ABOUT THE SPEAKER
Erik Brynjolfsson - Innovation researcher
Erik Brynjolfsson examines the effects of information technologies on business strategy, productivity and employment.

Why you should listen

The director of the MIT Center for Digital Business and a research associate at the National Bureau of Economic Research, Erik Brynjolfsson asks how IT affects organizations, markets and the economy. His recent work studies data-driven decision-making, management practices that drive productivity, the pricing implications of Internet commerce and the role of intangible assets.
 
Brynjolfsson was among the first researchers to measure the productivity contributions of information and community technology (ICT) and the complementary role of organizational capital and other intangibles. His research also provided the first quantification of the value of online product variety, often known as the “Long Tail,” and developed pricing and bundling models for information goods.

His books include Wired for Innovation: How IT Is Reshaping the Economy and Race Against the Machine: How the Digital Revolution Is Accelerating Innovation, Driving Productivity and Irreversibly Transforming Employment and the Economy (with Andrew McAfee); and the recent article "Big Data: The Management Revolution" (with Andrew McAfee).

More profile about the speaker
Erik Brynjolfsson | Speaker | TED.com
TED2013

Erik Brynjolfsson: The key to growth? Race with the machines

埃里克·布伦乔尔森: 经济增长的要诀?和机器共同进步

Filmed:
1,321,770 views

随着机器可以胜任越来越多的工作,很多人发现他们失了业或者根本无法加薪。经济增长停止了吗?不,埃里克·布伦乔尔森认为这只是经济重组过程中的“成长的烦恼”。一个非常引人注目的演讲阐述为什么更大的创新在等着我们……如果我们把电脑当作团队中的一员的话。别忘了去听听罗伯特·戈登的对立观点。
- Innovation researcher
Erik Brynjolfsson examines the effects of information technologies on business strategy, productivity and employment. Full bio

Double-click the English transcript below to play the video.

00:12
Growth发展 is not dead.
0
605
2272
经济增长并未死去。
00:14
(Applause掌声)
1
2877
1386
(掌声)
00:16
Let's start开始 the story故事 120 years年份 ago,
2
4263
3963
让我们回到120年前,
00:20
when American美国 factories工厂 began开始 to electrify通电 their operations操作,
3
8226
3632
那时,美国工厂开始将生产电气化,
00:23
igniting点火 the Second第二 Industrial产业 Revolution革命.
4
11858
3344
点燃了第二次工业革命。
00:27
The amazing惊人 thing is
5
15202
1111
令人惊讶的是,
00:28
that productivity生产率 did not increase增加 in those factories工厂
6
16313
2777
三十年内,生产力并没有提升。
00:31
for 30 years年份. Thirty三十 years年份.
7
19090
3256
三十年啊!
00:34
That's long enough足够 for a generation of managers经理 to retire退休.
8
22346
3474
这段时间都足够让一代经理人退休了。
00:37
You see, the first wave of managers经理
9
25820
2222
第一代的经理人
00:40
simply只是 replaced更换 their steam蒸汽 engines引擎 with electric电动 motors马达,
10
28042
3417
仅仅是用电动机取代了蒸汽机,
00:43
but they didn't redesign重新设计 the factories工厂 to take advantage优点
11
31459
3010
但他们并没有重新设计工厂使之充分利用
00:46
of electricity's电力公司 flexibility灵活性.
12
34469
2341
电力所带来的灵活性。
00:48
It fell下跌 to the next下一个 generation to invent发明 new work processes流程,
13
36810
3984
到第二代经理人改进运作过程后,
00:52
and then productivity生产率 soared飙升,
14
40794
2727
生产力才开始飙升,
00:55
often经常 doubling加倍 or even tripling三倍 in those factories工厂.
15
43521
3665
达到之前的两倍甚至三倍。
00:59
Electricity电力 is an example of a general一般 purpose目的 technology技术,
16
47186
4723
电力是通用技术的代表之一,
01:03
like the steam蒸汽 engine发动机 before it.
17
51909
2230
就像之前的蒸汽机一样。
01:06
General一般 purpose目的 technologies技术 drive驾驶 most economic经济 growth发展,
18
54139
3416
通用技术推动了多方面的经济增长,
01:09
because they unleash发挥 cascades级联 of complementary补充 innovations创新,
19
57555
3454
因为它们释放了其它各级创新的潜能,
01:13
like lightbulbs电灯泡 and, yes, factory redesign重新设计.
20
61009
3632
例如电灯泡,还有工厂的重新设计。
01:16
Is there a general一般 purpose目的 technology技术 of our era时代?
21
64641
3610
我们这个年代有没有通用技术?
01:20
Sure. It's the computer电脑.
22
68251
2508
当然有,那就是电脑。
01:22
But technology技术 alone单独 is not enough足够.
23
70759
2659
但是仅有技术是不够的。
01:25
Technology技术 is not destiny命运.
24
73418
2766
技术并不是终极目标。
01:28
We shape形状 our destiny命运,
25
76184
1580
我们自己塑造我们的目标,
01:29
and just as the earlier generations of managers经理
26
77764
2516
正如早期的经理人
01:32
needed需要 to redesign重新设计 their factories工厂,
27
80280
2298
需要重新设计工厂,
01:34
we're going to need to reinvent重塑 our organizations组织
28
82578
2229
我们也需要重新改造我们的体制,
01:36
and even our whole整个 economic经济 system系统.
29
84807
2555
甚至整个经济系统。
01:39
We're not doing as well at that job工作 as we should be.
30
87362
3602
在这方面,我们的表现有些差强人意。
01:42
As we'll see in a moment时刻,
31
90964
1230
我会在接下来给大家展现,
01:44
productivity生产率 is actually其实 doing all right,
32
92194
2722
生产效率目前发展良好,
01:46
but it has become成为 decoupled解耦 from jobs工作,
33
94916
3862
但是这已经和工作岗位脱节,
01:50
and the income收入 of the typical典型 worker工人 is stagnating停滞.
34
98778
4419
而且普通工人的收入也正在停止增长。
01:55
These troubles麻烦 are sometimes有时 misdiagnosed误诊
35
103197
2519
这些问题有的时候被误认为是
01:57
as the end结束 of innovation革新,
36
105716
3712
创新的终结,
02:01
but they are actually其实 the growing生长 pains辛劳
37
109428
2129
但实际上,它们是我和安德鲁·麦克菲
02:03
of what Andrew安德鲁 McAfee迈克菲 and I call the new machine age年龄.
38
111557
5590
称作的新机器时代的“成长的烦恼”。
02:09
Let's look at some data数据.
39
117147
1882
让我们看一些数据。
02:11
So here's这里的 GDPGDP per person in America美国.
40
119029
2902
这是美国人均GDP(国内生产总值)变化图。
02:13
There's some bumps颠簸 along沿 the way, but the big story故事
41
121931
2766
中间有些颠簸起伏回落,但从整体上看
02:16
is you could practically几乎 fit适合 a ruler统治者 to it.
42
124697
2715
我们可以用一把尺子(直线)来比量发展趋势。
02:19
This is a log日志 scale规模, so what looks容貌 like steady稳定 growth发展
43
127412
3276
从对数比例的角度来看,这表面上是在稳步增长
02:22
is actually其实 an acceleration促进 in real真实 terms条款.
44
130688
3043
但实际上是加速度。
02:25
And here's这里的 productivity生产率.
45
133731
2160
这里显示的是生产率。
02:27
You can see a little bit of a slowdown慢一点 there in the mid-'中-'70s,
46
135891
2671
大家可以看到在上世纪70年代中叶有一点停顿,
02:30
but it matches火柴 up pretty漂亮 well with the Second第二 Industrial产业 Revolution革命,
47
138562
3738
但这趋势与第二次工业革命的发展很像,
02:34
when factories工厂 were learning学习 how to electrify通电 their operations操作.
48
142300
2691
那时工厂都在学习如何让操作电气化。
02:36
After a lag落后, productivity生产率 accelerated加速 again.
49
144991
4129
在一个停顿之后,生产率又加速发展了。
02:41
So maybe "history历史 doesn't repeat重复 itself本身,
50
149120
2571
也许“历史虽然不会简单重复,
02:43
but sometimes有时 it rhymes童谣."
51
151691
2568
但有时却也有规律可循。”
02:46
Today今天, productivity生产率 is at an all-time整天 high,
52
154259
3136
现在,生产率是有史以来最高的,
02:49
and despite尽管 the Great Recession不景气,
53
157395
1977
尽管有大萧条,
02:51
it grew成长 faster更快 in the 2000s than it did in the 1990s,
54
159372
4252
2000年代的生产率还是要比上世纪90年代的发展得要快,
02:55
the roaring咆哮 1990s, and that was faster更快 than the '70s or '80s.
55
163624
4136
繁荣的90年代的生产率又比70或者80年代的发展快。
02:59
It's growing生长 faster更快 than it did during the Second第二 Industrial产业 Revolution革命.
56
167760
3674
它比第二次工业革命的生产率发展的要快。
03:03
And that's just the United联合的 States状态.
57
171434
1743
而这仅仅是美国的数据。
03:05
The global全球 news新闻 is even better.
58
173177
3248
全球的情况更好。
03:08
Worldwide全世界 incomes收入 have grown长大的 at a faster更快 rate
59
176425
2360
全球收入增长比之前
03:10
in the past过去 decade than ever in history历史.
60
178785
2496
任意一个时代的发展都要快。
03:13
If anything, all these numbers数字 actually其实 understate保守地说 our progress进展,
61
181281
5051
这些数字实际上低估了我们所取得的进步,
03:18
because the new machine age年龄
62
186332
1912
因为新机器时代
03:20
is more about knowledge知识 creation创建
63
188244
1664
更多的是知识创造
03:21
than just physical物理 production生产.
64
189908
2331
而不是具体的物质生产。
03:24
It's mind心神 not matter, brain not brawn膂力,
65
192239
2938
它是思想不是事实,是头脑不是体力,
03:27
ideas思路 not things.
66
195177
2062
是想法而不是具体事物。
03:29
That creates创建 a problem问题 for standard标准 metrics指标,
67
197239
2570
这为那些标准化的测量指标提出了挑战,
03:31
because we're getting得到 more and more stuff东东 for free自由,
68
199809
3502
因为我们正在免费的获得越来越多的信息,
03:35
like Wikipedia维基百科, Google谷歌, SkypeSkype的,
69
203311
2641
比如维基大百科、谷歌、Skype,
03:37
and if they post岗位 it on the web卷筒纸, even this TEDTED Talk.
70
205952
3063
以及发布在网上的内容,比如这个TED演讲。
03:41
Now getting得到 stuff东东 for free自由 is a good thing, right?
71
209015
3303
免费获得东西是好事,对吧?
03:44
Sure, of course课程 it is.
72
212318
1765
当然,那还用说。
03:46
But that's not how economists经济学家 measure测量 GDPGDP.
73
214083
3868
但那不是经济学家如何测算GDP的。
03:49
Zero price价钱 means手段 zero weight重量 in the GDPGDP statistics统计.
74
217951
5592
免费的东西意味着在GDP统计里没有任何权重。
03:55
According根据 to the numbers数字, the music音乐 industry行业
75
223543
2112
根据这些数据来看,音乐工业
03:57
is half the size尺寸 that it was 10 years年份 ago,
76
225655
3000
只是过去十年的一半的规模,
04:00
but I'm listening to more and better music音乐 than ever.
77
228655
3656
但我正在听比过去更多和更好的音乐。
04:04
You know, I bet赌注 you are too.
78
232311
2192
我相信大家也有同感。
04:06
In total, my research研究 estimates估计
79
234503
2723
我的研究预测
04:09
that the GDPGDP numbers数字 miss小姐 over 300 billion十亿 dollars美元 per year
80
237226
4754
我们每年总共少计算三千亿美元的GDP,
04:13
in free自由 goods产品 and services服务 on the Internet互联网.
81
241980
3346
也就是免费在互联网上获得的商品和服务。
04:17
Now let's look to the future未来.
82
245326
1789
让我们展望未来。
04:19
There are some super smart聪明 people
83
247115
2263
有些非常聪明的人们
04:21
who are arguing争论 that we've我们已经 reached到达 the end结束 of growth发展,
84
249378
5019
认为我们的经济增长已经停滞,
04:26
but to understand理解 the future未来 of growth发展,
85
254397
3558
但是,为了理解未来发展的走势,
04:29
we need to make predictions预测
86
257955
2683
我们要预测经济发展的
04:32
about the underlying底层 drivers司机 of growth发展.
87
260638
3290
深层动力是什么。
04:35
I'm optimistic乐观, because the new machine age年龄
88
263928
3806
我是乐观的,因为新机器时代是
04:39
is digital数字, exponential指数 and combinatorial组合.
89
267734
5030
数字化的、指数化(增长)的和组合性的。
04:44
When goods产品 are digital数字, they can be replicated复制
90
272764
2264
当商品是数字化的时候,它们可以
04:47
with perfect完善 quality质量 at nearly几乎 zero cost成本,
91
275028
4509
被近乎无附加值的完美复制,
04:51
and they can be delivered交付 almost几乎 instantaneously瞬间.
92
279537
4018
而且它们几乎可以在瞬间传送。
04:55
Welcome欢迎 to the economics经济学 of abundance丰富.
93
283555
2800
欢迎来到丰饶经济学。
04:58
But there's a subtler微妙 benefit效益 to the digitization数字化 of the world世界.
94
286355
3690
但是还有一个全球电子化带来的微妙好处。
05:02
Measurement测量 is the lifeblood命脉 of science科学 and progress进展.
95
290045
4600
测量是科学与进步的生命线。
05:06
In the age年龄 of big data数据,
96
294645
2148
在大数据时代,
05:08
we can measure测量 the world世界 in ways方法 we never could before.
97
296793
4286
我们可以用从未有过的方式来测量世界。
05:13
Secondly其次, the new machine age年龄 is exponential指数.
98
301079
4095
其次,新机器时代是指数化(发展)的。
05:17
Computers电脑 get better faster更快 than anything else其他 ever.
99
305174
5935
电脑正比任何事物都发展得更快更好。
05:23
A child's孩子的 Playstation游戏机 today今天 is more powerful强大
100
311109
3568
今天一个孩子的Playstation比
05:26
than a military军事 supercomputer超级计算机 from 1996.
101
314677
4056
1996年的军事超级计算机还要强大。
05:30
But our brains大脑 are wired有线 for a linear线性 world世界.
102
318733
3207
但是我们习惯了一个线性发展的世界。
05:33
As a result结果, exponential指数 trends趋势 take us by surprise.
103
321940
3888
因此,我们都惊讶于指数形式的发展趋势。
05:37
I used to teach my students学生们 that there are some things,
104
325828
2602
我以前告诉我的学生,
05:40
you know, computers电脑 just aren't good at,
105
328430
1934
有些事情是电脑做不好的,
05:42
like driving主动 a car汽车 through通过 traffic交通.
106
330364
2385
比如说开车。
05:44
(Laughter笑声)
107
332749
2013
(笑声)
05:46
That's right, here's这里的 Andy安迪 and me grinning狞笑 like madmen疯子
108
334762
3491
对,这是我和安迪笑得像个傻子,
05:50
because we just rode骑着车 down Route路线 101
109
338253
2384
因为我们刚在一辆无人驾驶的汽车里
05:52
in, yes, a driverless无人驾驶 car汽车.
110
340637
3669
穿过了101大道。
05:56
Thirdly第三, the new machine age年龄 is combinatorial组合.
111
344306
2583
第三,新机器时代是组合性的。
05:58
The stagnationist停滞 view视图 is that ideas思路 get used up,
112
346889
4048
停滞的观点认为所有的创新都用完了,
06:02
like low-hanging低悬 fruit水果,
113
350937
1856
比如那些显而易见的,
06:04
but the reality现实 is that each innovation革新
114
352793
3163
但事实是每个创新
06:07
creates创建 building建造 blocks for even more innovations创新.
115
355956
3256
都为更多的创新奠定了基石。
06:11
Here's这里的 an example. In just a matter of a few少数 weeks,
116
359212
3345
举个例子。在几周内,
06:14
an undergraduate大学本科 student学生 of mine
117
362557
2072
我的一个学生
06:16
built内置 an app应用 that ultimately最终 reached到达 1.3 million百万 users用户.
118
364629
4111
开发了一个吸引了大概一百三十万用户的应用。
06:20
He was able能够 to do that so easily容易
119
368740
1699
他可以这么轻松的完成
06:22
because he built内置 it on top最佳 of FacebookFacebook的,
120
370439
1827
是因为这个应用是在脸书上搭建起来的,
06:24
and FacebookFacebook的 was built内置 on top最佳 of the web卷筒纸,
121
372266
1933
而脸书又依托于网络,
06:26
and that was built内置 on top最佳 of the Internet互联网,
122
374199
1698
而网络又是在互联网上建造起来的,
06:27
and so on and so forth向前.
123
375897
2418
等等等等。
06:30
Now individually个别地, digital数字, exponential指数 and combinatorial组合
124
378315
4765
电子化、指数化(发展)和组合化,
06:35
would each be game-changers破局者.
125
383080
2350
任何一个都会带来翻天覆地的变化。
06:37
Put them together一起, and we're seeing眼看 a wave
126
385430
2190
把它们结合起来,我们就会看到
06:39
of astonishing惊人 breakthroughs突破,
127
387620
1393
新一轮的惊人突破,
06:41
like robots机器人 that do factory work or run as fast快速 as a cheetah猎豹
128
389013
3060
比如机器人来做工厂的工作或者跑得像猎豹一样快
06:44
or leap飞跃 tall buildings房屋 in a single bound.
129
392073
2796
或者一个飞跃就跃过高楼大厦。
06:46
You know, robots机器人 are even revolutionizing革新
130
394869
2232
机器人甚至正在变革
06:49
cat transportation运输.
131
397101
1829
对猫的运输方式。
06:50
(Laughter笑声)
132
398930
2270
(笑声)
06:53
But perhaps也许 the most important重要 invention发明,
133
401200
2732
但也许最重要的发明,
06:55
the most important重要 invention发明 is machine learning学习.
134
403932
5065
就是机器学习。
07:00
Consider考虑 one project项目: IBM'sIBM的 Watson沃森.
135
408997
3376
看看IBM的沃森项目。
07:04
These little dots here,
136
412373
1589
这些小圆点们,
07:05
those are all the champions冠军 on the quiz测验 show显示 "Jeopardy危险."
137
413962
4860
这些是益智游戏“杰帕迪”的冠军们。
07:10
At first, Watson沃森 wasn't very good,
138
418822
2544
最初,沃森变现得并不出色,
07:13
but it improved改善 at a rate faster更快 than any human人的 could,
139
421366
5622
但是它比任何人类改进得都快,
07:18
and shortly不久 after Dave戴夫 Ferrucci费鲁奇 showed显示 this chart图表
140
426988
2687
很快,在大卫·费鲁奇(沃森项目负责人)给我在MIT
07:21
to my class at MITMIT,
141
429675
1652
的学生看这张图之后不久,
07:23
Watson沃森 beat击败 the world世界 "Jeopardy危险" champion冠军.
142
431327
3542
沃森就击败了“杰帕迪”的世界冠军。
07:26
At age年龄 seven, Watson沃森 is still kind of in its childhood童年.
143
434869
3989
那时沃森只有7岁,还是个孩子。
07:30
Recently最近, its teachers教师 let it surf冲浪 the Internet互联网 unsupervised无监督.
144
438858
5318
最近,它的老师们让它自行上网。
07:36
The next下一个 day, it started开始 answering回答 questions问题 with profanities脏话.
145
444176
5946
第二天,它就开始用脏话来回答问题了。
07:42
Damn该死的. (Laughter笑声)
146
450122
2274
糟糕。(笑声)
07:44
But you know, Watson沃森 is growing生长 up fast快速.
147
452396
2280
但是,沃森正在快速的成长。
07:46
It's being存在 tested测试 for jobs工作 in call centers中心, and it's getting得到 them.
148
454676
4212
它应聘了客服类的工作,而且它很胜任。
07:50
It's applying应用 for legal法律, banking银行业 and medical jobs工作,
149
458888
3724
它正在应聘法律、银行和医药类的工作,
07:54
and getting得到 some of them.
150
462612
1950
而且也拿到了一些工作。
07:56
Isn't it ironic具有讽刺意味 that at the very moment时刻
151
464562
1889
是不是很讽刺,我们在这个非常时期
07:58
we are building建造 intelligent智能 machines,
152
466451
2234
正在建造可能是
08:00
perhaps也许 the most important重要 invention发明 in human人的 history历史,
153
468685
3449
人类历史上最重要的发明--智能机器,
08:04
some people are arguing争论 that innovation革新 is stagnating停滞?
154
472134
3975
而一些人还在说创新停滞不前了?
08:08
Like the first two industrial产业 revolutions革命,
155
476109
2419
就像之前的两次工业革命,
08:10
the full充分 implications启示 of the new machine age年龄
156
478528
3134
新机器时代的全面影响
08:13
are going to take at least最小 a century世纪 to fully充分 play out,
157
481662
2682
至少会用一个世纪才能完全发挥出来,
08:16
but they are staggering踉跄.
158
484344
3032
但这将会是惊人的。
08:19
So does that mean we have nothing to worry担心 about?
159
487376
3336
这是不是说我们没有什么可担心的了?
08:22
No. Technology技术 is not destiny命运.
160
490712
3680
不!技术不是目的。
08:26
Productivity生产率 is at an all time high,
161
494392
2569
生产率是史上最高的,
08:28
but fewer people now have jobs工作.
162
496961
2983
但是更少的人现在还有工作。
08:31
We have created创建 more wealth财富 in the past过去 decade than ever,
163
499944
3120
我们在过去十年创造了比过去更多的财富,
08:35
but for a majority多数 of Americans美国人, their income收入 has fallen堕落.
164
503064
3904
但是大部分的美国家庭,他们的收入却降低了。
08:38
This is the great decoupling去耦
165
506968
2312
这是生产率和就业率,
08:41
of productivity生产率 from employment雇用,
166
509280
2976
财富和工作的
08:44
of wealth财富 from work.
167
512256
3104
严重脱节,
08:47
You know, it's not surprising奇怪 that millions百万 of people
168
515360
2346
要知道,有数百万人受到
08:49
have become成为 disillusioned幻灭 by the great decoupling去耦,
169
517706
2846
被这种严重脱节的现象所迷惑,这并不让人惊讶,
08:52
but like too many许多 others其他,
170
520552
1747
但是像很多其他的人一样,
08:54
they misunderstand误解 its basic基本 causes原因.
171
522299
3097
人们误解了这种现象的根本原因。
08:57
Technology技术 is racing赛跑 ahead,
172
525396
2610
科技正在领跑,
09:00
but it's leaving离开 more and more people behind背后.
173
528006
3550
但它把越来越多的人甩在了后面。
09:03
Today今天, we can take a routine常规 job工作,
174
531556
3519
今天,我们可以把一个日常工作
09:07
codify编成法典 it in a set of machine-readable机器可读 instructions说明,
175
535075
3091
编译成一组机器可读的指令,
09:10
and then replicate复制 it a million百万 times.
176
538166
2827
然后就可以把它复制百万次。
09:12
You know, I recently最近 overheard偷听 a conversation会话
177
540993
2279
我最近就听到了一段
09:15
that epitomizes集中体现 these new economics经济学.
178
543272
1952
反映这些新经济现象的对话。
09:17
This guy says, "Nah, I don't use H&R Block anymore.
179
545224
4197
有个人说,“我不再用布洛克税务公司的专人服务了。
09:21
TurboTaxTurboTax的 does everything that my tax preparer报税 did,
180
549421
2448
波税务软件可以我的报税员做的任何工作,
09:23
but it's faster更快, cheaper便宜 and more accurate准确."
181
551869
4558
但它更快、更便宜也更准确。“
09:28
How can a skilled技能的 worker工人
182
556427
1799
一个专业人士
09:30
compete竞争 with a $39 piece of software软件?
183
558226
3009
怎么能和一个售价只有39美元的软件相比?
09:33
She can't.
184
561235
1967
不可能的。
09:35
Today今天, millions百万 of Americans美国人 do have faster更快,
185
563202
2780
今天,数百万的美国人有了更快、
09:37
cheaper便宜, more accurate准确 tax preparation制备,
186
565982
2387
更便宜和更准确的税款准备,
09:40
and the founders创始人 of Intuit意会
187
568369
1486
而且Intuit公司(创造TurboTax软件的公司)创始人
09:41
have doneDONE very well for themselves他们自己.
188
569855
2493
也为自己收获颇丰。
09:44
But 17 percent百分 of tax preparers编制 no longer have jobs工作.
189
572348
4214
但17%的报税员却失去了工作。
09:48
That is a microcosm缩影 of what's happening事件,
190
576562
2078
这只是正在发生着的改变的一个缩影。
09:50
not just in software软件 and services服务, but in media媒体 and music音乐,
191
578640
4677
不仅是在软件和服务领域,也在媒体和音乐界,
09:55
in finance金融 and manufacturing制造业, in retailing零售业 and trade贸易 --
192
583317
3686
在金融、制造业、零售和外贸 -
09:59
in short, in every一切 industry行业.
193
587003
3895
总而言之,在每个行业中都在发生着。
10:02
People are racing赛跑 against反对 the machine,
194
590898
3095
人类在和机器较量,
10:05
and many许多 of them are losing失去 that race种族.
195
593993
3090
很多人都在失去这场较量。
10:09
What can we do to create创建 shared共享 prosperity繁荣?
196
597083
3886
我们怎样才能达到共同繁荣?
10:12
The answer回答 is not to try to slow down technology技术.
197
600969
3017
答案绝对不是试图减缓科技发展。
10:15
Instead代替 of racing赛跑 against反对 the machine,
198
603986
2557
与其和机器赛跑,
10:18
we need to learn学习 to race种族 with the machine.
199
606543
3677
我们应该学着如何与机器一同进步。
10:22
That is our grand盛大 challenge挑战.
200
610220
3129
这是我们最大的挑战。
10:25
The new machine age年龄
201
613349
2324
新机器时代
10:27
can be dated过时的 to a day 15 years年份 ago
202
615673
3113
可以从15年前的一天开始算起,
10:30
when Garry加里 Kasparov卡斯帕罗夫, the world世界 chess champion冠军,
203
618786
2878
当世界国际象棋冠军加里·卡斯帕罗夫
10:33
played发挥 Deep Blue蓝色, a supercomputer超级计算机.
204
621664
3706
和一台叫做深蓝的超级计算机下棋的时候。
10:37
The machine won韩元 that day,
205
625370
2012
当时机器赢了,
10:39
and today今天, a chess program程序 running赛跑 on a cell细胞 phone电话
206
627382
2968
而现在,一个在手机上的国际象棋程序
10:42
can beat击败 a human人的 grandmaster棋圣.
207
630350
2296
也可以打败一个人类大师。
10:44
It got so bad that, when he was asked
208
632646
3365
事情糟糕到,当被问到如果和一台电脑
10:48
what strategy战略 he would use against反对 a computer电脑,
209
636011
2563
下棋他会使用什么样的战术时,
10:50
Jan一月 Donner唐纳, the Dutch荷兰人 grandmaster棋圣, replied回答,
210
638574
4016
约翰·唐纳,荷兰象棋大师,回应道,
10:54
"I'd bring带来 a hammer锤子."
211
642590
1771
“我会带个锤子。”
10:56
(Laughter笑声)
212
644361
3680
(笑声)
11:00
But today今天 a computer电脑 is no longer the world世界 chess champion冠军.
213
648041
4544
但今天电脑不再是世界国际象棋大赛冠军。
11:04
Neither也不 is a human人的,
214
652585
2654
也不是一个人,
11:07
because Kasparov卡斯帕罗夫 organized有组织的 a freestyle自由泳 tournament比赛
215
655239
3579
因为卡斯帕罗夫组织了一个自由式比赛
11:10
where teams球队 of humans人类 and computers电脑
216
658818
1916
人类和电脑可以组团
11:12
could work together一起,
217
660734
2099
一起合作,
11:14
and the winning胜利 team球队 had no grandmaster棋圣,
218
662833
3157
最终的获胜者团队里既没有大师,
11:17
and it had no supercomputer超级计算机.
219
665990
2465
也没有超级电脑。
11:20
What they had was better teamwork团队合作,
220
668455
4175
他们有的是更好的团队合作,
11:24
and they showed显示 that a team球队 of humans人类 and computers电脑,
221
672630
5016
这证明了一个由人和电脑共同协作的团队,
11:29
working加工 together一起, could beat击败 any computer电脑
222
677646
3048
可以打败任何一个单一作战的电脑
11:32
or any human人的 working加工 alone单独.
223
680694
3520
或者个人。
11:36
Racing赛跑 with the machine
224
684214
1664
和机器一同前进
11:37
beats节拍 racing赛跑 against反对 the machine.
225
685878
2343
要远远好过和机器竞赛。
11:40
Technology技术 is not destiny命运.
226
688221
2564
技术不是终极目标。
11:42
We shape形状 our destiny命运.
227
690785
1742
我们塑造自己的目标。
11:44
Thank you.
228
692527
1447
谢谢大家。
11:45
(Applause掌声)
229
693974
5016
(掌声)
Translated by xuan wang
Reviewed by Jia Zeng

▲Back to top

ABOUT THE SPEAKER
Erik Brynjolfsson - Innovation researcher
Erik Brynjolfsson examines the effects of information technologies on business strategy, productivity and employment.

Why you should listen

The director of the MIT Center for Digital Business and a research associate at the National Bureau of Economic Research, Erik Brynjolfsson asks how IT affects organizations, markets and the economy. His recent work studies data-driven decision-making, management practices that drive productivity, the pricing implications of Internet commerce and the role of intangible assets.
 
Brynjolfsson was among the first researchers to measure the productivity contributions of information and community technology (ICT) and the complementary role of organizational capital and other intangibles. His research also provided the first quantification of the value of online product variety, often known as the “Long Tail,” and developed pricing and bundling models for information goods.

His books include Wired for Innovation: How IT Is Reshaping the Economy and Race Against the Machine: How the Digital Revolution Is Accelerating Innovation, Driving Productivity and Irreversibly Transforming Employment and the Economy (with Andrew McAfee); and the recent article "Big Data: The Management Revolution" (with Andrew McAfee).

More profile about the speaker
Erik Brynjolfsson | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee