ABOUT THE SPEAKER
Laura Schulz - Cognitive scientist
Developmental behavior studies spearheaded by Laura Schulz are changing our notions of how children learn.

Why you should listen

MIT Early Childhood Cognition Lab lead investigator Laura Schulz studies learning in early childhood. Her research bridges computational models of cognitive development and behavioral studies in order to understand the origins of inquiry and discovery.

Working in play labs, children’s museums, and a recently-launched citizen science website, Schultz is reshaping how we view young children’s perceptions of the world around them. Some of the surprising results of her research: before the age of four, children expect hidden causes when events happen probabilistically, use simple experiments to distinguish causal hypotheses, and trade off learning from instruction and exploration.

More profile about the speaker
Laura Schulz | Speaker | TED.com
TED2015

Laura Schulz: The surprisingly logical minds of babies

劳拉·舒尔茨: 婴儿令人惊奇的逻辑思维

Filmed:
1,888,975 views

婴儿能从无到有快速地学会很多东西,他们是怎么做到的?认知科学家劳拉·舒尔茨通过一次有趣的、充满实验展示的演讲,向我们展示了婴儿在牙牙学语时,就能凭借惊人强大的逻辑思维能力进行决策。
- Cognitive scientist
Developmental behavior studies spearheaded by Laura Schulz are changing our notions of how children learn. Full bio

Double-click the English transcript below to play the video.

00:12
Mark标记 Twain吐温 summed总结 up
what I take to be
0
835
2155
马克·吐温说过一句话,
00:14
one of the fundamental基本的 problems问题
of cognitive认知 science科学
1
2990
3120
在我看来,指出了认知科学
00:18
with a single witticism妙语.
2
6110
1710
的根本问题。
他说,“科学非常奇妙,
00:20
He said, "There's something
fascinating迷人 about science科学.
3
8410
3082
00:23
One gets得到 such这样 wholesale批发
returns回报 of conjecture推测
4
11492
3228
你实际上只需进行少量投资,
00:26
out of such这样 a trifling轻微
investment投资 in fact事实."
5
14720
3204
得到的回报却是一整套理论。”
00:29
(Laughter笑声)
6
17924
1585
(笑声)
00:32
Twain吐温 meant意味着 it as a joke玩笑,
of course课程, but he's right:
7
20199
2604
吐温当然是在开玩笑,但他没说错:
00:34
There's something
fascinating迷人 about science科学.
8
22803
2876
科学就是这么神奇。
00:37
From a few少数 bones骨头, we infer推断
the existence存在 of dinosuarsdinosuars.
9
25679
4261
从几块骨头,
我们能推测出恐龙的存在。
00:42
From spectral光谱 lines线,
the composition组成 of nebulae星云.
10
30910
3871
从几条光谱带,
我们能推测星云的构成物质。
00:47
From fruit水果 flies苍蝇,
11
35471
2938
分析果蝇,
00:50
the mechanisms机制 of heredity遗传,
12
38409
2943
我们能推导出遗传机制,
00:53
and from reconstructed重建 images图片
of blood血液 flowing流动 through通过 the brain,
13
41352
4249
分析大脑血液流动的图像,
00:57
or in my case案件, from the behavior行为
of very young年轻 children孩子,
14
45601
4708
或者,从我的研究方向来说,
分析儿童的行为,
01:02
we try to say something about
the fundamental基本的 mechanisms机制
15
50309
2829
我们尝试搞清楚人类认知的
01:05
of human人的 cognition认识.
16
53138
1618
基本机制。
01:07
In particular特定, in my lab实验室 in the Department
of Brain and Cognitive认知 Sciences科学 at MITMIT,
17
55716
4759
尤其在我们麻省理工学院
大脑和认知科学系实验室,
01:12
I have spent花费 the past过去 decade
trying to understand理解 the mystery神秘
18
60475
3654
过去十年我一直在研究一个问题,
01:16
of how children孩子 learn学习 so much
from so little so quickly很快.
19
64129
3977
为什么小孩子能从无到有
快速地学会很多东西。
因为,科学的奇妙之处,
01:20
Because, it turns out that
the fascinating迷人 thing about science科学
20
68666
2978
01:23
is also a fascinating迷人
thing about children孩子,
21
71644
3529
恰恰也是小孩子的奇妙之处,
01:27
which哪一个, to put a gentler温和
spin on Mark标记 Twain吐温,
22
75173
2581
从马克·吐温的话引申出来,
01:29
is precisely恰恰 their ability能力
to draw rich丰富, abstract抽象 inferences推论
23
77754
4650
准确地说,就是他们都能
从少量的、充满干扰的数据中
01:34
rapidly急速 and accurately准确
from sparse, noisy嘈杂 data数据.
24
82404
4661
迅速而准确地得出丰富的理论推断。
01:40
I'm going to give you
just two examples例子 today今天.
25
88355
2398
我今天只举两个例子。
01:42
One is about a problem问题 of generalization概括,
26
90753
2287
一个关于归纳总结,
01:45
and the other is about a problem问题
of causal因果 reasoning推理.
27
93040
2850
另一个关于因果推理。
01:47
And although虽然 I'm going to talk
about work in my lab实验室,
28
95890
2525
尽管我今天要谈的
是我的实验室里的工作,
01:50
this work is inspired启发 by
and indebted感激的 to a field领域.
29
98415
3460
但它的灵感来源于
整个(认知科学)领域。
01:53
I'm grateful感激 to mentors导师, colleagues同事,
and collaborators合作者 around the world世界.
30
101875
4283
我要感谢世界各地的
导师、同事和合作者们。
01:59
Let me start开始 with the problem问题
of generalization概括.
31
107308
2974
我先从归纳总结开始讲起。
02:02
Generalizing泛化 from small samples样本 of data数据
is the bread面包 and butter牛油 of science科学.
32
110652
4133
从少量的数据样本进行归纳总结
是科学的立身之本。
02:06
We poll轮询 a tiny fraction分数 of the electorate选民
33
114785
2554
我们调查一小部分选民的投票结果,
02:09
and we predict预测 the outcome结果
of national国民 elections选举.
34
117339
2321
就能推测出大选结果。
02:12
We see how a handful少数 of patients耐心
responds响应 to treatment治疗 in a clinical临床 trial审讯,
35
120240
3925
我们分析临床试验中一部分病人
对治疗方案的反应,
02:16
and we bring带来 drugs毒品 to a national国民 market市场.
36
124165
3065
然后向全国市场推广新药。
02:19
But this only works作品 if our sample样品
is randomly随机 drawn from the population人口.
37
127230
4365
但这要求我们抽取样本
要完全随机。
02:23
If our sample样品 is cherry-picked樱桃采摘
in some way --
38
131595
2735
如果样本是刻意挑选的,
02:26
say, we poll轮询 only urban城市的 voters选民,
39
134330
2072
比如说,只抽取城市选民,
02:28
or say, in our clinical临床 trials试验
for treatments治疗 for heart disease疾病,
40
136402
4388
或者,在治疗心脏病的临床试验中,
02:32
we include包括 only men男人 --
41
140790
1881
只抽取男性患者,
02:34
the results结果 may可能 not generalize概括
to the broader更广泛 population人口.
42
142671
3158
那结果可能不适用于整个人群。
因此科学家非常重视
样本的抽取是否随机,
02:38
So scientists科学家们 care关心 whether是否 evidence证据
is randomly随机 sampled取样 or not,
43
146479
3581
02:42
but what does that have to do with babies婴儿?
44
150060
2015
那婴儿会不会重视呢?
02:44
Well, babies婴儿 have to generalize概括
from small samples样本 of data数据 all the time.
45
152585
4621
实际上,婴儿一直在对
少量数据样本进行归纳总结。
02:49
They see a few少数 rubber橡胶 ducks鸭子
and learn学习 that they float浮动,
46
157206
3158
他们见过几只橡胶鸭子,
知道它们能浮起来,
02:52
or a few少数 balls and learn学习 that they bounce弹跳.
47
160364
3575
见过几个球,知道它们能在地上弹跳。
02:55
And they develop发展 expectations期望
about ducks鸭子 and balls
48
163939
2951
他们对鸭子和球产生了预判
02:58
that they're going to extend延伸
to rubber橡胶 ducks鸭子 and balls
49
166890
2716
并会在今后的人生中
将这种预判延伸到
03:01
for the rest休息 of their lives生活.
50
169606
1879
(所有)橡胶鸭子和球身上。
03:03
And the kinds of generalizations概括
babies婴儿 have to make about ducks鸭子 and balls
51
171485
3739
这种针对鸭子和球的归纳总结法,
03:07
they have to make about almost几乎 everything:
52
175224
2089
婴儿几乎要用在所有东西上:
03:09
shoes and ships船舶 and sealing密封 wax
and cabbages卷心菜 and kings国王.
53
177313
3917
鞋子、船、封蜡、卷心菜和国王。
03:14
So do babies婴儿 care关心 whether是否
the tiny bit of evidence证据 they see
54
182200
2961
那么婴儿会不会在乎
他们看到的这几个样本
03:17
is plausibly振振有词 representative代表
of a larger population人口?
55
185161
3692
是不是具有代表性呢?
我们来看一看。
03:21
Let's find out.
56
189763
1900
03:23
I'm going to show显示 you two movies电影,
57
191663
1723
我将给你们放两段视频,
03:25
one from each of two conditions条件
of an experiment实验,
58
193386
2462
每一段各反映一个实验里的一种情况,
03:27
and because you're going to see
just two movies电影,
59
195848
2438
因为只有两段视频,
03:30
you're going to see just two babies婴儿,
60
198286
2136
所以你们只能看到两个婴儿,
03:32
and any two babies婴儿 differ不同 from each other
in innumerable无数 ways方法.
61
200422
3947
而任意两个婴儿之间都是千差万别的。
03:36
But these babies婴儿, of course课程,
here stand in for groups of babies婴儿,
62
204369
3051
当然,这两个婴儿,
各代表一类婴儿,
03:39
and the differences分歧 you're going to see
63
207420
1895
你们即将看到的差别,
03:41
represent代表 average平均 group differences分歧
in babies'婴儿 behavior行为 across横过 conditions条件.
64
209315
5195
代表了婴儿在不同情况下
普遍的行为差异。
03:47
In each movie电影, you're going to see
a baby宝宝 doing maybe
65
215160
2583
在每段视频中,婴儿的所作所为,
03:49
just exactly究竟 what you might威力
expect期望 a baby宝宝 to do,
66
217743
3460
可能会跟你所预期的一样,
03:53
and we can hardly几乎不 make babies婴儿
more magical神奇 than they already已经 are.
67
221203
4017
婴儿是如此神奇,
可能超乎你的想象。
但在我看来神奇的是,
03:58
But to my mind心神 the magical神奇 thing,
68
226090
2010
04:00
and what I want you to pay工资 attention注意 to,
69
228100
2089
我也希望大家能注意到,
04:02
is the contrast对比 between之间
these two conditions条件,
70
230189
3111
就是两种情况之间的差别,
04:05
because the only thing
that differs不同 between之间 these two movies电影
71
233300
3529
因为两段视频唯一的不同之处
04:08
is the statistical统计 evidence证据
the babies婴儿 are going to observe.
72
236829
3466
就是婴儿需要观察的统计学证据。
04:13
We're going to show显示 babies婴儿
a box of blue蓝色 and yellow黄色 balls,
73
241425
3183
我们会给婴儿看一个盒子,
里面装满了蓝色和黄色的球,
04:16
and my then-graduate那么研究生 student学生,
now colleague同事 at Stanford斯坦福, HyowonHyowon GweonGweon,
74
244608
4620
我当时的研究生学生,
现在是斯坦福大学的同事,权孝媛。
04:21
is going to pull three blue蓝色 balls
in a row out of this box,
75
249228
3077
会从盒子里连续拿出三个蓝色的球,
04:24
and when she pulls those balls out,
she's going to squeeze them,
76
252305
3123
当她把球拿出来的时候,她会捏它们,
04:27
and the balls are going to squeak.
77
255428
2113
球会发出声音。
04:29
And if you're a baby宝宝,
that's like a TEDTED Talk.
78
257541
2763
对孩子来说,这就像TED演讲。
04:32
It doesn't get better than that.
79
260304
1904
真的没什么区别。
04:34
(Laughter笑声)
80
262208
2561
(笑声)
04:38
But the important重要 point is it's really
easy简单 to pull three blue蓝色 balls in a row
81
266968
3659
重要的一点是,
从一个几乎全都是蓝色球的盒子里,
04:42
out of a box of mostly大多 blue蓝色 balls.
82
270627
2305
连续拿出三个蓝色的球非常容易。
04:44
You could do that with your eyes眼睛 closed关闭.
83
272932
2060
闭上眼睛都能做到。
04:46
It's plausibly振振有词 a random随机 sample样品
from this population人口.
84
274992
2996
这是一个真正的随机取样。
04:49
And if you can reach达到 into a box at random随机
and pull out things that squeak,
85
277988
3732
如果你从一个盒子里随机
取出来的东西能捏响,
04:53
then maybe everything in the box squeaks尖叫声.
86
281720
2839
那也许这个盒子里
所有的东西都能捏响。
04:56
So maybe babies婴儿 should expect期望
those yellow黄色 balls to squeak as well.
87
284559
3650
因此,婴儿也许会觉得
黄色的球也能捏响。
05:00
Now, those yellow黄色 balls
have funny滑稽 sticks on the end结束,
88
288209
2519
这些黄色的球在尾端有一根棍子,
05:02
so babies婴儿 could do other things
with them if they wanted to.
89
290728
2857
因此婴儿还可以对它做其他动作。
05:05
They could pound them or whack重打 them.
90
293585
1831
比如说打它或者掰它。
05:07
But let's see what the baby宝宝 does.
91
295416
2586
让我们来看婴儿会怎么做。
05:12
(Video视频) HyowonHyowon GweonGweon: See this?
(Ball squeaks尖叫声)
92
300548
3343
(视频)权孝媛:看到没?
(球被捏响)
听到了吗?
(球被捏响)
05:16
Did you see that?
(Ball squeaks尖叫声)
93
304531
3045
05:20
Cool.
94
308036
3066
酷。
05:24
See this one?
95
312706
1950
看到这个球没?
05:26
(Ball squeaks尖叫声)
96
314656
1881
(球被捏响)
05:28
Wow.
97
316537
2653
哇。
05:33
Laura劳拉 Schulz舒尔茨: Told you. (Laughs)
98
321854
2113
劳拉·舒尔茨:我就说嘛。(笑)
05:35
(Video视频) HGHG: See this one?
(Ball squeaks尖叫声)
99
323967
4031
(视频)权孝媛:看这个。
(球被捏响)
05:39
Hey Clara克拉拉, this one's那些 for you.
You can go ahead and play.
100
327998
4619
克拉拉,这个球给你。
拿着玩吧。
05:51
(Laughter笑声)
101
339854
4365
(笑声)
05:56
LSLS: I don't even have to talk, right?
102
344219
2995
劳拉·舒尔茨:
我都不必解释了,对吗?
05:59
All right, it's nice不错 that babies婴儿
will generalize概括 properties性能
103
347214
2899
好的,婴儿能从蓝色球的特性
推导出黄色球的特性
06:02
of blue蓝色 balls to yellow黄色 balls,
104
350113
1528
这非常棒,
06:03
and it's impressive有声有色 that babies婴儿
can learn学习 from imitating冒充 us,
105
351641
3096
而且婴儿通过模仿我们
进行学习,令人印象深刻,
06:06
but we've我们已经 known已知 those things about babies婴儿
for a very long time.
106
354737
3669
但婴儿的这些特点我们早就知道了。
06:10
The really interesting有趣 question
107
358406
1811
真正有意思的是,
06:12
is what happens发生 when we show显示 babies婴儿
exactly究竟 the same相同 thing,
108
360217
2852
我们将上述实验完全重复一遍,
06:15
and we can ensure确保 it's exactly究竟 the same相同
because we have a secret秘密 compartment隔室
109
363069
3611
我们之所以能保证两次实验完全一样,
是因为装球的箱子有一个隔层,
06:18
and we actually其实 pull the balls from there,
110
366680
2110
实际上我们是从那个隔层里往外拿球,
06:20
but this time, all we change更改
is the apparent明显的 population人口
111
368790
3478
但是这一次,
我们更改了样品库的外观,
06:24
from which哪一个 that evidence证据 was drawn.
112
372268
2902
也就是说盒子里的球看起来不同了。
06:27
This time, we're going to show显示 babies婴儿
three blue蓝色 balls
113
375170
3553
这一次,我们还是
给婴儿看三个蓝色的球,
06:30
pulled out of a box
of mostly大多 yellow黄色 balls,
114
378723
3384
但是装球的箱子里几乎全是黄色的球,
06:34
and guess猜测 what?
115
382107
1322
猜猜结果会怎样?
06:35
You [probably大概 won't惯于] randomly随机 draw
three blue蓝色 balls in a row
116
383429
2840
从几乎全是黄色球的箱子里
06:38
out of a box of mostly大多 yellow黄色 balls.
117
386269
2484
连续拿出三个蓝色的球,
也许很难。
06:40
That is not plausibly振振有词
randomly随机 sampled取样 evidence证据.
118
388753
3747
这不是令人信服的随机取样。
06:44
That evidence证据 suggests提示 that maybe HyowonHyowon
was deliberately故意 sampling采样 the blue蓝色 balls.
119
392500
5123
也许孝媛是故意选的蓝色的球。
06:49
Maybe there's something special特别
about the blue蓝色 balls.
120
397623
2583
也许蓝色的球有些特别之处。
06:52
Maybe only the blue蓝色 balls squeak.
121
400846
2976
也许只有蓝色的球能捏响。
06:55
Let's see what the baby宝宝 does.
122
403822
1895
我们来看婴儿会怎么做。
06:57
(Video视频) HGHG: See this?
(Ball squeaks尖叫声)
123
405717
2904
(视频)权孝媛:看到了吗?
(球被捏响)
07:02
See this toy玩具?
(Ball squeaks尖叫声)
124
410851
2645
再看这个。
(球被捏响)
07:05
Oh, that was cool. See?
(Ball squeaks尖叫声)
125
413496
5480
哦,太酷了。看!
(球被捏响)
07:10
Now this one's那些 for you to play.
You can go ahead and play.
126
418976
4394
这个是给你的。
拿去玩吧。
07:18
(Fussing大惊小怪)
(Laughter笑声)
127
426074
6347
(不耐烦)
(笑声)
07:26
LSLS: So you just saw
two 15-month-old个月大 babies婴儿
128
434901
2748
劳拉·舒尔茨:2个15个月大的婴儿
07:29
do entirely完全 different不同 things
129
437649
1942
仅仅基于他们观察到的取样几率
07:31
based基于 only on the probability可能性
of the sample样品 they observed观察到的.
130
439591
3599
做出了完全不同的反应。
07:35
Let me show显示 you the experimental试验 results结果.
131
443190
2321
让我们来看一下实验结果。
07:37
On the vertical垂直 axis, you'll你会 see
the percentage百分比 of babies婴儿
132
445511
2764
在纵轴上,你看到的是在不同情况下
07:40
who squeezed挤压 the ball in each condition条件,
133
448275
2530
会去捏球的婴儿的百分比,
07:42
and as you'll你会 see, babies婴儿 are much
more likely容易 to generalize概括 the evidence证据
134
450805
3715
如图表所示,当婴儿认为取样具有代表性
07:46
when it's plausibly振振有词 representative代表
of the population人口
135
454520
3135
而不是特意选取的时候
07:49
than when the evidence证据
is clearly明确地 cherry-picked樱桃采摘.
136
457655
3738
他们有更高几率去捏黄色的球。
07:53
And this leads引线 to a fun开玩笑 prediction预测:
137
461393
2415
这个结果能导致一个有趣的推测:
07:55
Suppose假设 you pulled just one blue蓝色 ball
out of the mostly大多 yellow黄色 box.
138
463808
4868
假设你从几乎全是黄色球的箱子里
拿出一个蓝色球。
08:00
You [probably大概 won't惯于] pull three blue蓝色 balls
in a row at random随机 out of a yellow黄色 box,
139
468896
3869
你也许很难从很多黄球的箱子里
连续拿出三个蓝色球,
08:04
but you could randomly随机 sample样品
just one blue蓝色 ball.
140
472765
2455
但随机拿出一个还是有可能的。
08:07
That's not an improbable难以置信 sample样品.
141
475220
1970
这不是一个小概率事件。
08:09
And if you could reach达到 into
a box at random随机
142
477190
2224
如果你从箱子里随机抽出一个东西,
08:11
and pull out something that squeaks尖叫声,
maybe everything in the box squeaks尖叫声.
143
479414
3987
而这个东西能捏响,
那可能箱子里所有东西都能捏响。
08:15
So even though虽然 babies婴儿 are going to see
much less evidence证据 for squeaking吱吱,
144
483875
4445
因此,尽管婴儿们在接下来的
“只拿一个球”的实验中,
08:20
and have many许多 fewer actions行动 to imitate模拟
145
488320
2242
看到的证据更少,
08:22
in this one ball condition条件 than in
the condition条件 you just saw,
146
490562
3343
可模仿的动作也更少,
08:25
we predicted预料到的 that babies婴儿 themselves他们自己
would squeeze more,
147
493905
3892
但我们推测婴儿们捏球的几率会升高,
08:29
and that's exactly究竟 what we found发现.
148
497797
2894
结果正是如此。
08:32
So 15-month-old个月大 babies婴儿,
in this respect尊重, like scientists科学家们,
149
500691
4411
15个月大的婴儿,在这个实验中,
跟科学家一样,
08:37
care关心 whether是否 evidence证据
is randomly随机 sampled取样 or not,
150
505102
3088
十分看重取样是否真正随机,
08:40
and they use this to develop发展
expectations期望 about the world世界:
151
508190
3507
他们通过这种方法
来发展对世界的预判:
08:43
what squeaks尖叫声 and what doesn't,
152
511697
2182
什么能捏响,什么不能,
08:45
what to explore探索 and what to ignore忽视.
153
513879
3145
什么值得探究,什么可以忽略。
08:50
Let me show显示 you another另一个 example now,
154
518384
2066
下面我们来看另一个实验,
08:52
this time about a problem问题
of causal因果 reasoning推理.
155
520450
2730
关于因果推论的实验。
08:55
And it starts启动 with a problem问题
of confounded混淆 evidence证据
156
523180
2439
这个实验源于一个让我们所有人
08:57
that all of us have,
157
525619
1672
都感到困惑的事实:
08:59
which哪一个 is that we are part部分 of the world世界.
158
527291
2020
我们是这个世界的一部分。
09:01
And this might威力 not seem似乎 like a problem问题
to you, but like most problems问题,
159
529311
3436
也许在你看来这根本不算个问题,
但就像许多其他问题一样,
09:04
it's only a problem问题 when things go wrong错误.
160
532747
2337
只有问题出现时,它才算一个问题。
09:07
Take this baby宝宝, for instance.
161
535464
1811
以下面这个婴儿为例。
09:09
Things are going wrong错误 for him.
162
537275
1705
他就碰到了点问题。
09:10
He would like to make
this toy玩具 go, and he can't.
163
538980
2271
他想把玩具弄响,但是没有成功。
09:13
I'll show显示 you a few-second几秒钟 clip.
164
541251
2529
我给你们放几秒视频。
大体而言,有两种可能:
09:21
And there's two possibilities可能性, broadly宽广地:
165
549340
1920
09:23
Maybe he's doing something wrong错误,
166
551260
2634
也许他玩的方法不对,
09:25
or maybe there's something
wrong错误 with the toy玩具.
167
553894
4216
或者玩具坏了。
09:30
So in this next下一个 experiment实验,
168
558110
2111
因此在接下来的实验中,
我们会给婴儿少量统计学数据,
09:32
we're going to give babies婴儿
just a tiny bit of statistical统计 data数据
169
560221
3297
09:35
supporting支持 one hypothesis假设 over the other,
170
563518
2582
这些数据能支持某一种可能性,
09:38
and we're going to see if babies婴儿
can use that to make different不同 decisions决定
171
566100
3455
我们再看婴儿能否依据这些数据
作出不同的决定。
09:41
about what to do.
172
569555
1834
09:43
Here's这里的 the setup建立.
173
571389
2022
实验是这样的。
09:46
HyowonHyowon is going to try to make
the toy玩具 go and succeed成功.
174
574071
3030
孝媛尝试弄响这个玩具,她成功了。
09:49
I am then going to try twice两次
and fail失败 both times,
175
577101
3320
然后我也开始玩,但两次都失败了,
09:52
and then HyowonHyowon is going
to try again and succeed成功,
176
580421
3112
然后孝媛再次尝试,她又成功了,
09:55
and this roughly大致 sums总和 up my relationship关系
to my graduate毕业 students学生们
177
583533
3172
也许这是我跟孝媛
在科技水平上差距
09:58
in technology技术 across横过 the board.
178
586705
2835
的很好体现。
10:02
But the important重要 point here is
it provides提供 a little bit of evidence证据
179
590030
3292
这里的关键点在于,
它提供了一点点证据
10:05
that the problem问题 isn't with the toy玩具,
it's with the person.
180
593322
3668
证明问题不在于玩具,而在于人。
10:08
Some people can make this toy玩具 go,
181
596990
2350
有的人能让玩具发出声音,
10:11
and some can't.
182
599340
959
有的人则不能。
10:12
Now, when the baby宝宝 gets得到 the toy玩具,
he's going to have a choice选择.
183
600799
3413
当婴儿拿到玩具之后,
他要做出选择。
10:16
His mom妈妈 is right there,
184
604212
2188
他妈妈就在旁边,
他可以将玩具交给妈妈,
换一个人,
10:18
so he can go ahead and hand off the toy玩具
and change更改 the person,
185
606400
3315
同时在那块布的尽头
放着另一个玩具,
10:21
but there's also going to be
another另一个 toy玩具 at the end结束 of that cloth,
186
609715
3158
10:24
and he can pull the cloth towards him
and change更改 the toy玩具.
187
612873
3552
他可以将布拖过来,换一个玩具。
我们来看看他会怎么做。
10:28
So let's see what the baby宝宝 does.
188
616425
2090
10:30
(Video视频) HGHG: Two, three. Go!
(Music音乐)
189
618515
4183
(视频)孝媛:二、三,开始!
(音乐)
10:34
LSLS: One, two, three, go!
190
622698
3131
劳拉·舒尔茨:一、二、三,开始!
10:37
Arthur亚瑟, I'm going to try again.
One, two, three, go!
191
625829
7382
亚瑟,我再试一次。
一、二、三,开始!
10:45
YGYG: Arthur亚瑟, let me try again, okay?
192
633677
2600
孝媛:亚瑟,让我再试一次,好吗?
10:48
One, two, three, go!
(Music音乐)
193
636277
4550
一、二、三,开始!
(音乐)
看啊。
记得这些玩具吗?
10:53
Look at that. Remember记得 these toys玩具?
194
641583
1883
10:55
See these toys玩具? Yeah, I'm going
to put this one over here,
195
643466
3264
看到了吗?我把这个玩具放在这里,
10:58
and I'm going to give this one to you.
196
646730
2062
把这个玩具给你。
你可以自己玩了。
11:00
You can go ahead and play.
197
648792
2335
11:23
LSLS: Okay, Laura劳拉, but of course课程,
babies婴儿 love their mommies妈妈们.
198
671213
4737
劳拉·舒尔茨:好吧,劳拉,但是,
小朋友都爱自己的妈妈呀。
11:27
Of course课程 babies婴儿 give toys玩具
to their mommies妈妈们
199
675950
2182
他玩不转玩具的时候
11:30
when they can't make them work.
200
678132
2030
肯定会把玩具交给妈妈。
11:32
So again, the really important重要 question
is what happens发生 when we change更改
201
680162
3593
那么,让我们看看
把这少量的统计学数据
11:35
the statistical统计 data数据 ever so slightly.
202
683755
3154
进行更换会怎么样。
11:38
This time, babies婴儿 are going to see the toy玩具
work and fail失败 in exactly究竟 the same相同 order订购,
203
686909
4087
这一次,玩具响和不响的顺序跟刚才一样,
11:42
but we're changing改变
the distribution分配 of evidence证据.
204
690996
2415
但分布情况跟刚才不同。
11:45
This time, HyowonHyowon is going to succeed成功
once一旦 and fail失败 once一旦, and so am I.
205
693411
4411
这一次,孝媛会成功一次,失败一次,
我也一样。
11:49
And this suggests提示 it doesn't matter
who tries尝试 this toy玩具, the toy玩具 is broken破碎.
206
697822
5637
那就表明跟人没关系,
是这个玩具有问题。
它时好时坏。
11:55
It doesn't work all the time.
207
703459
1886
同样的,婴儿要做出选择。
11:57
Again, the baby's宝宝 going to have a choice选择.
208
705345
1965
她妈妈就在她旁边,
她可以换人来试,
11:59
Her mom妈妈 is right next下一个 to her,
so she can change更改 the person,
209
707310
3396
12:02
and there's going to be another另一个 toy玩具
at the end结束 of the cloth.
210
710706
3204
同样有另一个玩具
放在布的另一头。
我们来看她会如何选择。
12:05
Let's watch what she does.
211
713910
1378
(视频)孝媛:二、三,开始!
(音乐)
12:07
(Video视频) HGHG: Two, three, go!
(Music音乐)
212
715288
4348
12:11
Let me try one more time.
One, two, three, go!
213
719636
4984
我再试一次。
一、二、三,开始!
12:17
Hmm.
214
725460
1697
嗯?
12:19
LSLS: Let me try, Clara克拉拉.
215
727950
2692
劳拉·舒尔茨:克拉拉,让我试一下吧。
12:22
One, two, three, go!
216
730642
3945
一、二、三,开始!
12:27
Hmm, let me try again.
217
735265
1935
嗯,我再试一次。
12:29
One, two, three, go!
(Music音乐)
218
737200
5670
一、二、三,开始!
(音乐)
12:35
HGHG: I'm going
to put this one over here,
219
743009
2233
孝媛:我把这个放在这边,
12:37
and I'm going to give this one to you.
220
745242
2001
把这个给你。
你可以玩了。
12:39
You can go ahead and play.
221
747243
3597
12:58
(Applause掌声)
222
766376
4897
(掌声)
13:04
LSLS: Let me show显示 you
the experimental试验 results结果.
223
772993
2392
劳拉·舒尔茨:我们来看看实验结果。
13:07
On the vertical垂直 axis,
you'll你会 see the distribution分配
224
775385
2475
在纵轴上,显示的是
13:09
of children's儿童 choices选择 in each condition条件,
225
777860
2577
在不同情况下婴儿所做选择的比例,
13:12
and you'll你会 see that the distribution分配
of the choices选择 children孩子 make
226
780437
4551
我们可以看到,婴儿们做出的选择
13:16
depends依靠 on the evidence证据 they observe.
227
784988
2787
跟他们观察到的证据有关。
13:19
So in the second第二 year of life,
228
787775
1857
因此,在出生后的第二年,
13:21
babies婴儿 can use a tiny bit
of statistical统计 data数据
229
789632
2577
婴儿已经可以利用少量统计数据
13:24
to decide决定 between之间 two
fundamentally从根本上 different不同 strategies策略
230
792209
3367
来决定如何从两种不同的
基本策略中做出选择
13:27
for acting演戏 in the world世界:
231
795576
1881
从而在这个世界生存:
13:29
asking for help and exploring探索.
232
797457
2743
求助和探索。
13:33
I've just shown显示 you
two laboratory实验室 experiments实验
233
801700
3434
我刚刚向大家展示的两个实验
13:37
out of literally按照字面 hundreds数以百计 in the field领域
that make similar类似 points,
234
805134
3691
是从几百个类似实验中挑选出来的,
它们得出了相似的结论,
13:40
because the really critical危急 point
235
808825
2392
因为真正重要的一点是
13:43
is that children's儿童 ability能力
to make rich丰富 inferences推论 from sparse data数据
236
811217
5108
孩子们从很少的数据中
推导出丰富结果的能力
13:48
underliesunderlies all the species-specific种属特异性
cultural文化 learning学习 that we do.
237
816325
5341
构成了我们研究
物种特异性文化的基础。
13:53
Children孩子 learn学习 about new tools工具
from just a few少数 examples例子.
238
821666
4597
孩子能通过几个示范
就掌握工具的用法。
13:58
They learn学习 new causal因果 relationships关系
from just a few少数 examples例子.
239
826263
4717
能通过几个例子
就掌握新的因果关系。
14:03
They even learn学习 new words,
in this case案件 in American美国 Sign标志 Language语言.
240
831928
4871
他们甚至能学会新的词语,
这里我指的是美国手语。
14:08
I want to close with just two points.
241
836799
2311
我想用两个观点来结束演讲。
14:12
If you've been following以下 my world世界,
the field领域 of brain and cognitive认知 sciences科学,
242
840050
3688
如果在过去几年,
你一直在关注我们的领域,
14:15
for the past过去 few少数 years年份,
243
843738
1927
关注大脑和认知科学,
14:17
three big ideas思路 will have come
to your attention注意.
244
845665
2415
那么你一定注意到了这三个观点。
14:20
The first is that this is
the era时代 of the brain.
245
848080
3436
首先,现在是大脑的时代。
14:23
And indeed确实, there have been
staggering踉跄 discoveries发现 in neuroscience神经科学:
246
851516
3669
实际上,神经系统科学
已经取得了不错的进展:
14:27
localizing本地化 functionally功能 specialized专门
regions地区 of cortex皮质,
247
855185
3436
确定大脑皮层各区域的作用,
14:30
turning车削 mouse老鼠 brains大脑 transparent透明,
248
858621
2601
让小白鼠的大脑透明化,
14:33
activating激活 neurons神经元 with light.
249
861222
3776
利用光线触发神经元(活动)。
14:36
A second第二 big idea理念
250
864998
1996
第二个大的观点是
14:38
is that this is the era时代 of big data数据
and machine learning学习,
251
866994
4104
现在是大数据和机器学习的时代,
14:43
and machine learning学习 promises许诺
to revolutionize革命化 our understanding理解
252
871098
3141
机器学习预示了我们对事物
的理解将发生革命性的变化,
14:46
of everything from social社会 networks网络
to epidemiology流行病学.
253
874239
4667
无论是对社交网络还是流行病学。
也许,随着它被用于场景理解
14:50
And maybe, as it tackles铲球 problems问题
of scene现场 understanding理解
254
878906
2693
14:53
and natural自然 language语言 processing处理,
255
881599
1993
和自然语言处理,
14:55
to tell us something
about human人的 cognition认识.
256
883592
3324
能帮助我们更好地研究人类认知。
14:59
And the final最后 big idea理念 you'll你会 have heard听说
257
887756
1937
最后一个你可能注意到的观点是
15:01
is that maybe it's a good idea理念 we're going
to know so much about brains大脑
258
889693
3387
我们能深入了解大脑,
能深入运用大数据,
15:05
and have so much access访问 to big data数据,
259
893080
1917
是一件非常好的事情,
15:06
because left to our own拥有 devices设备,
260
894997
2507
因为人类天性随意,
15:09
humans人类 are fallible易错的, we take shortcuts快捷键,
261
897504
3831
我们容易犯错,喜欢走捷径,
15:13
we err, we make mistakes错误,
262
901335
3437
我们闯祸,我们惹麻烦,
15:16
we're biased, and in innumerable无数 ways方法,
263
904772
3684
我们心存偏见,
而且从许多方面来讲,
15:20
we get the world世界 wrong错误.
264
908456
2969
我们会错误理解这个世界。
15:24
I think these are all important重要 stories故事,
265
912843
2949
我认为这些书都很重要,
15:27
and they have a lot to tell us
about what it means手段 to be human人的,
266
915792
3785
能帮我们理解身为人类意味着什么,
15:31
but I want you to note注意 that today今天
I told you a very different不同 story故事.
267
919577
3529
但我想强调的是,
今天我讲的是一个完全不同的故事。
15:35
It's a story故事 about minds头脑 and not brains大脑,
268
923966
3807
它讲的是思维而不是大脑,
15:39
and in particular特定, it's a story故事
about the kinds of computations计算
269
927773
3006
确切的说,是关于人类思维所特有的
15:42
that uniquely独特地 human人的 minds头脑 can perform演出,
270
930779
2590
一种计算能力,
15:45
which哪一个 involve涉及 rich丰富, structured结构化的 knowledge知识
and the ability能力 to learn学习
271
933369
3944
这种能力让我们学识渊博,
15:49
from small amounts of data数据,
the evidence证据 of just a few少数 examples例子.
272
937313
5268
帮助我们从少量数据和证据中
进行学习。
从本质上来说,
这是一个关于成长的故事,
15:56
And fundamentally从根本上, it's a story故事
about how starting开始 as very small children孩子
273
944301
4299
16:00
and continuing继续 out all the way
to the greatest最大 accomplishments成就
274
948600
4180
小孩子如何一天天成长,
取得巨大成就,
16:04
of our culture文化,
275
952780
3843
为我们的文化做贡献,
16:08
we get the world世界 right.
276
956623
1997
我们对世界的理解又是正确的。
16:12
Folks乡亲, human人的 minds头脑 do not only learn学习
from small amounts of data数据.
277
960433
5267
朋友们,人类的思维不光
能从少量数据中进行学习。
16:18
Human人的 minds头脑 think
of altogether new ideas思路.
278
966285
2101
人类思维能提炼全新的观点。
16:20
Human人的 minds头脑 generate生成
research研究 and discovery发现,
279
968746
3041
人类思维进行研究和发现,
16:23
and human人的 minds头脑 generate生成
art艺术 and literature文学 and poetry诗歌 and theater剧院,
280
971787
5273
人类思维还能创作
艺术、文学、诗歌和戏剧,
16:29
and human人的 minds头脑 take care关心 of other humans人类:
281
977070
3760
人类思维还会关注其他人类:
16:32
our old, our young年轻, our sick生病.
282
980830
3427
尊老爱幼,救死扶伤。
16:36
We even heal愈合 them.
283
984517
2367
让他们痊愈。
16:39
In the years年份 to come, we're going
to see technological技术性 innovations创新
284
987564
3103
在未来几年,
我们将看到超出我们想象
16:42
beyond anything I can even envision预见,
285
990667
3797
的技术创新,
16:46
but we are very unlikely不会
286
994464
2150
但是我们很可能看不到
16:48
to see anything even approximating逼近
the computational计算 power功率 of a human人的 child儿童
287
996614
5709
哪怕仅仅是接近
人类小孩计算能力的技术出现,
16:54
in my lifetime一生 or in yours你的.
288
1002323
4298
可能我们的有生之年都看不到。
16:58
If we invest投资 in these most powerful强大
learners学习者 and their development发展,
289
1006621
5047
如果我们对这些最强大的
学习者和他们的发展进行投资,
17:03
in babies婴儿 and children孩子
290
1011668
2917
也就是对婴儿和儿童,
对他们的父母,
17:06
and mothers母亲 and fathers父亲
291
1014585
1826
17:08
and caregivers护理人员 and teachers教师
292
1016411
2699
对他们的看护和老师,
就像我们对技术、工程和设计
等最强大和优雅的门类
17:11
the ways方法 we invest投资 in our other
most powerful强大 and elegant优雅 forms形式
293
1019110
4170
17:15
of technology技术, engineering工程 and design设计,
294
1023280
3218
进行投资一样,
17:18
we will not just be dreaming做梦
of a better future未来,
295
1026498
2939
那我们将不仅梦想着更好的未来,
17:21
we will be planning规划 for one.
296
1029437
2127
而是按计划在实现它。
17:23
Thank you very much.
297
1031564
2345
非常感谢大家。
17:25
(Applause掌声)
298
1033909
3421
(掌声)
17:29
Chris克里斯 Anderson安德森: Laura劳拉, thank you.
I do actually其实 have a question for you.
299
1037810
4426
克里斯·安德森:劳拉,谢谢你。
我有一个问题想问你。
17:34
First of all, the research研究 is insane.
300
1042236
2359
首先,这项研究非常棒。
17:36
I mean, who would design设计
an experiment实验 like that? (Laughter笑声)
301
1044595
3725
我是说,谁能设计出这样一个实验呢?
(笑声)
17:41
I've seen看到 that a couple一对 of times,
302
1049150
1790
我已经看过好几次了,
17:42
and I still don't honestly老老实实 believe
that that can truly be happening事件,
303
1050940
3222
但我仍然不敢相信这是真的,
17:46
but other people have doneDONE
similar类似 experiments实验; it checks检查 out.
304
1054162
3158
但其他人也做过类似的实验,
真的证明了,
17:49
The babies婴儿 really are that genius天才.
305
1057320
1633
婴儿们真的都是天才。
17:50
LSLS: You know, they look really impressive有声有色
in our experiments实验,
306
1058953
3007
劳拉·舒尔茨:是啊,他们在实验中的表现
真是棒极了,
17:53
but think about what they
look like in real真实 life, right?
307
1061960
2652
但想象一下他们在生活中
的表现(会更棒),不是吗?
最开始只是个小东西,
17:56
It starts启动 out as a baby宝宝.
308
1064612
1150
十八个月后,
他就可以跟你交谈了,
17:57
Eighteen十八 months个月 later后来,
it's talking to you,
309
1065762
2007
17:59
and babies'婴儿 first words aren't just
things like balls and ducks鸭子,
310
1067769
3041
婴儿最开始会说的话
不仅仅是球啊鸭子啊这些东西,
还有包括“不见了”表示消失,
18:02
they're things like "all gone走了,"
which哪一个 refer参考 to disappearance消失,
311
1070810
2881
或者“啊—哦”表示下意识的动作。
18:05
or "uh-oh嗯,哦," which哪一个 refer参考
to unintentional无意 actions行动.
312
1073691
2283
18:07
It has to be that powerful强大.
313
1075974
1562
就是这么神奇。
18:09
It has to be much more powerful强大
than anything I showed显示 you.
314
1077536
2775
比我在实验中展示的要神奇得多。
他们能理解整个世界。
18:12
They're figuring盘算 out the entire整个 world世界.
315
1080311
1974
一个四岁的小孩几乎能跟你聊任何话题。
18:14
A four-year-old四十岁 can talk to you
about almost几乎 anything.
316
1082285
3144
(掌声)
18:17
(Applause掌声)
317
1085429
1601
18:19
CACA: And if I understand理解 you right,
the other key point you're making制造 is,
318
1087030
3414
克里斯·安德森:如果我没理解错的话,
你想说明的另一个关键点是,
18:22
we've我们已经 been through通过 these years年份
where there's all this talk
319
1090444
2754
多年以来,我们一直认为
18:25
of how quirky诡诈的 and buggy越野车 our minds头脑 are,
320
1093198
1932
人类思维古怪而不正常,
18:27
that behavioral行为的 economics经济学
and the whole整个 theories理论 behind背后 that
321
1095130
2867
行为经济学和它背后的
一整套理论都认为
18:29
that we're not rational合理的 agents代理.
322
1097997
1603
人类不是一种理性的生物。
18:31
You're really saying that the bigger
story故事 is how extraordinary非凡,
323
1099600
4216
而你认为人类思维
是如此卓越,
18:35
and there really is genius天才 there
that is underappreciated怀才不遇.
324
1103816
4944
如此出色,实际上是被低估了。
18:40
LSLS: One of my favorite喜爱
quotes报价 in psychology心理学
325
1108760
2070
劳拉·舒尔茨:我最喜欢的
关于心理学的一句话
18:42
comes from the social社会
psychologist心理学家 Solomon所罗门 Asch阿希,
326
1110830
2290
来自社会心理学家所罗门·阿施,
18:45
and he said the fundamental基本的 task任务
of psychology心理学 is to remove去掉
327
1113120
2807
他说,心理学的基本任务就是
揭开事物“无证自明”的面纱。
18:47
the veil面纱 of self-evidence自明 from things.
328
1115927
2626
18:50
There are orders命令 of magnitude大小
more decisions决定 you make every一切 day
329
1118553
4551
要正确理解世界
18:55
that get the world世界 right.
330
1123104
1347
你每天要做出非常之多的决定。
18:56
You know about objects对象
and their properties性能.
331
1124451
2132
你了解物体和它们的属性。
18:58
You know them when they're occluded闭塞.
You know them in the dark黑暗.
332
1126583
3029
当有东西挡路的时候你会知道,
即便是在黑暗中。
你可以穿过房间。
19:01
You can walk步行 through通过 rooms客房.
333
1129612
1308
你可以猜到其他人在想什么。
你可以跟他们交谈。
19:02
You can figure数字 out what other people
are thinking思维. You can talk to them.
334
1130920
3532
你可以在太空中导航。
你了解数字。
19:06
You can navigate导航 space空间.
You know about numbers数字.
335
1134452
2230
你知道因果关系。
你理解道德推论。
19:08
You know causal因果 relationships关系.
You know about moral道德 reasoning推理.
336
1136682
3022
这些事情做起来不费功夫,
因此我们注意不到,
19:11
You do this effortlessly毫不费力,
so we don't see it,
337
1139704
2356
但我们就是这样来正确理解世界的,
这是一种非凡的,
19:14
but that is how we get the world世界 right,
and it's a remarkable卓越
338
1142060
2912
但非常难以理解的成就。
19:16
and very difficult-to-understand很难理解的
accomplishment成就.
339
1144972
2318
克里斯·安德森:我猜观众中间
19:19
CACA: I suspect疑似 there are people
in the audience听众 who have
340
1147290
2628
一定有技术加速理论的支持者,
19:21
this view视图 of accelerating加速
technological技术性 power功率
341
1149918
2238
他们可能不认同你的观点,
就是有生之年都看不到
19:24
who might威力 dispute争议 your statement声明
that never in our lifetimes寿命
342
1152156
2958
计算机的智能
达到一个三岁孩子的水平,
19:27
will a computer电脑 do what
a three-year-old三十岁 child儿童 can do,
343
1155114
2618
但毫无争议的是,无论如何,
19:29
but what's clear明确 is that in any scenario脚本,
344
1157732
3248
从蹒跚学步的儿童身上
机器可以学到很多很多。
19:32
our machines have so much to learn学习
from our toddlers幼儿.
345
1160980
3770
19:38
LSLS: I think so. You'll你会 have some
machine learning学习 folks乡亲 up here.
346
1166230
3216
劳拉·舒尔茨:的确是。观众中
有从事机器学习研究的朋友。
19:41
I mean, you should never bet赌注
against反对 babies婴儿 or chimpanzees黑猩猩
347
1169446
4203
我想说,你不能认为婴儿或者黑猩猩
19:45
or technology技术 as a matter of practice实践,
348
1173649
3645
或者技术的差别在于实践,
19:49
but it's not just
a difference区别 in quantity数量,
349
1177294
4528
他们之间的差别不在于数量,
19:53
it's a difference区别 in kind.
350
1181822
1764
而在于种类。
19:55
We have incredibly令人难以置信 powerful强大 computers电脑,
351
1183586
2160
我们现在有非常强大的计算机,
19:57
and they do do amazingly令人惊讶
sophisticated复杂的 things,
352
1185746
2391
它们能完成非常精确的任务,
20:00
often经常 with very big amounts of data数据.
353
1188137
3204
处理海量的数据。
20:03
Human人的 minds头脑 do, I think,
something quite相当 different不同,
354
1191341
2607
但人类思维的运作方式完全不同,
20:05
and I think it's the structured结构化的,
hierarchical分级 nature性质 of human人的 knowledge知识
355
1193948
3895
我认为研究人类知识
在结构和层次方面的属性
20:09
that remains遗迹 a real真实 challenge挑战.
356
1197843
2032
仍是一项巨大的挑战。
20:11
CACA: Laura劳拉 Schulz舒尔茨, wonderful精彩
food餐饮 for thought. Thank you so much.
357
1199875
3061
克里斯·安德森:劳拉·舒尔茨,
带来了美妙的精神食粮。非常感谢。
劳拉·舒尔茨:谢谢。
(掌声)
20:14
LSLS: Thank you.
(Applause掌声)
358
1202936
2922
Translated by Alvin Lee
Reviewed by Xingyi Ouyang 歐陽杏儀

▲Back to top

ABOUT THE SPEAKER
Laura Schulz - Cognitive scientist
Developmental behavior studies spearheaded by Laura Schulz are changing our notions of how children learn.

Why you should listen

MIT Early Childhood Cognition Lab lead investigator Laura Schulz studies learning in early childhood. Her research bridges computational models of cognitive development and behavioral studies in order to understand the origins of inquiry and discovery.

Working in play labs, children’s museums, and a recently-launched citizen science website, Schultz is reshaping how we view young children’s perceptions of the world around them. Some of the surprising results of her research: before the age of four, children expect hidden causes when events happen probabilistically, use simple experiments to distinguish causal hypotheses, and trade off learning from instruction and exploration.

More profile about the speaker
Laura Schulz | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee