ABOUT THE SPEAKER
Erik Brynjolfsson - Innovation researcher
Erik Brynjolfsson examines the effects of information technologies on business strategy, productivity and employment.

Why you should listen

The director of the MIT Center for Digital Business and a research associate at the National Bureau of Economic Research, Erik Brynjolfsson asks how IT affects organizations, markets and the economy. His recent work studies data-driven decision-making, management practices that drive productivity, the pricing implications of Internet commerce and the role of intangible assets.
 
Brynjolfsson was among the first researchers to measure the productivity contributions of information and community technology (ICT) and the complementary role of organizational capital and other intangibles. His research also provided the first quantification of the value of online product variety, often known as the “Long Tail,” and developed pricing and bundling models for information goods.

His books include Wired for Innovation: How IT Is Reshaping the Economy and Race Against the Machine: How the Digital Revolution Is Accelerating Innovation, Driving Productivity and Irreversibly Transforming Employment and the Economy (with Andrew McAfee); and the recent article "Big Data: The Management Revolution" (with Andrew McAfee).

More profile about the speaker
Erik Brynjolfsson | Speaker | TED.com
TED2013

Erik Brynjolfsson: The key to growth? Race with the machines

Celesi i rritjes? Te bejme gare se bashku me makinat.

Filmed:
1,321,770 views

Ndersa makinat marrin persiper me shume pune, shume njerez e gjejne veten pa pune ose me me nje te ardhme pa rritje rroge. A eshte ky fundi i rritjes? Jo, thote Erik Brynjolfsson-- kjo eshte thjesht dhimbja e rritjes se nje ekonomie radikalisht te riorganizuar. Nje shpjegim se pse inovacionet e medha ecin perpara nesh.... nese i mendojme kompjuterat si shoke te skuadres. Mos lini pa pare pikepamjen e kundert nga Robert Gordon.
- Innovation researcher
Erik Brynjolfsson examines the effects of information technologies on business strategy, productivity and employment. Full bio

Double-click the English transcript below to play the video.

00:12
Growth is not dead.
0
605
2272
Rritja nuk ka vdekur
00:14
(Applause)
1
2877
1386
(duartrokitje)
00:16
Let's start the story 120 years ago,
2
4263
3963
Le ta fillojme historine 120 vjet me pare,
00:20
when American factories began to electrify their operations,
3
8226
3632
kur fabrikat amerikane filluan te punojne me korrent
00:23
igniting the Second Industrial Revolution.
4
11858
3344
duke filluar keshtu Revolucionin e Dyte Industrial.
00:27
The amazing thing is
5
15202
1111
Gjeja e cuditeshme eshte
00:28
that productivity did not increase in those factories
6
16313
2777
qe produktiviteti ne keto fabrika nuk u rrit
00:31
for 30 years. Thirty years.
7
19090
3256
per 30 vjet. Tridhjete vjet.
00:34
That's long enough for a generation of managers to retire.
8
22346
3474
Eshte kohe e mjaftueshme per te nxjerre ne pension nje gjenerate manaxheresh.
00:37
You see, the first wave of managers
9
25820
2222
Vala e pare e manaxhereve
00:40
simply replaced their steam engines with electric motors,
10
28042
3417
thjesht zevendesoi motorat me avull me ata elektrike,
00:43
but they didn't redesign the factories to take advantage
11
31459
3010
por ata nuk i ridizenjuan fabrikat qe te perfitonin
00:46
of electricity's flexibility.
12
34469
2341
nga fleksibiliteti i elektricitetit.
00:48
It fell to the next generation to invent new work processes,
13
36810
3984
Iu desh gjenerates se mevoneshme te shpikte procese te reja pune,
00:52
and then productivity soared,
14
40794
2727
dhe keshtu ne keto fabrika prodhimi u rrit,
00:55
often doubling or even tripling in those factories.
15
43521
3665
e shpesh u dyfishua dhe trefishua.
00:59
Electricity is an example of a general purpose technology,
16
47186
4723
Elektriciteti eshte nje shembull i teknologjise me perdorim te pergjitheshem,
01:03
like the steam engine before it.
17
51909
2230
sic ishte motori me avull para tij.
01:06
General purpose technologies drive most economic growth,
18
54139
3416
Teknologjite me perdorim te pergjithshem shkaktojne rritjen me te madhe ekonomike,
01:09
because they unleash cascades of complementary innovations,
19
57555
3454
sepse ato clirojne ujevara shpikjesh qe kane te bejne me te,
01:13
like lightbulbs and, yes, factory redesign.
20
61009
3632
sic jane llampat elektrike dhe, po, rindertimi i fabrikave.
01:16
Is there a general purpose technology of our era?
21
64641
3610
A ka teknologji me perdorim te pergjithshem ne kohen tone?
01:20
Sure. It's the computer.
22
68251
2508
Sigurisht. Eshte kompjuteri.
01:22
But technology alone is not enough.
23
70759
2659
Por vetem teknologjia nuk mjafton.
01:25
Technology is not destiny.
24
73418
2766
Teknologjia nuk eshte e ardhmja.
01:28
We shape our destiny,
25
76184
1580
Ne i japim forme te ardhmes tone,
01:29
and just as the earlier generations of managers
26
77764
2516
dhe ashtu si gjeneratat e mepareshme te manaxhereve
01:32
needed to redesign their factories,
27
80280
2298
duhet t'i ridizenjonin fabrikat e tyre,
01:34
we're going to need to reinvent our organizations
28
82578
2229
ne do te na duhet te rishpikim organizatat tona
01:36
and even our whole economic system.
29
84807
2555
dhe madje gjithe sistemin tone ekonomik.
01:39
We're not doing as well at that job as we should be.
30
87362
3602
Ne nuk po e bejme kete pune aq mire sa duhet.
01:42
As we'll see in a moment,
31
90964
1230
Dhe pas pak do te shikojme ,
01:44
productivity is actually doing all right,
32
92194
2722
prodhimi ne fakt nuk eshte dhe aq keq,
01:46
but it has become decoupled from jobs,
33
94916
3862
por eshte shkeputur prej punes,
01:50
and the income of the typical worker is stagnating.
34
98778
4419
dhe te ardhurat e nje punetori mesatar kane mbetur ne vend.
01:55
These troubles are sometimes misdiagnosed
35
103197
2519
Keto probleme nganjehere diagnostikohen gabimisht
01:57
as the end of innovation,
36
105716
3712
si fundi i inovacionit,
02:01
but they are actually the growing pains
37
109428
2129
por ato aktualisht jane dhimbjet e rritjes
02:03
of what Andrew McAfee and I call the new machine age.
38
111557
5590
se asaj qe une dhe Andrew McAfee e quajme periudha e re e makines.
02:09
Let's look at some data.
39
117147
1882
Le te shikojme disa te dhena.
02:11
So here's GDP per person in America.
40
119029
2902
Ja ku eshte GDP per person ne Amerike.
02:13
There's some bumps along the way, but the big story
41
121931
2766
Ka disa luhatje gjate rruges, por perfundimisht
02:16
is you could practically fit a ruler to it.
42
124697
2715
ju mund te vini nje vizore paralel me te.
02:19
This is a log scale, so what looks like steady growth
43
127412
3276
Ky eshte nje diagram logaritmik, keshtu qe cka duket si rritje e vazhdueshme
02:22
is actually an acceleration in real terms.
44
130688
3043
eshte ne fakt nje pershpejtim ne terma reale.
02:25
And here's productivity.
45
133731
2160
Dhe ja ku eshte prodhimi.
02:27
You can see a little bit of a slowdown there in the mid-'70s,
46
135891
2671
Ju mund te shikoni nje ngadalesim ne mesin e viteve 70-te,
02:30
but it matches up pretty well with the Second Industrial Revolution,
47
138562
3738
por ky perkon me Revolucionin e Dyte Industrial,
02:34
when factories were learning how to electrify their operations.
48
142300
2691
kur fabrikat po mesonin si te elektrifikonin proceset e tyre.
02:36
After a lag, productivity accelerated again.
49
144991
4129
Pas kesaj, prodhimi u rrit perseri.
02:41
So maybe "history doesn't repeat itself,
50
149120
2571
Atehere ndoshta "historia nuk perseritet,
02:43
but sometimes it rhymes."
51
151691
2568
por nganjehere ben rime".
02:46
Today, productivity is at an all-time high,
52
154259
3136
Ne kohet tona, prodhimi eshte me i larte se asnjehere,
02:49
and despite the Great Recession,
53
157395
1977
dhe me gjithe Recesionin e Madh,
02:51
it grew faster in the 2000s than it did in the 1990s,
54
159372
4252
ai u rrit me shpejt ne vitet 2000 se sa ne vitet 1990,
02:55
the roaring 1990s, and that was faster than the '70s or '80s.
55
163624
4136
vitet e arte 1990, dhe ky ishte me i shpejte se ne vitet 70-te apo 80-te.
02:59
It's growing faster than it did during the Second Industrial Revolution.
56
167760
3674
Po rritet me shpejt se gjate Revolucionit te dyte Industrial.
03:03
And that's just the United States.
57
171434
1743
Dhe po flasim vetem per Shtetet e Bashkuara.
03:05
The global news is even better.
58
173177
3248
Te dhenat globale jane edhe me te mira.
03:08
Worldwide incomes have grown at a faster rate
59
176425
2360
Ne mbare boten te ardhurat jane rritur me ritme me te shpejta
03:10
in the past decade than ever in history.
60
178785
2496
ne dekaden e kaluar sesa ne gjithe historine.
03:13
If anything, all these numbers actually understate our progress,
61
181281
5051
Mbi te gjtiha, keta numra aktualisht e minimizojne progresin tone,
03:18
because the new machine age
62
186332
1912
sepse periudha e re e makines
03:20
is more about knowledge creation
63
188244
1664
ka me shume te beje me krijim te njohurive
03:21
than just physical production.
64
189908
2331
sesa thjesht prodhim fizik.
03:24
It's mind not matter, brain not brawn,
65
192239
2938
Eshte mendja jo lenda, truri jo ushqimi,
03:27
ideas not things.
66
195177
2062
idete dhe jo sendet.
03:29
That creates a problem for standard metrics,
67
197239
2570
Kjo krijon problem per metriken standarte,
03:31
because we're getting more and more stuff for free,
68
199809
3502
sepse po perfitojme gjithnje e me teper gjera pa para
03:35
like Wikipedia, Google, Skype,
69
203311
2641
sic psh: Wikipedia, Google, Skype,
03:37
and if they post it on the web, even this TED Talk.
70
205952
3063
dhe nese postohet ne web, edhe kete fjalim te TED.
03:41
Now getting stuff for free is a good thing, right?
71
209015
3303
Epo te marresh gjera pa para eshte gje e mire apo jo?
03:44
Sure, of course it is.
72
212318
1765
Sigurisht qe eshte.
03:46
But that's not how economists measure GDP.
73
214083
3868
Por ekonomistet nuk e masin keshtu GDP.
03:49
Zero price means zero weight in the GDP statistics.
74
217951
5592
Cmimi zero do te thote qe dhe pesha eshte zero ne statistikat e GDP.
03:55
According to the numbers, the music industry
75
223543
2112
Sipas numrave, industria e muzikes
03:57
is half the size that it was 10 years ago,
76
225655
3000
eshte pergjysmuar ne krahasim me 10 vjet me pare,
04:00
but I'm listening to more and better music than ever.
77
228655
3656
por une po degjoj me shume muzike dhe me te mire se me pare.
04:04
You know, I bet you are too.
78
232311
2192
Dhe ve bast qe keshtu po ndodh dhe per ju.
04:06
In total, my research estimates
79
234503
2723
Studimi im parashikon
04:09
that the GDP numbers miss over 300 billion dollars per year
80
237226
4754
qe ne te dhenat e GDP nuk perfshihen mbi 300 miliard dollare ne vit qe vijne
04:13
in free goods and services on the Internet.
81
241980
3346
nga mallrat pa pagese dhe sherbimet ne Internet.
04:17
Now let's look to the future.
82
245326
1789
Tani le t'i hedhim nje sy te ardhmes.
04:19
There are some super smart people
83
247115
2263
Ka disa njerez shume te zgjuar
04:21
who are arguing that we've reached the end of growth,
84
249378
5019
te cilet argumentojne qe ne kemi arritur fundin e rritjes,
04:26
but to understand the future of growth,
85
254397
3558
por per te kuptuar te ardhmen e rritjes,
04:29
we need to make predictions
86
257955
2683
ne duhet te bejme parashikime
04:32
about the underlying drivers of growth.
87
260638
3290
mbi faktoret e padukshem te rritjes.
04:35
I'm optimistic, because the new machine age
88
263928
3806
Une jam optimist, sepse periudha e re e makines
04:39
is digital, exponential and combinatorial.
89
267734
5030
eshte dixhitale, eksponenciale dhe e kombinueshme.
04:44
When goods are digital, they can be replicated
90
272764
2264
Kur mallrat jane dixhitale, ato mund te shumefishohen
04:47
with perfect quality at nearly zero cost,
91
275028
4509
me cilesi perfekte dhe me kosto pothuajse zero,
04:51
and they can be delivered almost instantaneously.
92
279537
4018
dhe ato mund te perftohen pothujase menjehere.
04:55
Welcome to the economics of abundance.
93
283555
2800
Mireseerdhet ne ekonomine e bollekut.
04:58
But there's a subtler benefit to the digitization of the world.
94
286355
3690
Por ka nje benefit me te komplikuar ne dixhitalizimin e botes.
05:02
Measurement is the lifeblood of science and progress.
95
290045
4600
Matja eshte arteria kryesore e shkences dhe progresit.
05:06
In the age of big data,
96
294645
2148
Ne periudhen e te dhenave te medha,
05:08
we can measure the world in ways we never could before.
97
296793
4286
ne mund ta matim boten me menyra qe me pare ishte e pamundur.
05:13
Secondly, the new machine age is exponential.
98
301079
4095
Se dyti, periudha e makines se re eshte eksponenciale.
05:17
Computers get better faster than anything else ever.
99
305174
5935
Kompjuterat permiresohen me shpejt se cdo gje tjeter.
05:23
A child's Playstation today is more powerful
100
311109
3568
Ne ditet tona nje Playstation eshte me i fuqishem
05:26
than a military supercomputer from 1996.
101
314677
4056
se sa nje super kompjuter ushtarak i vitit 1996.
05:30
But our brains are wired for a linear world.
102
318733
3207
Por truri yne eshte i ndertuar te funksionoje ne nje bote lineare.
05:33
As a result, exponential trends take us by surprise.
103
321940
3888
Si rezultat, trendet eksponenciale na kapin ne befasi.
05:37
I used to teach my students that there are some things,
104
325828
2602
Une u mesoja studenteve te mi se ka disa gjera te cilat
05:40
you know, computers just aren't good at,
105
328430
1934
kompjuterat nuk i bejne mire,
05:42
like driving a car through traffic.
106
330364
2385
si psh t'i japesh makines ne trafik.
05:44
(Laughter)
107
332749
2013
(te qeshura)
05:46
That's right, here's Andy and me grinning like madmen
108
334762
3491
Po vertete, ja ku jemi une dhe Andy duke buzeqeshur si te cmendur
05:50
because we just rode down Route 101
109
338253
2384
sepse ne sapo erdhem nga Route 101
05:52
in, yes, a driverless car.
110
340637
3669
ne nje makine pa shofer, po po.
05:56
Thirdly, the new machine age is combinatorial.
111
344306
2583
Se treti, periudha e re e makines eshte e kombinueshme.
05:58
The stagnationist view is that ideas get used up,
112
346889
4048
Sipas pikepamjes stanjacioniste, idete harxhohen,
06:02
like low-hanging fruit,
113
350937
1856
si frutat ne deget e poshtme,
06:04
but the reality is that each innovation
114
352793
3163
por ne realitet cdo inovacion
06:07
creates building blocks for even more innovations.
115
355956
3256
krijon bazen per edhe me shume inovacione.
06:11
Here's an example. In just a matter of a few weeks,
116
359212
3345
Ja nje shembull. Ne pak jave,
06:14
an undergraduate student of mine
117
362557
2072
nje student i imi i universitetit
06:16
built an app that ultimately reached 1.3 million users.
118
364629
4111
ndertoi nje Aplikim qe tani ka 1.3 milion perdorues.
06:20
He was able to do that so easily
119
368740
1699
Ai ishte ne gjendje ta bente kete kaq kollaj
06:22
because he built it on top of Facebook,
120
370439
1827
sepse e ndertoi mbi Facebook,
06:24
and Facebook was built on top of the web,
121
372266
1933
dhe Facebook eshte ndertuar mbi web-in,
06:26
and that was built on top of the Internet,
122
374199
1698
i cili eshte ndertuar mbi Internet-in,
06:27
and so on and so forth.
123
375897
2418
dhe keshtu me radhe.
06:30
Now individually, digital, exponential and combinatorial
124
378315
4765
Tani individualisht, dixhitali, eksponenciali dhe kombinueshmeria
06:35
would each be game-changers.
125
383080
2350
do te ishin lojtare me vete.
06:37
Put them together, and we're seeing a wave
126
385430
2190
Me bashkimin e tyre ne po shohim nje vale
06:39
of astonishing breakthroughs,
127
387620
1393
zbulimesh te cuditshme,
06:41
like robots that do factory work or run as fast as a cheetah
128
389013
3060
si robotet qe bejne pune ne fabrika ose vrapojne aq shpejt sa edhe nje cita
06:44
or leap tall buildings in a single bound.
129
392073
2796
ose kercejne nga ndertesa te larta me nje hedhje.
06:46
You know, robots are even revolutionizing
130
394869
2232
Madje robotet po revolucionarizojne edhe
06:49
cat transportation.
131
397101
1829
transportin e maceve.
06:50
(Laughter)
132
398930
2270
(te qeshura)
06:53
But perhaps the most important invention,
133
401200
2732
Por ndoshta inovacioni me i rendesishem,
06:55
the most important invention is machine learning.
134
403932
5065
inovacioni me i rendesishem eshte te mesuarit e makines.
07:00
Consider one project: IBM's Watson.
135
408997
3376
Kini parasysh nje projekt: Watson i IBM-se.
07:04
These little dots here,
136
412373
1589
Keto pikat e vogla ketu,
07:05
those are all the champions on the quiz show "Jeopardy."
137
413962
4860
jane te gjithe kampionet e shfaqjes televizive "Jeopardy".
07:10
At first, Watson wasn't very good,
138
418822
2544
Ne fillim, Watson nuk ishte shume i mire,
07:13
but it improved at a rate faster than any human could,
139
421366
5622
por ai u permiresua me shpejt sec mund te permiresohet nje njeri,
07:18
and shortly after Dave Ferrucci showed this chart
140
426988
2687
dhe pak pasi Dave Ferrucci ia tregoi kete tabele
07:21
to my class at MIT,
141
429675
1652
klases time tek MIT,
07:23
Watson beat the world "Jeopardy" champion.
142
431327
3542
Watson e mundi kampionin e botes ne "Jeopardy".
07:26
At age seven, Watson is still kind of in its childhood.
143
434869
3989
Ne moshen 7 vjec, Watson eshte akoma ne femijerine e tij.
07:30
Recently, its teachers let it surf the Internet unsupervised.
144
438858
5318
Se fundmi, mesuesit e tij e lane te punonte ne Internet pa supervizion.
07:36
The next day, it started answering questions with profanities.
145
444176
5946
Diten tjeter, ai filloi t'u pergjigjej pyetjeve me fjale te pasjellshme.
07:42
Damn. (Laughter)
146
450122
2274
Dreqi. (te qeshura)
07:44
But you know, Watson is growing up fast.
147
452396
2280
Por Watson po rritet shpejt.
07:46
It's being tested for jobs in call centers, and it's getting them.
148
454676
4212
Po testohet per te punuar ne call centers dhe po pranohet.
07:50
It's applying for legal, banking and medical jobs,
149
458888
3724
Po aplikon per pune qe kane te bejne me ligjin, sistemin bankar dhe shendetesine
07:54
and getting some of them.
150
462612
1950
dhe po pranohet ne disa prej tyre.
07:56
Isn't it ironic that at the very moment
151
464562
1889
Nuk eshte ironike qe tamam ne momentin
07:58
we are building intelligent machines,
152
466451
2234
kur ne po ndertojme makina inteligjente,
08:00
perhaps the most important invention in human history,
153
468685
3449
ndoshta inovacioni me i rendesishem ne historine e njerezimit,
08:04
some people are arguing that innovation is stagnating?
154
472134
3975
disa njerez thone qe inovacioni ka mbetur ne vend?
08:08
Like the first two industrial revolutions,
155
476109
2419
Ashtu si edhe dy revolucionet industriale,
08:10
the full implications of the new machine age
156
478528
3134
implikimet e plota te periudhes se re te makines
08:13
are going to take at least a century to fully play out,
157
481662
2682
do ta kene impaktin e tyre pas nje shekulli,
08:16
but they are staggering.
158
484344
3032
por ato po lekunden.
08:19
So does that mean we have nothing to worry about?
159
487376
3336
A do te thote kjo qe ne nuk duhet te shqetesohemi per asgje?
08:22
No. Technology is not destiny.
160
490712
3680
Jo. Teknologjia nuk eshte e ardhmja.
08:26
Productivity is at an all time high,
161
494392
2569
Prodhimi eshte ne shkallen me te larte te te gjtiha koherave,
08:28
but fewer people now have jobs.
162
496961
2983
por me pak njerez jane te punesuar.
08:31
We have created more wealth in the past decade than ever,
163
499944
3120
Ne kemi krijuar me shume se kurre pasuri ne dekaden e kaluar,
08:35
but for a majority of Americans, their income has fallen.
164
503064
3904
por per shumicen e Amerikaneve, rroga eshte ulur.
08:38
This is the great decoupling
165
506968
2312
Kjo eshte shkeputja e madhe
08:41
of productivity from employment,
166
509280
2976
e prodhimit nga punesimi,
08:44
of wealth from work.
167
512256
3104
e pasurise nga puna.
08:47
You know, it's not surprising that millions of people
168
515360
2346
E dini qe nuk eshte cudi qe miliona njerez
08:49
have become disillusioned by the great decoupling,
169
517706
2846
jane zhgenjyer nga shkeputja e madhe,
08:52
but like too many others,
170
520552
1747
por si shume te tjere,
08:54
they misunderstand its basic causes.
171
522299
3097
ata i keqkuptojne shkaqet baze te saj.
08:57
Technology is racing ahead,
172
525396
2610
Teknologjia po ecen perpara,
09:00
but it's leaving more and more people behind.
173
528006
3550
por po le shume e shume njerez prapa.
09:03
Today, we can take a routine job,
174
531556
3519
Ne ditet e sotme, ne mund te marrim nje pune rutine,
09:07
codify it in a set of machine-readable instructions,
175
535075
3091
ta kodifikojme ne nje grup instruksionesh qe mund te lexohen nga makina,
09:10
and then replicate it a million times.
176
538166
2827
dhe ta shumefishojme nje milion here.
09:12
You know, I recently overheard a conversation
177
540993
2279
Kohet e fundit degjova nja bisede
09:15
that epitomizes these new economics.
178
543272
1952
qe i epitomizon keto koncepte te reja ekonomike.
09:17
This guy says, "Nah, I don't use H&R Block anymore.
179
545224
4197
Njeri thote: Jo, une nuk shkoj me tek H&R Block.
09:21
TurboTax does everything that my tax preparer did,
180
549421
2448
TurboTax ben cdo gje qe bente pergatitesi im i taksave,
09:23
but it's faster, cheaper and more accurate."
181
551869
4558
por eshte me e shpejte, me e lire dhe me e sakte".
09:28
How can a skilled worker
182
556427
1799
A mund te krahasohet nje punonjes i specializuar
09:30
compete with a $39 piece of software?
183
558226
3009
me nje software qe kushton $39?
09:33
She can't.
184
561235
1967
Nuk mundet.
09:35
Today, millions of Americans do have faster,
185
563202
2780
Sot, miliona Amerikane bejne
09:37
cheaper, more accurate tax preparation,
186
565982
2387
pergatitje taksash me te lire, me te shpejte dhe me te sakte,
09:40
and the founders of Intuit
187
568369
1486
dhe themeluesit e Intuit
09:41
have done very well for themselves.
188
569855
2493
ja kane dale mbane shume mire per veten e tyre.
09:44
But 17 percent of tax preparers no longer have jobs.
189
572348
4214
Por 17 per qind e pergatitesve te taksave jane pa pune.
09:48
That is a microcosm of what's happening,
190
576562
2078
Kjo eshte nje mikrobote e asaj qe po ndodh,
09:50
not just in software and services, but in media and music,
191
578640
4677
jo vetem ne software dhe sherbime, por edhe ne media dhe muzike,
09:55
in finance and manufacturing, in retailing and trade --
192
583317
3686
finance dhe prodhim, dyqane dhe tregeti,
09:59
in short, in every industry.
193
587003
3895
shkurt ne cdo industri.
10:02
People are racing against the machine,
194
590898
3095
Njerezit po bejne gare me makinen,
10:05
and many of them are losing that race.
195
593993
3090
dhe shume prej tyre po e humbasin kete gare.
10:09
What can we do to create shared prosperity?
196
597083
3886
Cfare mund te bejme qe ta ndajme prosperitetin?
10:12
The answer is not to try to slow down technology.
197
600969
3017
Pergjigja ime eshte jo te perpiqemi te ngadalesojme teknologjine.
10:15
Instead of racing against the machine,
198
603986
2557
Ne vend qe te bejme gare kunder makines,
10:18
we need to learn to race with the machine.
199
606543
3677
ne duhet te mesojme te bejme gare me makinen.
10:22
That is our grand challenge.
200
610220
3129
Kjo eshte sfida jone e madhe.
10:25
The new machine age
201
613349
2324
Periudha e re e makines
10:27
can be dated to a day 15 years ago
202
615673
3113
filloi nje dite rreth 15 vjet me pare
10:30
when Garry Kasparov, the world chess champion,
203
618786
2878
kur Gary Kasparov, kampioni boteror i shahut,
10:33
played Deep Blue, a supercomputer.
204
621664
3706
luajti me Deep Blue, nje super kompjuter.
10:37
The machine won that day,
205
625370
2012
Makina fitoi ate dite,
10:39
and today, a chess program running on a cell phone
206
627382
2968
dhe sot, programi i shahut ne celular
10:42
can beat a human grandmaster.
207
630350
2296
e mund nje njeri qe eshte mjeshter.
10:44
It got so bad that, when he was asked
208
632646
3365
Vajti aq keq sa kur e pyeten
10:48
what strategy he would use against a computer,
209
636011
2563
cfare strategjie do te perdorte kundra nje kompiuteri,
10:50
Jan Donner, the Dutch grandmaster, replied,
210
638574
4016
Jan Donner, Mjeshtri i madh Hollandez, u pergjigj,
10:54
"I'd bring a hammer."
211
642590
1771
"Do te sillja nje cekic"
10:56
(Laughter)
212
644361
3680
(te qeshura)
11:00
But today a computer is no longer the world chess champion.
213
648041
4544
Por sot nje kompiuter nuk eshte me kampioni boteror i shahut.
11:04
Neither is a human,
214
652585
2654
Nuk eshte as njeriu,
11:07
because Kasparov organized a freestyle tournament
215
655239
3579
sepse Kasparovi organizoi nje tournament me stil te lire
11:10
where teams of humans and computers
216
658818
1916
ku skuadra me njerez dhe kompiutera
11:12
could work together,
217
660734
2099
mund te punonin se bashku,
11:14
and the winning team had no grandmaster,
218
662833
3157
dhe skuadra fituese nuk kishte as mjeshter te madh
11:17
and it had no supercomputer.
219
665990
2465
as superkompjuter.
11:20
What they had was better teamwork,
220
668455
4175
Ata bene nje pune te mire ne skuader,
11:24
and they showed that a team of humans and computers,
221
672630
5016
dhe treguan se nje skuader njerezish dhe kompjuterash,
11:29
working together, could beat any computer
222
677646
3048
duke punuar se bashku, mund ta mundin cdo kompjuter
11:32
or any human working alone.
223
680694
3520
ose cdo njeri qe punon vetem.
11:36
Racing with the machine
224
684214
1664
Te besh gare bashke me makinen
11:37
beats racing against the machine.
225
685878
2343
eshte me mire se te besh gare kunder makines.
11:40
Technology is not destiny.
226
688221
2564
Teknologjia nuk eshte e ardhmja.
11:42
We shape our destiny.
227
690785
1742
Ne i japim forme te ardhmes tone.
11:44
Thank you.
228
692527
1447
Faleminderit.
11:45
(Applause)
229
693974
5016
(Duartrokitje)
Translated by Entela Bodinaku
Reviewed by Helena Bedalli

▲Back to top

ABOUT THE SPEAKER
Erik Brynjolfsson - Innovation researcher
Erik Brynjolfsson examines the effects of information technologies on business strategy, productivity and employment.

Why you should listen

The director of the MIT Center for Digital Business and a research associate at the National Bureau of Economic Research, Erik Brynjolfsson asks how IT affects organizations, markets and the economy. His recent work studies data-driven decision-making, management practices that drive productivity, the pricing implications of Internet commerce and the role of intangible assets.
 
Brynjolfsson was among the first researchers to measure the productivity contributions of information and community technology (ICT) and the complementary role of organizational capital and other intangibles. His research also provided the first quantification of the value of online product variety, often known as the “Long Tail,” and developed pricing and bundling models for information goods.

His books include Wired for Innovation: How IT Is Reshaping the Economy and Race Against the Machine: How the Digital Revolution Is Accelerating Innovation, Driving Productivity and Irreversibly Transforming Employment and the Economy (with Andrew McAfee); and the recent article "Big Data: The Management Revolution" (with Andrew McAfee).

More profile about the speaker
Erik Brynjolfsson | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee