:47
the tropical cyclone in the Gulf of Mexico,
113
275197
2756
墨西哥湾的热带飓风,
04:49
and there's two more that are going to pop up
114
277953
1641
还有两个在太平洋随时可能爆发的,
04:51
in the Pacific at any point now,
115
279594
2354
04:53
those rivers of atmospheric water,
116
281948
2713
那些大气水气形成的河流,
04:56
all of those are emergent properties
117
284661
2857
这些都是来自我刚刚谈到的
次网格尺度过程交互作用的新特性。
次网格尺度过程交互作用的新特性。
04:59
that come from the interactions
118
287518
2124
05:01
of all of those small-scale processes I mentioned.
119
289642
3495
没有什么代码会说
05:05
There's no code that says,
120
293137
1905
05:07
"Do a wiggle in the Southern Ocean."
121
295042
1857
“在南冰洋晃一下。”
05:08
There's no code that says, "Have two
122
296899
2668
也没有代码会说:“让两个
05:11
tropical cyclones that spin around each other."
123
299567
2898
热带飓风互相绕着旋转。 ”
05:14
All of those things are emergent properties.
124
302465
3812
这些都是新特性,
05:18
This is all very good. This is all great.
125
306277
2146
这很好,这很棒。
05:20
But what we really want to know
126
308423
1270
但我们真的想知道的是
05:21
is what happens to these emergent properties
127
309693
1949
这些新特性在我们系统改变的时候会怎样?
05:23
when we kick the system?
128
311642
1705
05:25
When something changes, what
happens to those properties?
happens to those properties?
129
313347
3533
当情况改变的时候,那些特性会怎样?
05:28
And there's lots of different ways to kick the system.
130
316880
2989
有很多方法可以让系统改变,
05:31
There are wobbles in the Earth's orbit
131
319869
2033
地球的轨道在过去数万年的摆动中
05:33
over hundreds of thousands of years
132
321902
1879
05:35
that change the climate.
133
323781
2026
改变着气候。
05:37
There are changes in the solar cycles,
134
325807
2136
太阳周期的改变,
05:39
every 11 years and longer, that change the climate.
135
327943
3105
每 11 年或更长的时间也会改变气候。
05:43
Big volcanoes go off and change the climate.
136
331048
3574
大的火山爆发会改变气候,
05:46
Changes in biomass burning, in smoke,
137
334622
3238
生物质燃烧、烟雾、气胶粒子,
所有这些东西的改变
所有这些东西的改变
05:49
in aerosol particles, all of those things
138
337860
1863
05:51
change the climate.
139
339723
1822
都会改变气候。
05:53
The ozone hole changed the climate.
140
341545
4059
臭氧洞会改变气候,
05:57
Deforestation changes the climate
141
345604
2217
森林除伐会改变气候,
05:59
by changing the surface properties
142
347821
1926
因为这改变了地表性质,
06:01
and how water is evaporated
143
349747
1990
也改变了水分如何蒸发
06:03
and moved around in the system.
144
351737
2466
并在系统内移动。
06:06
Contrails change the climate
145
354203
2285
凝结尾气会改变气候,
06:08
by creating clouds where there were none before,
146
356488
2867
因为它会在以前无云的地方产生云。
06:11
and of course greenhouse gases change the system.
147
359355
4598
当然温室气体也会改变系统。
06:15
Each of these different kicks
148
363953
3021
这些不同的影响因素
06:18
provides us with a target
149
366974
2151
给我们提供了一个目标,
06:21
to evaluate whether we understand
150
369125
2835
就是评估我们是否理解这个系统。
06:23
something about this system.
151
371960
2161
那么让我们来看看
06:26
So we can go to look at
152
374121
2392
06:28
what model skill is.
153
376513
2704
模型预测技巧是什么。
06:31
Now I use the word "skill" advisedly:
154
379217
2033
那我非常审慎地用“技巧”这个字,
06:33
Models are not right or wrong; they're always wrong.
155
381250
2411
模型没有对错,它们永远是错的。
06:35
They're always approximations.
156
383661
1720
它们永远是模拟情况。
06:37
The question you have to ask
157
385381
1894
你该问的问题是
06:39
is whether a model tells you more information
158
387275
3079
一个模型能否给到
你反之不会得到的信息。
你反之不会得到的信息。
06:42
than you would have had otherwise.
159
390354
1925
06:44
If it does, it's skillful.
160
392279
3381
如果是,那就是“有技巧”的。
06:47
This is the impact of the ozone hole
161
395660
2454
这是臭氧洞对海平面气压的影响,
06:50
on sea level pressure, so
low pressure, high pressures,
low pressure, high pressures,
162
398114
2860
围绕南冰洋南极洲的低气压高气压。
06:52
around the southern oceans, around Antarctica.
163
400974
2595
06:55
This is observed data.
164
403569
1913
这是观测数据,
06:57
This is modeled data.
165
405482
2088
这是模型推测出的数据。
06:59
There's a good match
166
407570
1594
这两者匹配度很高,
07:01
because we understand the physics
167
409164
1951
因为我们理解控制平流层温度的物理
07:03
that controls the temperatures in the stratosphere
168
411115
3138
07:06
and what that does to the winds
169
414253
1746
及其对南冰洋四周的风的影响。
07:07
around the southern oceans.
170
415999
2181
07:10
We can look at other examples.
171
418180
1519
我们还可以看看其他例子。
07:11
The eruption of Mount Pinatubo in 1991
172
419699
2856
1991 年皮纳土波火山爆发
07:14
put an enormous amount of aerosols, small particles,
173
422555
2799
将大量的气胶,微粒
07:17
into the stratosphere.
174
425354
1587
喷入平流层中。
07:18
That changed the radiation
balance of the whole planet.
balance of the whole planet.
175
426941
3147
那件事改变了整个地球的辐射平衡。
07:22
There was less energy coming
in than there was before,
in than there was before,
176
430088
2782
与之前相比,较少的能量进入地球,
07:24
so that cooled the planet,
177
432870
1658
导致地球变冷,
07:26
and those red lines and those green lines,
178
434528
2019
而那些红线及那些绿线
07:28
those are the differences between what we expected
179
436547
2565
那些是我们所预期的与实际状况的差别。
07:31
and what actually happened.
180
439112
1688
07:32
The models are skillful,
181
440800
1783
这些模型很有技巧,
07:34
not just in the global mean,
182
442583
1693
因为它们不仅在全球平均上预测很准确,
07:36
but also in the regional patterns.
183
444276
3044
在区域形态上也如此。
07:39
I could go through a dozen more examples:
184
447320
2840
我还可以举上一打的例子:
07:42
the skill associated with solar cycles,
185
450160
2850
与太阳周期、
平流层臭氧变化相关的预测技巧,
平流层臭氧变化相关的预测技巧,
07:45
changing the ozone in the stratosphere;
186
453010
2070
07:47
the skill associated with orbital changes
187
455080
2347
与六千年来地球轨道变化相关的预测技巧。
07:49
over 6,000 years.
188
457427
2056
07:51
We can look at that too, and the models are skillful.
189
459483
2398
我们也可以看那个,模型的技巧也很好。
07:53
The models are skillful in response to the ice sheets
190
461881
3094
对二万年前的冰层,这些模型的技巧也很好。
07:56
20,000 years ago.
191
464975
1520
07:58
The models are skillful
192
466495
1671
这些模型对预测二十世纪的气候趋势,技巧也很好。
08:00
when it comes to the 20th-century trends
193
468166
2904
08:03
over the decades.
194
471070
1515
模型很成功地模拟了八千年前北极冰湖溃决。
08:04
Models are successful at modeling
195
472585
2282
08:06
lake outbursts into the North Atlantic
196
474867
2605
08:09
8,000 years ago.
197
477472
1765
我们在数据上的匹配度很高。
08:11
And we can get a good match to the data.
198
479237
3090
08:15
Each of these different targets,
199
483463
2387
每一个不同的目标,
08:17
each of these different evaluations,
200
485850
2130
每一个不同的评估,
08:19
leads us to add more scope
201
487980
2391
都使我们能够扩展这些模型,
08:22
to these models,
202
490371
1151
08:23
and leads us to more and more
203
491522
2744
使我们能够看日渐复杂的情况,
08:26
complex situations that we can ask
204
494266
3988
使我们能够问更多有意思的问题,
08:30
more and more interesting questions,
205
498254
2569
比如,撒哈拉尘,
08:32
like, how does dust from the Sahara,
206
500823
2710
08:35
that you can see in the orange,
207
503533
1734
也就是这些橘色的东西,
08:37
interact with tropical cyclones in the Atlantic?
208
505267
3443
与大西洋的热带飓风如何交互作用?
08:40
How do organic aerosols from biomass burning,
209
508710
3477
生物质燃烧所产生的有机气胶,
08:44
which you can see in the red dots,
210
512187
2723
也就是这些红点,
与云和雨如何交互作用?
08:46
intersect with clouds and rainfall patterns?
211
514910
2934
这些污染,就是你看到的
08:49
How does pollution, which you can see
212
517844
1787
08:51
in the white wisps of sulfate pollution in Europe,
213
519631
3899
欧洲上方一缕缕的白色硫酸,
08:55
how does that affect the
temperatures at the surface
temperatures at the surface
214
523530
3335
这些如何影响地面温度
08:58
and the sunlight that you get at the surface?
215
526865
3488
以及你在地表上得到的太阳光量?
09:02
We can look at this across the world.
216
530353
3488
我们可以看世界各地的状况,
09:05
We can look at the pollution from China.
217
533841
3660
我们可以看来自中国的污染,
09:09
We can look at the impacts of storms
218
537501
3598
我们可以看暴风
09:13
on sea salt particles in the atmosphere.
219
541099
3444
对大气层内海盐粒子的影响。
09:16
We can see the combination
220
544543
2561
我们可以看
这些不同东西同时发生的整体情况,
09:19
of all of these different things
221
547104
2171
09:21
happening all at once,
222
549275
1468
09:22
and we can ask much more interesting questions.
223
550743
2407
我们可以问更有意思的问题。
09:25
How do air pollution and climate coexist?
224
553150
4624
空气污染与气候如何共存?
09:29
Can we change things
225
557774
1509
我们是否能同时改变
09:31
that affect air pollution and
climate at the same time?
climate at the same time?
226
559283
2589
影响空气污染及气候的事物?
09:33
The answer is yes.
227
561872
2344
答案是肯定的。
09:36
So this is a history of the 20th century.
228
564216
3044
这是二十世纪的历史。
09:39
The first one is the model.
229
567260
2243
第一个是模型,
09:41
The weather is a little bit different
230
569503
1407
天气与实际状况有一点不同。
09:42
to what actually happened.
231
570910
1289
第二个是观察结果。
09:44
The second one are the observations.
232
572199
2032
09:46
And we're going through the 1930s.
233
574231
2325
我们来看 1930 年代的情况。
09:48
There's variability, there are things going on,
234
576556
2824
总是有差异,总是有状况发生,
09:51
but it's all kind of in the noise.
235
579380
2182
但都不是很清楚。
09:53
As you get towards the 1970s,
236
581562
2862
接近 1970 年代,
09:56
things are going to start to change.
237
584424
2009
事情开始有了变化。
09:58
They're going to start to look more similar,
238
586433
2062
它们开始变得愈来愈接近。
10:00
and by the time you get to the 2000s,
239
588495
2558
而到了 21 世纪,
10:03
you're already seeing the
patterns of global warming,
patterns of global warming,
240
591063
2642
你已经可以看到全球变暖的形势,
10:05
both in the observations and in the model.
241
593705
2749
可以观察到,也可以在模型中看到。
10:08
We know what happened over the 20th century.
242
596454
2127
我们知道二十世纪发生了什么,
10:10
Right? We know that it's gotten warmer.
243
598581
1760
对吧?我们知道气候变暖了。
10:12
We know where it's gotten warmer.
244
600341
1611
我们还知道哪里变暖了。
10:13
And if you ask the models why did that happen,
245
601952
2740
如果你问模型为什么会发生这种情形,
10:16
and you say, okay, well, yes,
246
604692
2125
然后你说,对,嗯,没错,
10:18
basically it's because of the carbon dioxide
247
606817
1866
基本上就是因为
我们排放到大气层中的二氧化碳。
我们排放到大气层中的二氧化碳。
10:20
we put into the atmosphere.
248
608683
1979
10:22
We have a very good match
249
610662
1682
我们的模型匹配度
10:24
up until the present day.
250
612344
2627
到今天为止都很高。
10:26
But there's one key reason why we look at models,
251
614971
3420
但我们看模型的一个关键理由
10:30
and that's because of this phrase here.
252
618391
2221
就是这句话。
10:32
Because if we had observations of the future,
253
620612
2495
因为“如果我们能直接观察未来,
10:35
we obviously would trust them more than models,
254
623107
3329
与其相信模型,
我们显然会更相信观察数据。
我们显然会更相信观察数据。
10:38
But unfortunately,
255
626436
1944
但不幸的是…
10:40
observations of the future
are not available at this time.
are not available at this time.
256
628380
5540
…目前我们无法观察未来。 ”
10:45
So when we go out into the
future, there's a difference.
future, there's a difference.
257
633920
2705
所以当未来真正到来的时候,会有所不同。
10:48
The future is unknown, the future is uncertain,
258
636625
2562
未来是未知的,未来是不确定的,
10:51
and there are choices.
259
639187
2404
但我们有选择。
10:53
Here are the choices that we have.
260
641591
1833
以下是我们的选择。
10:55
We can do some work to mitigate
261
643424
2139
我们能做点什么以减少
10:57
the emissions of carbon dioxide into the atmosphere.
262
645563
2795
二氧化碳排放入大气层。
11:00
That's the top one.
263
648358
1926
这是最重要的。
11:02
We can do more work
264
650284
1906
我们还能做更多来减少排放量,
11:04
to really bring it down
265
652190
2176
11:06
so that by the end of the century,
266
654366
2218
使我们到本世纪末的时候,
11:08
it's not much more than there is now.
267
656584
2464
排放量不比现在多。
11:11
Or we can just leave it to fate
268
659048
3767
或者我们就听天命
11:14
and continue on
269
662815
1493
并以一切如常的态度继续着。
11:16
with a business-as-usual type of attitude.
270
664308
3746
11:20
The differences between these choices
271
668054
3456
这两种选择的差异
11:23
can't be answered by looking at models.
272
671510
4797
看模型是回答不了的。
11:28
There's a great phrase
273
676307
1639
有句名言,
11:29
that Sherwood Rowland,
274
677946
1793
是舍伍德•罗兰说的,
11:31
who won the Nobel Prize for the chemistry
275
679739
3864
他是诺贝尔化学奖得主,
11:35
that led to ozone depletion,
276
683603
2273
他的研究发现了臭氧耗竭。
11:37
when he was accepting his Nobel Prize,
277
685876
2397
他在领取他的诺贝尔奖时,
11:40
he asked this question:
278
688273
1379
他问了这个问题:
11:41
"What is the use of having developed a science
279
689652
2311
“科学发展得再好再能预测有什么用,
11:43
well enough to make predictions if, in the end,
280
691963
3261
如果到头来我们愿意做的只是袖手旁观,
11:47
all we're willing to do is stand around
281
695224
2829
11:50
and wait for them to come true?"
282
698053
2707
冷眼看着它们成真?”
11:52
The models are skillful,
283
700760
2737
模型的预测技巧很好,
11:55
but what we do with the
information from those models
information from those models
284
703497
3318
但我们要怎么使用模型预测出来的数据
11:58
is totally up to you.
285
706815
2171
则完全取决于你。
12:00
Thank you.
286
708986
1938
谢谢。
(掌声)
12:02
(Applause)
287
710924
2916
ABOUT THE SPEAKER
Gavin Schmidt - Climate scientistWhat goes into a climate model? Gavin Schmidt looks at how we use past and present data to model potential futures.
Why you should listen
Gavin Schmidt is a climate scientist at Columbia University's Earth Institute and is Deputy Chief at the NASA Goddard Institute for Space Studies. He works on understanding past, present and future climate change, using ever-more refined models and data sets to explore how the planet's climate behaves over time.
Schmidt is also deeply committed to communicating science to the general public. As a contributing editor at RealClimate.org, he helps make sure general readers have access to the basics of climate science, and works to bring the newest data and models into the public discussion around one of the most pressing issues of our time. He has worked with the American Museum of Natural History and the New York Academy of Sciences on education and public outreach, and he is the author of Climate Change: Picturing the Science, with Josh Wolfe.
More profile about the speakerSchmidt is also deeply committed to communicating science to the general public. As a contributing editor at RealClimate.org, he helps make sure general readers have access to the basics of climate science, and works to bring the newest data and models into the public discussion around one of the most pressing issues of our time. He has worked with the American Museum of Natural History and the New York Academy of Sciences on education and public outreach, and he is the author of Climate Change: Picturing the Science, with Josh Wolfe.
Gavin Schmidt | Speaker | TED.com