ABOUT THE SPEAKER
Jim Simons - Philanthropist, mathematician
After astonishing success as a mathematician, code breaker and billionaire hedge fund manager, Jim Simons is mastering yet another field: philanthropy.

Why you should listen

As a mathematician who cracked codes for the National Security Agency on the side, Jim Simons had already revolutionized geometry -- and incidentally laid the foundation for string theory -- when he began to get restless. Along with a few hand-picked colleagues he started the investment firm that went on to become Renaissance, a hedge fund working with hitherto untapped algorithms, and became a billionaire in the process.

Now retired as Renaissance’s CEO, Simons devotes his time to mathematics and philanthropy. The Simons Foundation has committed more than a billion dollars to math and science education and to autism research.

More profile about the speaker
Jim Simons | Speaker | TED.com
TED2015

Jim Simons: The mathematician who cracked Wall Street

詹姆斯·西蒙斯: 与横扫华尔街数学家的珍贵对话

Filmed:
2,981,452 views

詹姆斯·西蒙斯曾是一位数学家与密码破译者。他意识到:过去曾用来破译密码的复杂数学,能够帮助他解读世界经济模式。赚了几十亿之后,他正致力于支持下一代的数学教师和学者。TED总监克里斯·安德森与西蒙斯对话,谈谈他沉浸在数字中的别样人生。
- Philanthropist, mathematician
After astonishing success as a mathematician, code breaker and billionaire hedge fund manager, Jim Simons is mastering yet another field: philanthropy. Full bio

Double-click the English transcript below to play the video.

00:12
Chris克里斯 Anderson安德森: You were something
of a mathematical数学的 phenom飞鸿(Phenom).
0
817
2834
您可以说是数学界出类拔萃的人物了
00:15
You had already已经 taught at Harvard哈佛
and MITMIT at a young年轻 age年龄.
1
3675
3064
年轻时就已经在哈佛和麻省理工授课了
00:18
And then the NSANSA came来了 calling调用.
2
6763
2190
后来NSA主动找上门来
00:21
What was that about?
3
9464
1204
那是怎么回事呢?
00:23
Jim吉姆 Simons西蒙斯: Well the NSANSA --
that's the National国民 Security安全 Agency机构 --
4
11207
3923
NSA就是国家安全局
00:27
they didn't exactly究竟 come calling调用.
5
15154
1969
确切来说 也不是他们找上我的
00:29
They had an operation手术 at Princeton普林斯顿,
where they hired雇用 mathematicians数学家
6
17465
4474
他们在普林斯顿专设有一个机构
00:33
to attack攻击 secret秘密 codes代码
and stuff东东 like that.
7
21963
2942
专门雇佣数学家 用于破解密码之类的
00:37
And I knew知道 that existed存在.
8
25294
1672
我本来就知道这个机构的存在
00:39
And they had a very good policy政策,
9
27315
2180
他们的政策非常诱人
00:41
because you could do half your time
at your own拥有 mathematics数学,
10
29519
3850
因为你可以把半数时间花在你自己的数学研究上
00:45
and at least最小 half your time
working加工 on their stuff东东.
11
33393
3484
还有至少一半的时间要为他们解决事务
00:49
And they paid支付 a lot.
12
37559
1474
而且他们给的报酬很丰厚
00:51
So that was an irresistible不可抗拒 pull.
13
39057
3051
这有着无法抵抗的诱惑力
00:54
So, I went there.
14
42132
1912
所以我就去那儿了
00:56
CACA: You were a code-cracker代码饼干.
15
44068
1338
所以你曾是个密码破译者?
00:57
JSJS: I was.
16
45430
1166
00:58
CACA: Until直到 you got fired解雇.
17
46620
1157
直到你被炒了?
00:59
JSJS: Well, I did get fired解雇. Yes.
18
47801
1583
嗯我确实被炒了,对
01:01
CACA: How come?
19
49408
1245
为什么呢?
01:03
JSJS: Well, how come?
20
51280
1333
啊 为什么呢
01:05
I got fired解雇 because,
well, the Vietnam越南 War战争 was on,
21
53611
4956
我之所以被解雇是因为
当时正值越南战争之际 我组织内的最高领导是个好战分子
01:10
and the boss老板 of bosses老板 in my organization组织
was a big fan风扇 of the war战争
22
58591
5738
01:16
and wrote a New York纽约 Times article文章,
a magazine杂志 section部分 cover story故事,
23
64353
4395
他给《纽约时报》杂志版块的封面故事
01:20
about how we would win赢得 in Vietnam越南.
24
68772
1770
写了一篇关于 我们如何在越南获得胜利的文章
01:22
And I didn't like that war战争,
I thought it was stupid.
25
70566
3129
我不喜欢那场战争 我觉得那很蠢
01:25
And I wrote a letter to the Times,
which哪一个 they published发表,
26
73719
2665
我给《纽约时报》写了封信 他们后来刊登了出来
01:28
saying not everyone大家
who works作品 for Maxwell麦克斯韦 Taylor泰勒,
27
76408
4014
那封信写了 如果还有人记得Maxwell Taylor(就是他最高领导)的话
01:32
if anyone任何人 remembers记得 that name名称,
agrees同意 with his views意见.
28
80446
4686
不是每个在他手下工作的人 都同意他的观点
01:37
And I gave my own拥有 views意见 ...
29
85553
1658
我给出了我自己的观点
01:39
CACA: Oh, OK. I can see that would --
30
87235
2164
好吧 我可以想见那将……
01:41
JSJS: ... which哪一个 were different不同
from General一般 Taylor's泰勒.
31
89423
2555
(我的观点)是和Taylor将军不一样的
01:44
But in the end结束, nobody没有人 said anything.
32
92002
1906
但最后 也没人说什么
01:45
But then, I was 29 years年份 old at this time,
and some kid孩子 came来了 around
33
93932
3701
后来,我当时是29岁,有个孩子来采访我
01:49
and said he was a stringer纵梁
from Newsweek新闻周刊 magazine杂志
34
97657
3088
说他是《新闻周刊》的特约记者
01:52
and he wanted to interview访问 me
and ask what I was doing about my views意见.
35
100769
5367
他想要与我面谈 问我是如何实践我的观点的
01:58
And I told him, "I'm doing
mostly大多 mathematics数学 now,
36
106160
3899
我告诉他 我现在(战争期间)主要是做数学研究
02:02
and when the war战争 is over,
then I'll do mostly大多 their stuff东东."
37
110083
3373
战争结束后 我才会主要给他们做事
02:06
Then I did the only
intelligent智能 thing I'd doneDONE that day --
38
114123
2825
接着我做了那天最明智的一件事
02:08
I told my local本地 boss老板
that I gave that interview访问.
39
116972
4157
我告诉我当地的上司 我接受了那个访问
02:13
And he said, "What'd什么了 you say?"
40
121153
1459
他问我 你怎么说的?
02:14
And I told him what I said.
41
122636
1466
我就把我说的告诉他了
02:16
And then he said,
"I've got to call Taylor泰勒."
42
124126
2315
然后他说:“我必须要给Taylor打个电话”
02:18
He called Taylor泰勒; that took 10 minutes分钟.
43
126465
2377
他打给了Taylor 花了十分钟
02:20
I was fired解雇 five minutes分钟 after that.
44
128866
2262
又过了五分钟 我就被解雇了
02:23
CACA: OK.
45
131590
1222
OK
02:24
JSJS: But it wasn't bad.
46
132836
1151
但那并不是一件坏事
02:26
CACA: It wasn't bad,
because you went on to Stony斯托尼 Brook
47
134011
2493
那并不糟 因为你接下来去了纽约石溪大学
02:28
and stepped加强 up your mathematical数学的 career事业.
48
136528
3133
使你的数学生涯更上一层楼
02:31
You started开始 working加工 with this man here.
49
139685
2452
你开始和这个人一起共事
02:34
Who is this?
50
142161
1164
这是谁呢
02:36
JSJS: Oh, [Shiing-ShenShiing沉] Chern陈省身.
51
144352
1412
噢 陈(陈省身)
02:37
Chern陈省身 was one of the great
mathematicians数学家 of the century世纪.
52
145788
3104
陈是本世纪最伟大的数学家之一
02:40
I had known已知 him when
I was a graduate毕业 student学生 at Berkeley伯克利.
53
148916
5233
我在伯克利当研究生的时候 就已经知道他了
02:46
And I had some ideas思路,
54
154173
1871
我带着一些想法去找他
02:48
and I brought them to him
and he liked喜欢 them.
55
156068
2447
他很喜欢这些想法
02:50
Together一起, we did this work
which哪一个 you can easily容易 see up there.
56
158539
6626
我们一起开展这项理论研究 你可以在这里看到
02:57
There it is.
57
165189
1150
就是这个
02:59
CACA: It led to you publishing出版
a famous著名 paper together一起.
58
167198
3606
基于这项研究 你们一起发表了一篇著名的文章
03:02
Can you explain说明 at all what that work was?
59
170828
3238
你可以给大家解释一下这项研究吗?
03:07
JSJS: No.
60
175028
1158
03:08
(Laughter笑声)
61
176210
2274
(笑)
03:10
JSJS: I mean, I could
explain说明 it to somebody.
62
178966
2064
我的意思是 我可以向某些人解释
03:13
(Laughter笑声)
63
181054
2075
(笑)
03:15
CACA: How about explaining说明 this?
64
183153
1864
要不讲下这个?
03:17
JSJS: But not many许多. Not many许多 people.
65
185041
2729
但不是很多人
03:21
CACA: I think you told me
it had something to do with spheres,
66
189144
2814
我记得你告诉我 它和球体有关
03:23
so let's start开始 here.
67
191982
1862
我们从这里说起吧
03:25
JSJS: Well, it did,
but I'll say about that work --
68
193868
3600
确实 但我要讲一讲那项研究
03:29
it did have something to do with that,
but before we get to that --
69
197492
3200
它确实和这球体有关 但在此之前我要说
03:32
that work was good mathematics数学.
70
200716
3540
这是一个非常棒的数学理论
03:36
I was very happy快乐 with it; so was Chern陈省身.
71
204280
2492
我非常喜欢研究它的过程,陈也一样
03:39
It even started开始 a little sub-field子场
that's now flourishing芊芊.
72
207910
4176
它甚至开创了一个现在很繁荣的副领域
03:44
But, more interestingly有趣,
it happened发生 to apply应用 to physics物理,
73
212638
5294
但更有趣的是 它正巧可以应用于物理
03:49
something we knew知道 nothing about --
at least最小 I knew知道 nothing about physics物理,
74
217956
4295
一个我们完全不了解的东西 至少我是完全不了解的
03:54
and I don't think Chern陈省身
knew知道 a heck赫克 of a lot.
75
222275
2282
我觉得陈也不会了解太多
03:56
And about 10 years年份
after the paper came来了 out,
76
224581
3963
在文章发表大约十年后
04:00
a guy named命名 Ed埃德 Witten威滕 in Princeton普林斯顿
started开始 applying应用 it to string theory理论
77
228568
4480
普林斯顿一个叫Ed Witten的人 开始把它应用于弦理论
04:05
and people in Russia俄国 started开始 applying应用 it
to what's called "condensed冷凝 matter."
78
233072
4852
俄罗斯人开始把它应用在 被称作“凝聚体”的物理学中
04:09
Today今天, those things in there
called Chern-Simons陈省身 - 西蒙斯 invariants不变
79
237948
4893
如今 这些被称为“陈-西蒙斯不变量”的东西
04:14
have spread传播 through通过 a lot of physics物理.
80
242865
1865
衍伸进了很多物理学理论中
04:16
And it was amazing惊人.
81
244754
1174
这非常不可思议
04:17
We didn't know any physics物理.
82
245952
1365
我们根本不懂物理
04:19
It never occurred发生 to me
that it would be applied应用的 to physics物理.
83
247714
2854
我从没想到 它可以被应用于物理学
04:22
But that's the thing about mathematics数学 --
you never know where it's going to go.
84
250592
3788
但这就是数学的迷人之处 你永远不知道它将去往何处
04:26
CACA: This is so incredible难以置信.
85
254404
1492
这太奇妙了
04:27
So, we've我们已经 been talking about
how evolution演化 shapes形状 human人的 minds头脑
86
255920
4364
我们谈到 人类的思想 无论是否触及到真理
04:32
that may可能 or may可能 not perceive感知 the truth真相.
87
260308
2508
是如何被进步的理论所改变的
04:34
Somehow不知何故, you come up
with a mathematical数学的 theory理论,
88
262840
3313
无意间 在不了解任何物理学的情况下
04:38
not knowing会心 any physics物理,
89
266177
1848
你提出了一个数学理论
04:40
discover发现 two decades几十年 later后来
that it's being存在 applied应用的
90
268049
2498
发现数十年之后 它已经被深度应用于
04:42
to profoundly深深 describe描述
the actual实际 physical物理 world世界.
91
270571
3031
描述真实的物理世界了
04:45
How can that happen发生?
92
273626
1153
那是怎样发生的呢?
04:46
JSJS: God knows知道.
93
274803
1157
天知道
04:47
(Laughter笑声)
94
275984
2110
(笑)
04:50
But there's a famous著名 physicist物理学家
named命名 [Eugene尤金] Wigner维格纳,
95
278849
3150
有个著名的物理学家 Wigner
04:54
and he wrote an essay文章 on the unreasonable不合理
effectiveness效用 of mathematics数学.
96
282023
5588
他写过一篇名为《数学在自然科学中不可思议的有效性》的文章
04:59
Somehow不知何故, this mathematics数学,
which哪一个 is rooted in the real真实 world世界
97
287635
3952
某种程度上 数学植根于真实世界
05:03
in some sense -- we learn学习 to count计数,
measure测量, everyone大家 would do that --
98
291611
4995
某种意义上 我们学着计算 测量 每个人都会这样
05:08
and then it flourishes一夜暴富 on its own拥有.
99
296630
1830
接着它就自己繁荣了起来
05:10
But so often经常 it comes
back to save保存 the day.
100
298976
2841
却又常常回过头来挽救大局
05:14
General一般 relativity相对论 is an example.
101
302293
2178
广义相对论就是一个例子
05:16
[Hermann赫尔曼] Minkowski闵可夫斯基 had this geometry几何,
and Einstein爱因斯坦 realized实现,
102
304495
3117
闵可夫斯基给出了他的四维空间理论 而爱因斯坦意识到
05:19
"Hey! It's the very thing
in which哪一个 I can cast general一般 relativity相对论."
103
307636
3847
嘿!就是这玩意儿 可以用来表达我的广义相对论
05:23
So, you never know. It is a mystery神秘.
104
311507
3112
你永远也想不到 就是这么神奇
05:27
It is a mystery神秘.
105
315056
1217
对 很神奇
05:28
CACA: So, here's这里的 a mathematical数学的
piece of ingenuity创造力.
106
316297
3296
这是一个精巧的数学模型
05:31
Tell us about this.
107
319617
1342
给我们讲讲吧
05:32
JSJS: Well, that's a ball -- it's a sphere领域,
and it has a lattice格子 around it --
108
320983
5924
噢 这是一个球 球体 外面有格子状的框架
05:38
you know, those squares广场.
109
326931
1573
你知道 这些正方形
05:42
What I'm going to show显示 here was
originally本来 observed观察到的 by [Leonhard莱昂哈德] Euler欧拉,
110
330697
4906
我接下来要展示的 最初是由十八世纪伟大的数学家
05:47
the great mathematician数学家, in the 1700s.
111
335627
2254
欧拉发现的
05:50
And it gradually逐渐 grew成长 to be
a very important重要 field领域 in mathematics数学:
112
338223
5181
后来逐步发展成为 数学中非常重要的一个领域
05:55
algebraic代数 topology拓扑, geometry几何.
113
343428
2334
代数拓扑 几何学
05:59
That paper up there had its roots in this.
114
347039
4364
上面的那篇文章是基于这个理论基础的
06:03
So, here's这里的 this thing:
115
351427
1834
是这样子的
06:05
it has eight vertices顶点,
12 edges边缘, six faces面孔.
116
353285
4452
它有8个顶点 12条边 6个面
06:09
And if you look at the difference区别 --
vertices顶点 minus减去 edges边缘 plus faces面孔 --
117
357761
3830
如果你算一下 定点数 - 边的个数 + 面的个数(8-12+6)
06:13
you get two.
118
361615
1152
会得到2
06:14
OK, well, two. That's a good number.
119
362791
2219
好 2 是个好数字
06:17
Here's这里的 a different不同 way of doing it --
these are triangles三角形 covering覆盖 --
120
365034
4248
我们还可以这样算 表面覆盖了三角形
06:21
this has 12 vertices顶点 and 30 edges边缘
121
369306
4577
这样的话 有12个顶点 30条边
06:25
and 20 faces面孔, 20 tiles瓷砖.
122
373907
4195
和20个面 铺了20片
06:30
And vertices顶点 minus减去 edges边缘
plus faces面孔 still equals等于 two.
123
378576
4591
顶点数 - 边的个数 + 面的个数(12-30+20)还是等于2
06:35
And in fact事实, you could do this
any which哪一个 way --
124
383191
2847
事实上 你随便怎么算
06:38
cover this thing with all kinds
of polygons多边形 and triangles三角形
125
386062
3398
用各种多边形和三角来覆盖表面
06:41
and mix混合 them up.
126
389484
1320
混在一起
06:42
And you take vertices顶点 minus减去 edges边缘
plus faces面孔 -- you'll你会 get two.
127
390828
3279
再计算 顶点数 - 边的个数 + 面的个数 总是会等于2
06:46
Here's这里的 a different不同 shape形状.
128
394131
1611
这儿有另外一个形状
06:48
This is a torus花托, or the surface表面
of a doughnut甜甜圈: 16 vertices顶点
129
396480
5250
它有一个环面 或者说轮状表面
表面附有长方形 形成的16个顶点 32条边 16个面
06:53
covered覆盖 by these rectangles矩形,
32 edges边缘, 16 faces面孔.
130
401754
4244
06:58
Vertices顶点 minus减去 edges边缘 comes out to be zero.
131
406530
2684
点-边+面(16-32+16)结果是0
07:01
It'll它会 always come out to zero.
132
409238
1475
并且总是0
07:02
Every一切 time you cover a torus花托
with squares广场 or triangles三角形
133
410737
4310
每次你用正方形或三角形或类似的形状
07:07
or anything like that,
you're going to get zero.
134
415071
3935
覆盖一个环形 你总会得到0
07:12
So, this is called
the Euler欧拉 characteristic特性.
135
420514
2390
这就是欧拉示性数
07:14
And it's what's called
a topological拓扑 invariant不变.
136
422928
3449
也是一种拓扑不变量
07:18
It's pretty漂亮 amazing惊人.
137
426849
1156
相当神奇
07:20
No matter how you do it,
you're always get the same相同 answer回答.
138
428029
2791
无论你怎么做 总会得到相同的答案
07:22
So that was the first sort分类 of thrust推力,
from the mid-中-1700s,
139
430844
6299
这是自十八世纪中叶以来 首次 算是进入了一个
07:29
into a subject学科 which哪一个 is now called
algebraic代数 topology拓扑.
140
437167
3769
如今被称作 代数拓扑的学科
07:32
CACA: And your own拥有 work
took an idea理念 like this and moved移动 it
141
440960
2983
您自己的研究 是把像这样的一个概念
07:35
into higher-dimensional高维 theory理论,
142
443967
2449
推进到了高维空间理论
07:38
higher-dimensional高维 objects对象,
and found发现 new invariances不变性?
143
446440
3088
高维空间物体 并发现了新的不变量?
07:41
JSJS: Yes. Well, there were already已经
higher-dimensional高维 invariants不变:
144
449552
4643
对 之前已经有高维空间不变量了
07:46
Pontryagin庞特里亚金 classes --
actually其实, there were Chern陈省身 classes.
145
454219
4457
庞特里亚金类(Pontryagin classes)
事实上 还有陈类(Chern classes)
07:50
There were a bunch
of these types类型 of invariants不变.
146
458700
3548
这些类型的不变量有很多
07:54
I was struggling奋斗的 to work on one of them
147
462272
4135
我努力研究其中一个
07:58
and model模型 it sort分类 of combinatorially组合方法,
148
466431
4203
用组合数学的方法 而非传统方法
08:02
instead代替 of the way it was typically一般 doneDONE,
149
470658
3022
给他们建模
08:05
and that led to this work
and we uncovered裸露 some new things.
150
473704
4359
从而得出了这个成果 我们揭示了一些新的东西
08:10
But if it wasn't for Mr先生. Euler欧拉 --
151
478087
3501
但如果没有欧拉先生
08:13
who wrote almost几乎 70 volumes of mathematics数学
152
481612
3981
写下了近70卷数学著作
08:17
and had 13 children孩子,
153
485617
1731
还有13个子女
08:19
who he apparently显然地 would dandle on his knee膝盖
while he was writing写作 --
154
487372
6442
显然在他写作时 承欢膝下
08:25
if it wasn't for Mr先生. Euler欧拉, there wouldn't不会
perhaps也许 be these invariants不变.
155
493838
5774
如果没有欧拉先生 可能就不会有这些不变量了
08:32
CACA: OK, so that's at least最小 given特定 us
a flavor味道 of that amazing惊人 mind心神 in there.
156
500157
4097
所以这至少 给这个精彩的思想 增加了一丝风味
让我们谈谈文艺复兴(Simons所创立的科技公司)
08:36
Let's talk about Renaissance再生.
157
504804
1543
08:38
Because you took that amazing惊人 mind心神
and having been a code-cracker代码饼干 at the NSANSA,
158
506371
5856
因为你带着那个精彩的想法 曾在国安局做着一名密码破译者
08:44
you started开始 to become成为 a code-cracker代码饼干
in the financial金融 industry行业.
159
512251
3229
你开始在金融业做密码破译者
08:47
I think you probably大概 didn't buy购买
efficient高效 market市场 theory理论.
160
515504
2690
我觉得你应该没买有效市场理论(有效市场假说认为市场价格波动是随机的,交易者不可能持续从市场中获利。)
08:50
Somehow不知何故 you found发现 a way of creating创建
astonishing惊人 returns回报 over two decades几十年.
161
518218
6387
二十年后 你突然找到一种创造惊人收益的方法
08:56
The way it's been explained解释 to me,
162
524629
1671
你解释给我的方法
08:58
what's remarkable卓越 about what you did
wasn't just the size尺寸 of the returns回报,
163
526324
3499
你所做之事的卓越之处 并不只是收益的规模
09:01
it's that you took them
with surprisingly出奇 low volatility挥发性 and risk风险,
164
529847
3883
更是因为 相比其他对冲基金
09:05
compared相比 with other hedge树篱 funds资金.
165
533754
1824
你的方法有着出奇低的波动性和风险
09:07
So how on earth地球 did you do this, Jim吉姆?
166
535602
1929
你究竟是怎么做到的呢 Jim
09:10
JSJS: I did it by assembling组装
a wonderful精彩 group of people.
167
538071
4111
我能做到是因为 我聚集了一个非常优秀的团队
09:14
When I started开始 doing trading贸易, I had
gotten得到 a little tired of mathematics数学.
168
542206
3956
我开始经商的时候 已经有点厌倦数学了
09:18
I was in my late晚了 30s,
I had a little money.
169
546186
3923
人近四十 有些小钱
09:22
I started开始 trading贸易 and it went very well.
170
550133
2509
我开始经商 而且进行得很顺利
09:25
I made制作 quite相当 a lot of money
with pure luck运气.
171
553063
2748
光凭运气赚了相当多的钱
09:27
I mean, I think it was pure luck运气.
172
555835
1666
我的意思是 我觉得那完全是运气
09:29
It certainly当然 wasn't mathematical数学的 modeling造型.
173
557525
2109
这当然不是数学建模
09:31
But in looking at the data数据,
after a while I realized实现:
174
559658
3831
但过一阵子 当我看着那些数据 我意识到
09:35
it looks容貌 like there's some structure结构体 here.
175
563513
2553
那里面好像存在着某种结构
09:38
And I hired雇用 a few少数 mathematicians数学家,
and we started开始 making制造 some models楷模 --
176
566090
3697
我招募了一些数学家 我们开始建立一些模型
09:41
just the kind of thing we did back
at IDAIDA [Institute研究所 for Defense防御 Analyses分析].
177
569811
4265
和我们当初在IDA(国防分析研究所)做的事情差不多
09:46
You design设计 an algorithm算法,
you test测试 it out on a computer电脑.
178
574100
2833
你设计一个算法 在电脑上测试
09:48
Does it work? Doesn't it work? And so on.
179
576957
2166
管用?不管用?之类的
09:51
CACA: Can we take a look at this?
180
579443
1479
我们可以看一下这个吗
09:52
Because here's这里的 a typical典型 graph图形
of some commodity商品.
181
580946
4541
这儿有一份 某个商品的典型图表
09:58
I look at that, and I say,
"That's just a random随机, up-and-down上和下 walk步行 --
182
586487
4041
我看着它 只能说 这只是一条随机的 上上下下的走势图
10:02
maybe a slight轻微 upward向上 trend趋势
over that whole整个 period of time."
183
590552
2862
大概整体上有轻微上升的趋势
你究竟就怎么看着这样的东西 来做交易的呢
10:05
How on earth地球 could you trade贸易
looking at that,
184
593438
2113
10:07
and see something that wasn't just random随机?
185
595575
2326
还能看出点不随机的东西呢
10:09
JSJS: In the old days -- this is
kind of a graph图形 from the old days,
186
597925
3247
在过去 这是过时的一种图表
10:13
commodities商品 or currencies货币
had a tendency趋势 to trend趋势.
187
601196
4284
可以通过趋势来追踪商品或货币
10:17
Not necessarily一定 the very light trend趋势
you see here, but trending趋势 in periods.
188
605504
6055
并不必然是你这儿看到的轻微的趋势 可能是周期性的趋势
10:23
And if you decided决定, OK,
I'm going to predict预测 today今天,
189
611583
4056
如果你决定 好 我今天打算要做预测
10:27
by the average平均 move移动 in the past过去 20 days --
190
615663
4968
通过前20天的平均变化
10:32
maybe that would be a good prediction预测,
and I'd make some money.
191
620655
3107
可能会有一个好的预测 还赚了点钱
10:35
And in fact事实, years年份 ago,
such这样 a system系统 would work --
192
623786
5608
事实上 几年前 这样子的系统是有用的
10:41
not beautifully精美, but it would work.
193
629418
2391
并不完美 但确实有用
10:43
You'd make money, you'd lose失去
money, you'd make money.
194
631833
2509
你赚点钱 亏点钱 再赚点钱
10:46
But this is a year's年份 worth价值 of days,
195
634366
2198
但这是一年中的黄金几天
10:48
and you'd make a little money
during that period.
196
636588
4241
你在那个阶段可以赚到点钱
10:53
It's a very vestigial痕迹 system系统.
197
641884
1958
这是一个非常不健全的系统
10:56
CACA: So you would test测试
a bunch of lengths长度 of trends趋势 in time
198
644525
3529
所以你会及时地测试大量的趋势区间
11:00
and see whether是否, for example,
199
648078
2436
看是否 举个例子
11:02
a 10-day-天 trend趋势 or a 15-day-天 trend趋势
was predictive预测 of what happened发生 next下一个.
200
650538
3481
是否10天或15天的走向 可以对下一步做出较准确的预判
11:06
JSJS: Sure, you would try all those things
and see what worked工作 best最好.
201
654043
6762
当然 你要测试各种类型 来判断哪个最有效
11:13
Trend-following趋势跟随 would
have been great in the '60s,
202
661515
3350
跟踪趋势在60年代是很好的策略
11:16
and it was sort分类 of OK in the '70s.
203
664889
2132
在70年代就一般了
11:19
By the '80s, it wasn't.
204
667045
1873
80年代 就没用了
11:20
CACA: Because everyone大家 could see that.
205
668942
2817
因为每个人都能看到
11:23
So, how did you stay ahead of the pack?
206
671783
2782
所以 你是如何保持领先地位呢
11:27
JSJS: We stayed ahead of the pack
by finding发现 other approaches方法 --
207
675046
6132
我们保持领先是通过 寻找其他方法
11:33
shorter-term短期 approaches方法 to some extent程度.
208
681202
2741
某种程度上来说 更短期的方法
11:37
The real真实 thing was to gather收集
a tremendous巨大 amount of data数据 --
209
685107
3347
具体来说是收集大量数据
11:40
and we had to get it by hand
in the early days.
210
688478
3578
早期 我们不得不手动来收集数据
11:44
We went down to the Federal联邦 Reserve保留
and copied复制 interest利益 rate histories历史
211
692080
3466
我们到美联储 拷贝历史利率之类的数据
11:47
and stuff东东 like that,
because it didn't exist存在 on computers电脑.
212
695570
3265
因为电脑上根本没有
11:50
We got a lot of data数据.
213
698859
1643
我们得到了很多数据
11:52
And very smart聪明 people -- that was the key.
214
700526
4160
和非常聪明的人——这是关键
11:57
I didn't really know how to hire聘请
people to do fundamental基本的 trading贸易.
215
705463
3776
我不太知道要怎么去雇佣做基本贸易的人
12:01
I had hired雇用 a few少数 -- some made制作 money,
some didn't make money.
216
709749
2949
我请了些 有的赚钱了 有的没有
12:04
I couldn't不能 make a business商业 out of that.
217
712722
1880
因为这样 我没有成功地打开局面
12:06
But I did know how to hire聘请 scientists科学家们,
218
714626
2042
但我知道怎么请科学家
12:08
because I have some taste味道
in that department.
219
716692
3389
因为在那个领域 我还是有点眼光的
12:12
So, that's what we did.
220
720105
1838
所以我们这么做了
12:13
And gradually逐渐 these models楷模
got better and better,
221
721967
3231
渐渐地 这些模型越来越好
12:17
and better and better.
222
725222
1335
越来越好
12:18
CACA: You're credited with doing
something remarkable卓越 at Renaissance再生,
223
726581
3214
您在文艺复兴科技公司所做的最为人称道的事
12:21
which哪一个 is building建造 this culture文化,
this group of people,
224
729819
2601
就是建立起了这样的文化 组建这样的团队
12:24
who weren't just hired雇用 guns枪炮
who could be lured引诱 away by money.
225
732444
3142
他们不是会被简单地 被金钱诱惑的雇佣兵
12:27
Their motivation动机 was doing
exciting扣人心弦 mathematics数学 and science科学.
226
735610
3912
他们的动力在于令人激动的数学和科学
12:31
JSJS: Well, I'd hoped希望 that might威力 be true真正.
227
739860
2399
噢我挺希望这是真的
12:34
But some of it was money.
228
742283
3580
但有些原因也是钱
12:37
CACA: They made制作 a lot of money.
229
745887
1393
他们金钵满盈
12:39
JSJS: I can't say that no one came来了
because of the money.
230
747304
2537
我不能断言 没有人是冲着钱来的
12:41
I think a lot of them
came来了 because of the money.
231
749865
2253
我觉得他们中大多数都是为了钱
12:44
But they also came来了
because it would be fun开玩笑.
232
752142
2021
但也是因为 这会很好玩
12:46
CACA: What role角色 did machine learning学习
play in all this?
233
754187
2488
机器学习在这里扮演了怎样一个角色?
12:48
JSJS: In a certain某些 sense,
what we did was machine learning学习.
234
756699
3064
某种意义上 我们做的就是机器学习
12:52
You look at a lot of data数据, and you try
to simulate模拟 different不同 predictive预测 schemes方案,
235
760879
6291
你观察一大堆数据 模拟不同的预测方案
12:59
until直到 you get better and better at it.
236
767194
2182
直到你越来越擅长于此
13:01
It doesn't necessarily一定 feed饲料 back on itself本身
the way we did things.
237
769400
3767
我们所做之事 不见得一定有自我反馈
13:05
But it worked工作.
238
773191
2309
但确实有效
13:08
CACA: So these different不同 predictive预测 schemes方案
can be really quite相当 wild野生 and unexpected意外.
239
776150
4059
所以这些不同的预测方案 很有可能相当不受控制 且无法预料
13:12
I mean, you looked看着 at everything, right?
240
780233
1914
我的意思是 你着眼于万事万物 不是吗
13:14
You looked看着 at the weather天气,
length长度 of dresses礼服, political政治 opinion意见.
241
782171
3317
你要看天气 裙长 政见
13:17
JSJS: Yes, length长度 of dresses礼服 we didn't try.
242
785512
2837
嗯 我们可没试过裙长
13:20
CACA: What sort分类 of things?
243
788373
2057
那是什么样的事物呢?
13:22
JSJS: Well, everything.
244
790454
1158
嗯 各种东西
13:23
Everything is grist谷物 for the mill --
except hem下摆 lengths长度.
245
791636
3264
各种对工作有价值的东西 衣服下摆长度不算在内
13:28
Weather天气, annual全年 reports报告,
246
796852
2300
天气 年报
13:31
quarterly季刊 reports报告, historic历史性 data数据 itself本身,
volumes, you name名称 it.
247
799176
4732
季报 历史数据 成交量
13:35
Whatever随你 there is.
248
803932
1151
应有尽有
13:37
We take in terabytes兆兆字节 of data数据 a day.
249
805107
2621
我们一天内接收兆兆字节的数据
13:39
And store商店 it away and massage按摩 it
and get it ready准备 for analysis分析.
250
807752
4124
储存 处理 准备用于分析
13:45
You're looking for anomalies异常.
251
813446
1382
你寻找的是异常现象
13:46
You're looking for -- like you said,
252
814852
2953
你找的是 就像你说的
13:49
the efficient高效 market市场
hypothesis假设 is not correct正确.
253
817829
2452
有效市场假说(Efficient Markets Hypothesis,EMH。有效市场假说认为市场价格波动是随机的,交易者不可能持续从市场中获利。)是不正确的
13:52
CACA: But any one anomaly不规则
might威力 be just a random随机 thing.
254
820305
3467
但任何一个异常现象 都有可能只是一个随机事件
13:55
So, is the secret秘密 here to just look
at multiple strange奇怪 anomalies异常,
255
823796
3658
所以 这儿的秘诀是 只看那些 重复出现的奇特异常现象
13:59
and see when they align对齐?
256
827478
1328
并观察他们是否一致
14:01
JSJS: Any one anomaly不规则
might威力 be a random随机 thing;
257
829238
3213
任何一个异常现象可能是随机事件
14:04
however然而, if you have enough足够 data数据
you can tell that it's not.
258
832475
3039
然而 只要你有足够的数据 可以看出来它其实不是
14:07
You can see an anomaly不规则 that's persistent一贯
for a sufficiently充分地 long time --
259
835538
4950
你可以在足够长的时间段里 看到这些异常现象是长期存在的
14:12
the probability可能性 of it being存在
random随机 is not high.
260
840512
4975
它是随机事件的可能性不高
14:17
But these things fade褪色 after a while;
anomalies异常 can get washed out.
261
845511
4858
但有一些异常现象不久后就消逝了 会淡出市场
14:22
So you have to keep on top最佳
of the business商业.
262
850393
2420
所以你必须在商业上保持优势
14:24
CACA: A lot of people look
at the hedge树篱 fund基金 industry行业 now
263
852837
2672
如今很多人关注对冲基金产业
14:27
and are sort分类 of ... shocked吃惊 by it,
264
855533
4398
有点被它
产生了那么多的财富
14:31
by how much wealth财富 is created创建 there,
265
859955
2172
14:34
and how much talent天赋 is going into it.
266
862151
2245
那么多的天才投身其中 所惊吓到
14:37
Do you have any worries
about that industry行业,
267
865523
4006
你对这个产业有什么担忧吗
14:41
and perhaps也许 the financial金融
industry行业 in general一般?
268
869553
2414
可能宽泛来说 整个金融产业?
14:43
Kind of being存在 on a runaway逃跑 train培养 that's --
269
871991
2704
有点像在一辆 停不下来的火车上
14:46
I don't know --
helping帮助 increase增加 inequality不等式?
270
874719
4030
它助长了不平等
14:50
How would you champion冠军 what's happening事件
in the hedge树篱 fund基金 industry行业?
271
878773
3831
你会怎样在目前的对冲基金产业获胜呢?
14:54
JSJS: I think in the last
three or four years年份,
272
882628
2608
我认为 在过去三四年里
14:57
hedge树篱 funds资金 have not doneDONE especially特别 well.
273
885260
2103
对冲基金没有表现得特别好
14:59
We've我们已经 doneDONE dandy花花公子,
274
887387
1400
我们做的看似繁荣
15:00
but the hedge树篱 fund基金 industry行业 as a whole整个
has not doneDONE so wonderfully奇妙.
275
888811
4001
但对冲基金产业整体上 没有表现太过如意
15:04
The stock股票 market市场 has been on a roll,
going up as everybody每个人 knows知道,
276
892836
4902
众所周知 证券市场一路顺风地向上发展
15:09
and price-earnings市盈率 ratios have grown长大的.
277
897762
3445
市价盈利率增长了
15:13
So an awful可怕 lot of the wealth财富
that's been created创建 in the last --
278
901231
3063
过去五到六年创造了大量财富,
15:16
let's say, five or six years年份 --
has not been created创建 by hedge树篱 funds资金.
279
904318
3350
而不是对冲基金创造了极大量财富
15:20
People would ask me,
"What's a hedge树篱 fund基金?"
280
908458
3221
人们会问我 “什么是对冲基金”
15:23
And I'd say, "One and 20."
281
911703
2260
我会说 “一和二十”
15:25
Which哪一个 means手段 -- now it's two and 20 --
282
913987
3566
现在是二和二十了 意思是
15:29
it's two percent百分 fixed固定 fee费用
and 20 percent百分 of profits利润.
283
917577
3353
2%的管理费 和20%的收益
15:32
Hedge树篱 funds资金 are all
different不同 kinds of creatures生物.
284
920954
2352
对冲基金有各种各样的
15:35
CACA: Rumor谣言 has it you charge收费
slightly higher更高 fees费用 than that.
285
923330
3239
有传言说您(公司)比那个收费稍微高一点?
15:39
JSJS: We charged带电 the highest最高 fees费用
in the world世界 at one time.
286
927339
3081
我们一度是全世界收费最高的
15:42
Five and 44, that's what we charge收费.
287
930444
3226
5和44 我们是这么收的
15:45
CACA: Five and 44.
288
933694
1398
5和44
15:47
So five percent百分 flat平面,
44 percent百分 of upside上边.
289
935116
3234
所以抽取了固定5% 收益部分44% (抽取5%的资产管理费和44%的投资收益分成)
15:50
You still made制作 your investors投资者
spectacular壮观 amounts of money.
290
938374
2783
你仍然让你的投资者们获得了可观的收益
15:53
JSJS: We made制作 good returns回报, yes.
291
941181
1452
我们有很好的回报率 没错
15:54
People got very mad:
"How can you charge收费 such这样 high fees费用?"
292
942657
3000
人们都要疯了 “你怎么能收这么高呢”
15:57
I said, "OK, you can withdraw收回."
293
945681
1627
我说 “好啊 你可以撤资嘛”
15:59
But "How can I get more?"
was what people were --
294
947332
2818
但 “我怎么赚更多” 是人们所(关注的)
16:02
(Laughter笑声)
295
950174
1504
(笑)
16:03
But at a certain某些 point,
as I think I told you,
296
951702
2440
但某种程度上 正如我说过的
16:06
we bought out all the investors投资者
because there's a capacity容量 to the fund基金.
297
954166
5175
我们买下了所有的投资者 因为对于基金 我们有能力
16:11
CACA: But should we worry担心
about the hedge树篱 fund基金 industry行业
298
959365
2704
但我们应该担心对冲基金产业
16:14
attracting吸引 too much of the world's世界
great mathematical数学的 and other talent天赋
299
962093
5438
吸引了太多世界上厉害的数学家和其他天才
16:19
to work on that, as opposed反对
to the many许多 other problems问题 in the world世界?
300
967555
3238
而对世界上很多其他问题视而不见吗
16:22
JSJS: Well, it's not just mathematical数学的.
301
970817
1929
嗯 不只是数学
16:24
We hire聘请 astronomers天文学家 and physicists物理学家
and things like that.
302
972770
2679
我们还雇了天文学家和物理学家 之类的
16:27
I don't think we should worry担心
about it too much.
303
975833
2431
我不觉得我们应该对此 太过担忧
16:30
It's still a pretty漂亮 small industry行业.
304
978288
3142
这仍然是相当小的一个产业
16:33
And in fact事实, bringing使 science科学
into the investing投资 world世界
305
981454
5997
事实上 将科学引进投资世界
16:39
has improved改善 that world世界.
306
987475
2159
令它得到了改善
16:41
It's reduced减少 volatility挥发性.
It's increased增加 liquidity流动性.
307
989658
4070
减少了波动性 增加了流动性
16:45
Spreads价差 are narrower because
people are trading贸易 that kind of stuff东东.
308
993752
3189
因为人们在交易这样子的东西 传播变得有限
16:48
So I'm not too worried担心 about Einstein爱因斯坦
going off and starting开始 a hedge树篱 fund基金.
309
996965
5076
所以我不太担心爱因斯坦会跑去开始玩对冲基金
16:54
CACA: You're at a phase in your life now
where you're actually其实 investing投资, though虽然,
310
1002478
4164
您现在的人生阶段 尽管实际上
16:58
at the other end结束 of the supply供应 chain --
311
1006666
3734
你在投资另外一个产业链
17:02
you're actually其实 boosting提高
mathematics数学 across横过 America美国.
312
1010424
4104
但实际推动了整个美国的数学
17:06
This is your wife妻子, Marilyn玛丽莲.
313
1014552
1865
这是您妻子 Marilyn
17:08
You're working加工 on
philanthropic慈善 issues问题 together一起.
314
1016441
4756
你们一起致力于慈善事业
17:13
Tell me about that.
315
1021221
1163
和我说说这个吧
17:14
JSJS: Well, Marilyn玛丽莲 started开始 --
316
1022408
3649
好 Marilyn开创了
17:18
there she is up there,
my beautiful美丽 wife妻子 --
317
1026081
3447
这就是她 我美丽的老婆
17:21
she started开始 the foundation基础
about 20 years年份 ago.
318
1029552
2972
她在大约20年前创建了一个基金会
17:24
I think '94.
319
1032548
1151
我想是1994年
17:25
I claim要求 it was '93, she says it was '94,
320
1033723
2095
我觉得是1993年 但她说是1994年
17:27
but it was one of those two years年份.
321
1035842
2571
反正是这两年当中一个
17:30
(Laughter笑声)
322
1038437
2135
(笑)
17:32
We started开始 the foundation基础,
just as a convenient方便 way to give charity慈善机构.
323
1040596
6719
我们创建这个基金 作为更方便做慈善的一个途径
17:40
She kept不停 the books图书, and so on.
324
1048346
2507
她管账 处理相关事务
17:42
We did not have a vision视力 at that time,
but gradually逐渐 a vision视力 emerged出现 --
325
1050877
6714
那时我们没什么愿景 但渐渐地浮现出一个想法
17:49
which哪一个 was to focus焦点 on math数学 and science科学,
to focus焦点 on basic基本 research研究.
326
1057615
5504
就是致力于数学和科学 致力于基础研究
17:55
And that's what we've我们已经 doneDONE.
327
1063569
2772
这就是我们所做的
17:58
Six years年份 ago or so, I left Renaissance再生
and went to work at the foundation基础.
328
1066365
6355
大概六年前 我离开文艺复兴科技公司 开始在基金会做事
18:04
So that's what we do.
329
1072744
1571
所以这就是我们做的
18:06
CACA: And so Math数学 for America美国
is basically基本上 investing投资
330
1074339
2909
所以美国数学协会(Math for America)主要投资
18:09
in math数学 teachers教师 around the country国家,
331
1077272
2638
全国范围的数学教师
18:11
giving them some extra额外 income收入,
giving them support支持 and coaching教练.
332
1079934
3802
提供他们额外收入 给予他们支持和辅导
18:15
And really trying
to make that more effective有效
333
1083760
3051
而且确实努力地变得更有效率
18:18
and make that a calling调用
to which哪一个 teachers教师 can aspire立志.
334
1086835
2601
使它成为老师们可以立志追求的渴望
18:21
JSJS: Yeah -- instead代替 of beating跳动 up
the bad teachers教师,
335
1089460
4790
是啊 不去管打击了教育界士气的
18:26
which哪一个 has created创建 morale情绪 problems问题
all through通过 the educational教育性 community社区,
336
1094274
4853
那些坏老师
18:31
in particular特定 in math数学 and science科学,
337
1099151
2441
特别是数学和科学方面的
18:33
we focus焦点 on celebrating庆祝 the good ones那些
and giving them status状态.
338
1101616
6130
我们致力于赞美好的老师 给予他们重要的地位
18:39
Yeah, we give them extra额外 money,
15,000 dollars美元 a year.
339
1107770
2931
对了 我们每年提供给他们15000美元的额外资金
18:42
We have 800 math数学 and science科学 teachers教师
in New York纽约 City in public上市 schools学校 today今天,
340
1110725
4467
如今我们在纽约的公立学校里有800位数学和科学老师
18:47
as part部分 of a core核心.
341
1115216
1814
作为核心部分
18:49
There's a great morale情绪 among其中 them.
342
1117054
3686
他们都很有斗志
18:52
They're staying in the field领域.
343
1120764
2506
坚守于他们的领域
18:55
Next下一个 year, it'll它会 be 1,000
and that'll那会 be 10 percent百分
344
1123294
2895
明年将会有1000个
18:58
of the math数学 and science科学 teachers教师
in New York纽约 [City] public上市 schools学校.
345
1126213
3544
会有10%纽约公立学校的数学、科学教师
19:01
(Applause掌声)
346
1129781
5905
(鼓掌)
19:07
CACA: Jim吉姆, here's这里的 another另一个 project项目
that you've supported支持的 philanthropically慈善目的:
347
1135710
3410
Jim 这是你所慈善事业的另外一个项目
19:11
Research研究 into origins起源 of life, I guess猜测.
348
1139144
2397
我猜是 探究生命起源
19:13
What are we looking at here?
349
1141565
1447
我们看到的这是什么?
19:15
JSJS: Well, I'll save保存 that for a second第二.
350
1143536
1882
这个我一会儿来讲
19:17
And then I'll tell you
what you're looking at.
351
1145442
2162
我会告诉你看到的什么
19:19
Origins起源 of life is a fascinating迷人 question.
352
1147628
3056
生命的起源是一个迷人的问题
19:22
How did we get here?
353
1150708
1533
我们来自何处
19:25
Well, there are two questions问题:
354
1153170
1771
有两个问题
19:26
One is, what is the route路线
from geology地质学 to biology生物学 --
355
1154965
5868
一个是 从地质学到生物学 发展路线是什么
19:32
how did we get here?
356
1160857
1381
我们是怎样发展到现在的
19:34
And the other question is,
what did we start开始 with?
357
1162262
2364
另一个问题是 我们是怎么开始的
19:36
What material材料, if any,
did we have to work with on this route路线?
358
1164650
3102
什么物质 如果有的话 是这条线路上必须参与的
19:39
Those are two very,
very interesting有趣 questions问题.
359
1167776
3061
这是两个非常非常有趣的问题
19:43
The first question is a tortuous曲折 path路径
from geology地质学 up to RNARNA
360
1171773
5834
第一个是从地质学发展到RNA 其间曲折的道路
19:49
or something like that --
how did that all work?
361
1177631
2258
或者类似的 那是怎么发展的
19:51
And the other,
what do we have to work with?
362
1179913
2388
另外一个 是什么东西是我们必不可少的
19:54
Well, more than we think.
363
1182325
1771
超乎我们的想象
19:56
So what's pictured合照 there
is a star in formation编队.
364
1184120
4843
所以那张图是形成中的一颗恒星
20:01
Now, every一切 year in our Milky乳白色 Way,
which哪一个 has 100 billion十亿 stars明星,
365
1189836
3425
现在 每年 在我们拥有一千亿恒星的银河系中
20:05
about two new stars明星 are created创建.
366
1193285
2495
大约有两个正在形成的恒星
20:07
Don't ask me how, but they're created创建.
367
1195804
2470
不要问我怎么做到的 但它们正在形成中
20:10
And it takes them about a million百万
years年份 to settle解决 out.
368
1198298
3080
它们耗去了一百万年慢慢沉积
20:14
So, in steady稳定 state,
369
1202132
2176
进入稳定状态
20:16
there are about two million百万 stars明星
in formation编队 at any time.
370
1204332
3848
随时随刻 都有两百万的恒星处于生成状态
20:20
That one is somewhere某处
along沿 this settling-down安顿下来 period.
371
1208204
3458
那一个是处于稳定状态的某处
20:24
And there's all this crap掷骰子
sort分类 of circling盘旋 around it,
372
1212067
2936
这些宇宙垃圾围绕着它转动
20:27
dust灰尘 and stuff东东.
373
1215027
1498
灰尘 和其他东西
20:29
And it'll它会 form形成 probably大概 a solar太阳能 system系统,
or whatever随你 it forms形式.
374
1217479
3023
它可能会形成一个太阳系 或随便什么
20:32
But here's这里的 the thing --
375
1220526
2176
重点是
20:34
in this dust灰尘 that surrounds围绕着 a forming成型 star
376
1222726
6348
在围绕着这个形成恒星的尘埃中
20:41
have been found发现, now,
significant重大 organic有机 molecules分子.
377
1229098
6035
现在被发现存在 有着重大意义的 有机分子
20:47
Molecules分子 not just like methane甲烷,
but formaldehyde甲醛 and cyanide氰化物 --
378
1235958
6139
不只是像甲烷那样的分子 还有甲醛和氰化物
20:54
things that are the building建造 blocks --
the seeds种子, if you will -- of life.
379
1242121
6517
像是生命结构基础(building blocks) 生命的种子的物质
21:01
So, that may可能 be typical典型.
380
1249136
2692
所以那可能很有典型意义
21:04
And it may可能 be typical典型
that planets行星 around the universe宇宙
381
1252395
6934
可能宇宙中的行星 起源于这些基础的结构基石
21:11
start开始 off with some of these
basic基本 building建造 blocks.
382
1259353
3612
是具有典型意义的
21:15
Now does that mean
there's going to be life all around?
383
1263830
2715
这是否意味着周围会产生生命体呢
21:18
Maybe.
384
1266569
1364
有可能
21:19
But it's a question
of how tortuous曲折 this path路径 is
385
1267957
4127
但问题是 从那些脆弱的开端 那些种子
21:24
from those frail脆弱 beginnings开始,
those seeds种子, all the way to life.
386
1272108
4394
一路演变为生命的道路 是如何曲折
21:28
And most of those seeds种子
will fall秋季 on fallow休耕 planets行星.
387
1276526
5192
那些种子大部分会掉落到荒芜的行星
21:33
CACA: So for you, personally亲自,
388
1281742
1409
对您个人而言
21:35
finding发现 an answer回答 to this question
of where we came来了 from,
389
1283175
2722
找到这些问题的答案
21:37
of how did this thing happen发生,
that is something you would love to see.
390
1285921
3658
我们从哪里来 又是怎么发生的
是您乐于看到的
21:41
JSJS: Would love to see.
391
1289603
1786
乐于看到
21:43
And like to know --
392
1291413
1490
而且想要知道
21:44
if that path路径 is tortuous曲折 enough足够,
and so improbable难以置信,
393
1292927
5170
如果那条道路足够曲折 难以实现
21:50
that no matter what you start开始 with,
we could be a singularity奇点.
394
1298121
4754
无论起源是什么 我们可能是个特例
21:55
But on the other hand,
395
1303336
1152
另一方面
21:56
given特定 all this organic有机 dust灰尘
that's floating漂浮的 around,
396
1304512
3478
考虑到所有这些漂浮在周围的有机灰尘
22:00
we could have lots of friends朋友 out there.
397
1308014
3791
宇宙中我们可能有很多朋友
22:04
It'd它会 be great to know.
398
1312947
1161
很高兴知道
22:06
CACA: Jim吉姆, a couple一对 of years年份 ago,
I got the chance机会 to speak说话 with Elon伊隆 Musk,
399
1314132
3480
几年前 我有机会和伊隆·马斯克(南非企业家)谈话
22:09
and I asked him the secret秘密 of his success成功,
400
1317636
2837
我问到他成功的秘诀
22:12
and he said taking服用
physics物理 seriously认真地 was it.
401
1320497
3691
他说 秘诀就是 严肃地对待物理
22:16
Listening听力 to you, what I hear you saying
is taking服用 math数学 seriously认真地,
402
1324696
4003
听了你的言论 我听到你说的就是 严肃地对待数学
22:20
that has infused输注 your whole整个 life.
403
1328723
3003
这个理念贯彻了你整个生命
22:24
It's made制作 you an absolute绝对 fortune幸运,
and now it's allowing允许 you to invest投资
404
1332123
4563
它使你拥有了可观的财富 如今又引领你
22:28
in the futures期货 of thousands数千 and thousands数千
of kids孩子 across横过 America美国 and elsewhere别处.
405
1336710
4496
投资美国和其他地方成千上万孩子们的未来
22:33
Could it be that science科学 actually其实 works作品?
406
1341567
2858
有没有可能 科学确实起作用了
22:36
That math数学 actually其实 works作品?
407
1344449
2772
数学确实起作用了呢
22:39
JSJS: Well, math数学 certainly当然 works作品.
Math数学 certainly当然 works作品.
408
1347245
4372
数学当然起作用了
22:43
But this has been fun开玩笑.
409
1351641
1198
这很有趣
22:44
Working加工 with Marilyn玛丽莲 and giving it away
has been very enjoyable其乐融融.
410
1352863
4946
和Marilyn在一起工作 施予别人 让我感到非常愉快
22:49
CACA: I just find it --
it's an inspirational励志 thought to me,
411
1357833
2936
我刚发现 有个想法让我醍醐灌顶
22:52
that by taking服用 knowledge知识 seriously认真地,
so much more can come from it.
412
1360793
4007
就是严肃地对待知识 你可以从中得到很多很多
22:56
So thank you for your amazing惊人 life,
and for coming未来 here to TEDTED.
413
1364824
3018
感谢您精彩的人生 感谢您来到TED
22:59
Thank you.
414
1367866
751
谢谢
23:00
Jim吉姆 Simons西蒙斯!
415
1368651
1101
詹姆斯 西蒙斯!
23:01
(Applause掌声)
416
1369806
4380
Translated by Chen Livia
Reviewed by dahong zhang

▲Back to top

ABOUT THE SPEAKER
Jim Simons - Philanthropist, mathematician
After astonishing success as a mathematician, code breaker and billionaire hedge fund manager, Jim Simons is mastering yet another field: philanthropy.

Why you should listen

As a mathematician who cracked codes for the National Security Agency on the side, Jim Simons had already revolutionized geometry -- and incidentally laid the foundation for string theory -- when he began to get restless. Along with a few hand-picked colleagues he started the investment firm that went on to become Renaissance, a hedge fund working with hitherto untapped algorithms, and became a billionaire in the process.

Now retired as Renaissance’s CEO, Simons devotes his time to mathematics and philanthropy. The Simons Foundation has committed more than a billion dollars to math and science education and to autism research.

More profile about the speaker
Jim Simons | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee