TED2014
Gavin Schmidt: The emergent patterns of climate change
加文·施密特: 氣候變遷的突現形態
Filmed:
Readability: 4
1,270,244 views
你不能把氣候變遷拆開來理解,氣候科學家加文·施密特如是說。這是全有或全無。他在此富有啟發性的演說中,解釋如何以奇幻的模式,描繪出小規模環境事件無止盡的複雜交互作用,來研究氣候變遷的大圖像。
Gavin Schmidt - Climate scientist
What goes into a climate model? Gavin Schmidt looks at how we use past and present data to model potential futures. Full bio
What goes into a climate model? Gavin Schmidt looks at how we use past and present data to model potential futures. Full bio
Double-click the English transcript below to play the video.
00:12
We live in a very complex environment:
0
864
2323
我們活在非常複雜的環境裡:
00:15
complexity and dynamism
1
3187
1904
複雜性及動力系統論
00:17
and patterns of evidence
2
5091
2063
及各式氣候變化形態的證據
00:19
from satellite photographs, from videos.
3
7154
2885
從衛星照相、從影片得之
00:22
You can even see it outside your window.
4
10039
3011
你甚至能從你的窗戶外面看到
00:25
It's endlessly complex, but somehow familiar,
5
13050
3860
無止盡的複雜又具某種程度的熟悉
00:28
but the patterns kind of repeat,
6
16910
1960
但形態的確有一定程度的重複
00:30
but they never repeat exactly.
7
18870
2490
但從來沒有一模一樣過
00:33
It's a huge challenge to understand.
8
21360
4127
要了解它是很大的挑戰
00:37
The patterns that you see
9
25487
2132
你所看到的形態
00:39
are there at all of the different scales,
10
27619
3720
都以不同的尺度存在著
00:43
but you can't chop it into one little bit and say,
11
31339
2906
但你不能切下一小塊然後說
00:46
"Oh, well let me just make a smaller climate."
12
34245
2663
「喔,那我做個小一點的氣候。」
00:48
I can't use the normal products of reductionism
13
36908
4212
我不能以一般的化約論產品
00:53
to get a smaller and smaller thing that I can study
14
41120
2722
得到愈來愈小的東西
00:55
in a laboratory and say, "Oh,
15
43842
2308
使我能在實驗室裡研究且說
00:58
now that's something I now understand."
16
46150
2396
「喔,這是我能理解的了。」
01:00
It's the whole or it's nothing.
17
48546
3367
這是全有或全無
01:03
The different scales that give you
18
51913
2552
這些氣候形態
01:06
these kinds of patterns
19
54465
2122
以不同的尺度呈現
01:08
range over an enormous range of magnitude,
20
56587
3457
其範圍幅度非常大
01:12
roughly 14 orders of magnitude,
21
60044
2416
大約是 14 數量級的差距
01:14
from the small microscopic particles
22
62460
2491
從最小的顯微粒子
01:16
that seed clouds
23
64951
2376
以造雨
01:19
to the size of the planet itself,
24
67327
2560
到這個星球本身的大小
01:21
from 10 to the minus six
25
69887
1276
從 10 的負六次方到
01:23
to 10 to the eight,
26
71163
1077
10 的八次方
01:24
14 orders of spatial magnitude.
27
72240
2292
空間數量級的差距為 14
01:26
In time, from milliseconds to millennia,
28
74532
3411
在時間上,從毫秒到千年
01:29
again around 14 orders of magnitude.
29
77943
3055
同樣也是 14 數量級
01:32
What does that mean?
30
80998
1387
這意味著什麼?
01:34
Okay, well if you think about how
31
82385
1939
好,如果你想一想
01:36
you can calculate these things,
32
84324
2660
你要如何計算這些東西
01:38
you can take what you can see,
33
86984
1960
你會把你見到的事物
01:40
okay, I'm going to chop it up
34
88944
1026
好,我要把它切碎
01:41
into lots of little boxes,
35
89970
1379
成這些小方塊
01:43
and that's the result of physics, right?
36
91349
2355
這就是物理學的結果,對吧?
01:45
And if I think about a weather model,
37
93704
1725
如果我想到一個氣象模型
01:47
that spans about five orders of magnitude,
38
95429
2494
尺度橫跨五數量級
01:49
from the planet to a few kilometers,
39
97923
3127
也就是從地球的大小到幾公里
01:53
and the time scale
40
101050
1538
時間尺度則是
01:54
from a few minutes to 10 days, maybe a month.
41
102588
4412
從幾分鐘到十天或者一個月
01:59
We're interested in more than that.
42
107000
1395
我們感興趣的不只這些
02:00
We're interested in the climate.
43
108395
1305
我們對氣候感興趣
02:01
That's years, that's millennia,
44
109700
2141
那是以年計的,是千年
02:03
and we need to go to even smaller scales.
45
111841
2573
我們還需要看更小尺度的
02:06
The stuff that we can't resolve,
46
114414
1601
我們無法解決的東西
02:08
the sub-scale processes,
47
116015
1965
次網格尺度過程
02:09
we need to approximate in some way.
48
117980
1980
我們必須想辦法得到近似值
02:11
That is a huge challenge.
49
119960
1762
那是很大的挑戰
02:13
Climate models in the 1990s
50
121722
2188
1990 年代的氣候模式
02:15
took an even smaller chunk of that,
51
123910
1970
是拿更小塊的規模來看
02:17
only about three orders of magnitude.
52
125880
2018
大約只有三數量級
02:19
Climate models in the 2010s,
53
127898
2095
2010 年代的氣候模式
02:21
kind of what we're working with now,
54
129993
1774
就像我們現在正在使用的
02:23
four orders of magnitude.
55
131767
2940
是四數量級
02:26
We have 14 to go,
56
134707
2303
我們還要繼續擴展到 14
02:29
and we're increasing our capability
57
137010
2200
而我們的
02:31
of simulating those at about
58
139210
1870
模擬能力
02:33
one extra order of magnitude every decade.
59
141080
3546
每十年大約增加一數量級
02:36
One extra order of magnitude in space
60
144626
1895
以空間而言每增加一數量級
02:38
is 10,000 times more calculations.
61
146521
3249
就是增加一萬倍的計算
02:41
And we keep adding more things,
62
149770
2380
而我們還繼續加東西上去
02:44
more questions to these different models.
63
152150
2374
加更多問題到這些不同的模式上
02:46
So what does a climate model look like?
64
154524
2733
所以氣候模式是甚麼樣子?
02:49
This is an old climate model, admittedly,
65
157257
2341
這是老式的氣候模式,無可否認
02:51
a punch card, a single line of Fortran code.
66
159598
4080
打孔卡,單行福傳語言
02:55
We no longer use punch cards.
67
163678
1978
我們不再使用打孔卡了
02:57
We do still use Fortran.
68
165656
2241
我們還是用福傳語言
02:59
New-fangled ideas like C
69
167897
1957
新的想法像使用 C 語言
03:01
really haven't had a big impact
70
169854
3235
還沒有什麼大的影響力
03:05
on the climate modeling community.
71
173089
2367
在氣候模式族群裡
03:07
But how do we go about doing it?
72
175456
1400
但這是怎麼做出來的?
03:08
How do we go from that complexity that you saw
73
176856
4624
我們如何把你所看到的複雜
03:13
to a line of code?
74
181480
2530
變成一行的程式?
03:16
We do it one piece at a time.
75
184010
1573
我們一次做一件
03:17
This is a picture of sea ice
76
185583
1878
這是一張海冰圖
03:19
taken flying over the Arctic.
77
187461
2098
飛越北極上空時照的
03:21
We can look at all of the different equations
78
189559
2038
我們可以看所有不同的方程式
03:23
that go into making the ice grow
79
191597
3112
使結冰量增加
03:26
or melt or change shape.
80
194709
2114
或融化或改變形狀
03:28
We can look at the fluxes.
81
196823
1131
我們可以看看各種通量
03:29
We can look at the rate at which
82
197954
1952
我們可以看雪變成冰的速率
03:31
snow turns to ice, and we can code that.
83
199906
2845
我們可以為之編寫程式
03:34
We can encapsulate that in code.
84
202751
2329
我們可以封裝在程式裡
03:37
These models are around
85
205080
1226
這些模式目前大約要以
03:38
a million lines of code at this point,
86
206306
2083
一百萬行程式才做的出來
03:40
and growing by tens of thousands of lines of code
87
208389
3470
每年還要以上萬行的程式
03:43
every year.
88
211859
1191
成長
03:45
So you can look at that piece,
89
213050
1653
所以你看這件是這樣
03:46
but you can look at the other pieces too.
90
214703
1922
別件也是如此
03:48
What happens when you have clouds?
91
216625
1933
有雲的時候怎麼辦?
03:50
What happens when clouds form,
92
218558
2159
雲形成的時候怎麼辦?
03:52
when they dissipate, when they rain out?
93
220717
1882
雲散了呢?下雨了呢?
03:54
That's another piece.
94
222599
1742
這是一件
03:56
What happens when we have radiation
95
224341
1846
有太陽輻射怎麼辦?
03:58
coming from the sun, going through the atmosphere,
96
226187
2534
輻射穿過大氣層
04:00
being absorbed and reflected?
97
228721
1926
被吸收及反射又怎麼辦?
04:02
We can code each of those
very small pieces as well.
very small pieces as well.
98
230647
3979
我們也能為這些非常小的東西寫程式
04:06
There are other pieces:
99
234626
1416
還有其他的
04:08
the winds changing the ocean currents.
100
236042
3460
風改變洋流
04:11
We can talk about the role of vegetation
101
239502
3770
我們也能談植被
04:15
in transporting water from the soils
102
243272
2329
從土壤中輸送水分
04:17
back into the atmosphere.
103
245601
1969
回到大氣層的角色
04:19
And each of these different elements
104
247570
2914
每一種不同的要素
04:22
we can encapsulate and put into a system.
105
250484
3624
我們都可以封裝寫進系統內
04:26
Each of those pieces ends up adding to the whole.
106
254108
5148
每一件最後都會加在整體上
04:31
And you get something like this.
107
259256
2297
那你就得到一個像這樣的東西
04:33
You get a beautiful representation
108
261553
2848
你會得到漂亮的圖表
04:36
of what's going on in the climate system,
109
264401
2622
告訴你氣候系統發生什麼事
04:39
where each and every one of those
110
267023
3389
每一個像這樣
04:42
emergent patterns that you can see,
111
270412
2782
你看到的突現形態
04:45
the swirls in the Southern Ocean,
112
273194
2003
南冰洋的旋渦
04:47
the tropical cyclone in the Gulf of Mexico,
113
275197
2756
墨西哥灣的熱帶颶風
04:49
and there's two more that are going to pop up
114
277953
1641
還有兩個隨時都要跑出來
04:51
in the Pacific at any point now,
115
279594
2354
在太平洋形成
04:53
those rivers of atmospheric water,
116
281948
2713
那些大氣水氣形成的河流
04:56
all of those are emergent properties
117
284661
2857
這些都是突現性質
04:59
that come from the interactions
118
287518
2124
從我剛剛談到的次網格尺度過程
05:01
of all of those small-scale processes I mentioned.
119
289642
3495
交互作用而來
05:05
There's no code that says,
120
293137
1905
沒有什麼程式會說
05:07
"Do a wiggle in the Southern Ocean."
121
295042
1857
「在南冰洋擺動一下。」
05:08
There's no code that says, "Have two
122
296899
2668
也沒有程式會說:「讓兩個
05:11
tropical cyclones that spin around each other."
123
299567
2898
熱帶颶風互相繞著旋轉。」
05:14
All of those things are emergent properties.
124
302465
3812
這些都是突現性質
05:18
This is all very good. This is all great.
125
306277
2146
這很好,這很棒
05:20
But what we really want to know
126
308423
1270
但我們真的想知道的
05:21
is what happens to these emergent properties
127
309693
1949
是這些突現性質會怎麼辦
05:23
when we kick the system?
128
311642
1705
在我們系統改變的時候
05:25
When something changes, what
happens to those properties?
happens to those properties?
129
313347
3533
當情況改變了那些性質會怎麼辦?
05:28
And there's lots of different ways to kick the system.
130
316880
2989
有很多方法會讓系統改變
05:31
There are wobbles in the Earth's orbit
131
319869
2033
地球的軌道
05:33
over hundreds of thousands of years
132
321902
1879
在過去數萬年的擺動
05:35
that change the climate.
133
323781
2026
會改變氣候
05:37
There are changes in the solar cycles,
134
325807
2136
太陽週期的改變
05:39
every 11 years and longer, that change the climate.
135
327943
3105
每 11 年或更長的時間
也會改變氣候
也會改變氣候
05:43
Big volcanoes go off and change the climate.
136
331048
3574
大的火山爆發會改變氣候
05:46
Changes in biomass burning, in smoke,
137
334622
3238
生質燃燒的改變,煙霧
05:49
in aerosol particles, all of those things
138
337860
1863
氣膠粒子,這些東西
05:51
change the climate.
139
339723
1822
都會改變氣候
05:53
The ozone hole changed the climate.
140
341545
4059
臭氧洞會改變氣候
05:57
Deforestation changes the climate
141
345604
2217
森林除伐會改變氣候
05:59
by changing the surface properties
142
347821
1926
因為這改變了地表性質
06:01
and how water is evaporated
143
349747
1990
也改變水分如何蒸發
06:03
and moved around in the system.
144
351737
2466
並在系統內移動
06:06
Contrails change the climate
145
354203
2285
凝結尾會改變氣候
06:08
by creating clouds where there were none before,
146
356488
2867
因為會在以前無雲的地方產生雲
06:11
and of course greenhouse gases change the system.
147
359355
4598
當然溫室氣體也會改變系統
06:15
Each of these different kicks
148
363953
3021
這些不同的改變因素
06:18
provides us with a target
149
366974
2151
提供我們一個目標
06:21
to evaluate whether we understand
150
369125
2835
以評估我們是否瞭解
06:23
something about this system.
151
371960
2161
這個系統
06:26
So we can go to look at
152
374121
2392
所以我們可以去看
06:28
what model skill is.
153
376513
2704
模式預測技巧是什麼
06:31
Now I use the word "skill" advisedly:
154
379217
2033
那我非常審慎的用「技巧」這個字
06:33
Models are not right or wrong; they're always wrong.
155
381250
2411
模式沒有對錯;它們永遠是錯的
06:35
They're always approximations.
156
383661
1720
它們永遠是近似值
06:37
The question you have to ask
157
385381
1894
你該問的問題是
06:39
is whether a model tells you more information
158
387275
3079
模式能否告訴你更多的資訊
06:42
than you would have had otherwise.
159
390354
1925
比你沒用模式時所得的還多
06:44
If it does, it's skillful.
160
392279
3381
如果是,那它就是技巧很好
06:47
This is the impact of the ozone hole
161
395660
2454
這是臭氧洞
06:50
on sea level pressure, so
low pressure, high pressures,
low pressure, high pressures,
162
398114
2860
對海平面氣壓的影響
所以低氣壓高氣壓
所以低氣壓高氣壓
06:52
around the southern oceans, around Antarctica.
163
400974
2595
在南冰洋四周,在南極洲四周
06:55
This is observed data.
164
403569
1913
這是觀測數據
06:57
This is modeled data.
165
405482
2088
這是模式推測出的數據
06:59
There's a good match
166
407570
1594
這兩者匹配度很高
07:01
because we understand the physics
167
409164
1951
因為我們瞭解
07:03
that controls the temperatures in the stratosphere
168
411115
3138
控制平流層溫度的物理
07:06
and what that does to the winds
169
414253
1746
及其對
07:07
around the southern oceans.
170
415999
2181
南冰洋四周的風的作用
07:10
We can look at other examples.
171
418180
1519
我們還可以看看其他例子
07:11
The eruption of Mount Pinatubo in 1991
172
419699
2856
1991 年皮納土波火山爆發
07:14
put an enormous amount of aerosols, small particles,
173
422555
2799
將大量的氣膠,微粒
07:17
into the stratosphere.
174
425354
1587
噴入平流層中
07:18
That changed the radiation
balance of the whole planet.
balance of the whole planet.
175
426941
3147
那件事改變了整個地球的輻射平衡
07:22
There was less energy coming
in than there was before,
in than there was before,
176
430088
2782
與之前相比,較少的能量進入地球
07:24
so that cooled the planet,
177
432870
1658
導致地球變冷
07:26
and those red lines and those green lines,
178
434528
2019
而那些紅線及那些綠線
07:28
those are the differences between what we expected
179
436547
2565
那些是我們所預期
07:31
and what actually happened.
180
439112
1688
及實際狀況的差別
07:32
The models are skillful,
181
440800
1783
這些模式很有技巧
07:34
not just in the global mean,
182
442583
1693
不僅在全球平均上很準確
07:36
but also in the regional patterns.
183
444276
3044
在區域形態上也如此
07:39
I could go through a dozen more examples:
184
447320
2840
我還可以講上打的例子:
07:42
the skill associated with solar cycles,
185
450160
2850
與太陽週期
07:45
changing the ozone in the stratosphere;
186
453010
2070
平流層臭氧變化相關的預測技巧
07:47
the skill associated with orbital changes
187
455080
2347
與六千年來地球軌道變化
07:49
over 6,000 years.
188
457427
2056
相關的預測技巧
07:51
We can look at that too, and the models are skillful.
189
459483
2398
我們也可以看那個
而模式的技巧也很好
而模式的技巧也很好
07:53
The models are skillful in response to the ice sheets
190
461881
3094
對二萬年前的冰層
07:56
20,000 years ago.
191
464975
1520
這些模式的技巧也很好
07:58
The models are skillful
192
466495
1671
這些模式在過去幾十年
08:00
when it comes to the 20th-century trends
193
468166
2904
談到二十世紀的趨勢時
08:03
over the decades.
194
471070
1515
其技巧很好
08:04
Models are successful at modeling
195
472585
2282
模式很成功地
08:06
lake outbursts into the North Atlantic
196
474867
2605
將八千年前北極冰湖潰決
08:09
8,000 years ago.
197
477472
1765
模式化
08:11
And we can get a good match to the data.
198
479237
3090
我們在數據上的匹配度很高
08:15
Each of these different targets,
199
483463
2387
每一個不同的目標
08:17
each of these different evaluations,
200
485850
2130
每一個不同的評估
08:19
leads us to add more scope
201
487980
2391
都導致我們加大範圍
08:22
to these models,
202
490371
1151
到這些模式中
08:23
and leads us to more and more
203
491522
2744
導致日益加增的
08:26
complex situations that we can ask
204
494266
3988
複雜情況,使我們不禁要問
08:30
more and more interesting questions,
205
498254
2569
更多有意思的問題
08:32
like, how does dust from the Sahara,
206
500823
2710
像是撒哈拉塵
08:35
that you can see in the orange,
207
503533
1734
也就是這些橘色的東西
08:37
interact with tropical cyclones in the Atlantic?
208
505267
3443
與大西洋的熱帶颶風如何交互作用?
08:40
How do organic aerosols from biomass burning,
209
508710
3477
生質燃燒所產生的有機氣膠
08:44
which you can see in the red dots,
210
512187
2723
也就是這些紅點
08:46
intersect with clouds and rainfall patterns?
211
514910
2934
與雲及雨型如何交互作用?
這些汙染,就是你看到
08:49
How does pollution, which you can see
212
517844
1787
08:51
in the white wisps of sulfate pollution in Europe,
213
519631
3899
在歐洲上方,一縷縷的白色硫酸
08:55
how does that affect the
temperatures at the surface
temperatures at the surface
214
523530
3335
這些如何影響地面溫度
08:58
and the sunlight that you get at the surface?
215
526865
3488
以及你在地表上得到的太陽光量?
09:02
We can look at this across the world.
216
530353
3488
我們可以看看世界各地的狀況
09:05
We can look at the pollution from China.
217
533841
3660
我們可以看從中國來的汙染
09:09
We can look at the impacts of storms
218
537501
3598
我們可以看暴風
09:13
on sea salt particles in the atmosphere.
219
541099
3444
對大氣層內海鹽粒子的影響
09:16
We can see the combination
220
544543
2561
我們可以看
09:19
of all of these different things
221
547104
2171
這些同時發生的
09:21
happening all at once,
222
549275
1468
不同東西的組合
09:22
and we can ask much more interesting questions.
223
550743
2407
我們可以問更有意思的問題
09:25
How do air pollution and climate coexist?
224
553150
4624
空氣汙染與氣候如何共存?
09:29
Can we change things
225
557774
1509
我們是否能改變
09:31
that affect air pollution and
climate at the same time?
climate at the same time?
226
559283
2589
對空氣汙染及氣候
同時產生影響的事物?
同時產生影響的事物?
09:33
The answer is yes.
227
561872
2344
答案是肯定的
09:36
So this is a history of the 20th century.
228
564216
3044
這是二十世紀的歷史
09:39
The first one is the model.
229
567260
2243
第一個是模式
09:41
The weather is a little bit different
230
569503
1407
天氣與實際狀況
09:42
to what actually happened.
231
570910
1289
有一點不同
09:44
The second one are the observations.
232
572199
2032
第二個是觀察
09:46
And we're going through the 1930s.
233
574231
2325
我們來看 1930 年代的情況
09:48
There's variability, there are things going on,
234
576556
2824
總是有變數,總是有狀況發生
09:51
but it's all kind of in the noise.
235
579380
2182
但是都有點像是雜音
09:53
As you get towards the 1970s,
236
581562
2862
然後時間接近 1970 年代
09:56
things are going to start to change.
237
584424
2009
事情開始有了變化
09:58
They're going to start to look more similar,
238
586433
2062
它們開始看起來愈來愈接近
10:00
and by the time you get to the 2000s,
239
588495
2558
而到了 2000 年代
10:03
you're already seeing the
patterns of global warming,
patterns of global warming,
240
591063
2642
你已經可以看到全球暖化的型態
10:05
both in the observations and in the model.
241
593705
2749
觀察及模式預測兩者皆是
10:08
We know what happened over the 20th century.
242
596454
2127
我們知道二十世紀發生了什麼
10:10
Right? We know that it's gotten warmer.
243
598581
1760
對吧?我們知道一定會更熱
10:12
We know where it's gotten warmer.
244
600341
1611
我們還知道哪裡一定會更熱
10:13
And if you ask the models why did that happen,
245
601952
2740
如果你問模式為什麼這種情形會發生
10:16
and you say, okay, well, yes,
246
604692
2125
然後你說,對,嗯,沒錯
10:18
basically it's because of the carbon dioxide
247
606817
1866
基本上就是因為二氧化碳
10:20
we put into the atmosphere.
248
608683
1979
我們把它排放到大氣層
10:22
We have a very good match
249
610662
1682
我們的匹配度
10:24
up until the present day.
250
612344
2627
到今天為止都很高
10:26
But there's one key reason why we look at models,
251
614971
3420
但我們為什麼要看模式
有個關鍵的理由
有個關鍵的理由
10:30
and that's because of this phrase here.
252
618391
2221
而那就是因為這句話
10:32
Because if we had observations of the future,
253
620612
2495
因為「假設我們能直接觀察未來,
10:35
we obviously would trust them more than models,
254
623107
3329
與其相信模式,
我們顯然會更相信觀察數據。
我們顯然會更相信觀察數據。
10:38
But unfortunately,
255
626436
1944
但不幸的是…
10:40
observations of the future
are not available at this time.
are not available at this time.
256
628380
5540
…對未來的觀察目前行不通。」
10:45
So when we go out into the
future, there's a difference.
future, there's a difference.
257
633920
2705
所以當我們預測未來
就會產生差異
就會產生差異
10:48
The future is unknown, the future is uncertain,
258
636625
2562
未來是未知的;未來是不確定的
10:51
and there are choices.
259
639187
2404
但我們有選擇
10:53
Here are the choices that we have.
260
641591
1833
以下是我們的選擇
10:55
We can do some work to mitigate
261
643424
2139
我們能做點什麼以減少
10:57
the emissions of carbon dioxide into the atmosphere.
262
645563
2795
二氧化碳排放入大氣層
11:00
That's the top one.
263
648358
1926
這是最重要的
11:02
We can do more work
264
650284
1906
我們還能做更多
11:04
to really bring it down
265
652190
2176
以真正減少排放量
11:06
so that by the end of the century,
266
654366
2218
所以到了本世紀末
11:08
it's not much more than there is now.
267
656584
2464
排放量不會比現在更多
11:11
Or we can just leave it to fate
268
659048
3767
或者我們就看天命
11:14
and continue on
269
662815
1493
並繼續著
11:16
with a business-as-usual type of attitude.
270
664308
3746
一切如常的態度
11:20
The differences between these choices
271
668054
3456
這兩種選擇的差異
11:23
can't be answered by looking at models.
272
671510
4797
看模式是回答不了的
11:28
There's a great phrase
273
676307
1639
有句名言
11:29
that Sherwood Rowland,
274
677946
1793
是弗蘭克‧羅蘭說的
11:31
who won the Nobel Prize for the chemistry
275
679739
3864
他是諾貝爾化學獎得主
11:35
that led to ozone depletion,
276
683603
2273
他的研究發現了臭氧耗竭
11:37
when he was accepting his Nobel Prize,
277
685876
2397
他在領取他的諾貝爾獎時
11:40
he asked this question:
278
688273
1379
他問了這個問題
11:41
"What is the use of having developed a science
279
689652
2311
「這到底有甚麼用呢?
某項科學發展的很好,
某項科學發展的很好,
11:43
well enough to make predictions if, in the end,
280
691963
3261
好到能做出預測,但最後
11:47
all we're willing to do is stand around
281
695224
2829
我們只願意袖手旁觀,
11:50
and wait for them to come true?"
282
698053
2707
冷眼看著它們成真?」
11:52
The models are skillful,
283
700760
2737
模式的預測技巧很好
11:55
but what we do with the
information from those models
information from those models
284
703497
3318
但我們要怎麼使用
模式預測出來的數據
模式預測出來的數據
11:58
is totally up to you.
285
706815
2171
就全看你們了
12:00
Thank you.
286
708986
1938
謝謝
12:02
(Applause)
287
710924
2916
(掌聲)
ABOUT THE SPEAKER
Gavin Schmidt - Climate scientistWhat goes into a climate model? Gavin Schmidt looks at how we use past and present data to model potential futures.
Why you should listen
Gavin Schmidt is a climate scientist at Columbia University's Earth Institute and is Deputy Chief at the NASA Goddard Institute for Space Studies. He works on understanding past, present and future climate change, using ever-more refined models and data sets to explore how the planet's climate behaves over time.
Schmidt is also deeply committed to communicating science to the general public. As a contributing editor at RealClimate.org, he helps make sure general readers have access to the basics of climate science, and works to bring the newest data and models into the public discussion around one of the most pressing issues of our time. He has worked with the American Museum of Natural History and the New York Academy of Sciences on education and public outreach, and he is the author of Climate Change: Picturing the Science, with Josh Wolfe.
More profile about the speakerSchmidt is also deeply committed to communicating science to the general public. As a contributing editor at RealClimate.org, he helps make sure general readers have access to the basics of climate science, and works to bring the newest data and models into the public discussion around one of the most pressing issues of our time. He has worked with the American Museum of Natural History and the New York Academy of Sciences on education and public outreach, and he is the author of Climate Change: Picturing the Science, with Josh Wolfe.
Gavin Schmidt | Speaker | TED.com