ABOUT THE SPEAKER
Erik Brynjolfsson - Innovation researcher
Erik Brynjolfsson examines the effects of information technologies on business strategy, productivity and employment.

Why you should listen

The director of the MIT Center for Digital Business and a research associate at the National Bureau of Economic Research, Erik Brynjolfsson asks how IT affects organizations, markets and the economy. His recent work studies data-driven decision-making, management practices that drive productivity, the pricing implications of Internet commerce and the role of intangible assets.
 
Brynjolfsson was among the first researchers to measure the productivity contributions of information and community technology (ICT) and the complementary role of organizational capital and other intangibles. His research also provided the first quantification of the value of online product variety, often known as the “Long Tail,” and developed pricing and bundling models for information goods.

His books include Wired for Innovation: How IT Is Reshaping the Economy and Race Against the Machine: How the Digital Revolution Is Accelerating Innovation, Driving Productivity and Irreversibly Transforming Employment and the Economy (with Andrew McAfee); and the recent article "Big Data: The Management Revolution" (with Andrew McAfee).

More profile about the speaker
Erik Brynjolfsson | Speaker | TED.com
TED2013

Erik Brynjolfsson: The key to growth? Race with the machines

艾瑞克.布倫喬爾森 (Erik Brynjolfsson): 成長的關鍵?與電腦競爭

Filmed:
1,321,770 views

現在機器能做的工作越來越多,許多人發現自己丟了工作或是面臨加薪遙遙無期的窘境。難道我們已經走到了成長的盡頭?不,艾瑞克.布倫喬爾森 (Erik Brynjolfsson) 認為,這只是徹底重整經濟的陣痛期。他提出了一個有趣的案例來說明,如果我們願意和電腦合作,將如何創造更多的可能。一起來聽看看艾瑞克.布倫喬爾森獨特的看法。
- Innovation researcher
Erik Brynjolfsson examines the effects of information technologies on business strategy, productivity and employment. Full bio

Double-click the English transcript below to play the video.

00:12
Growth發展 is not dead.
0
605
2272
成長還沒停止
00:14
(Applause掌聲)
1
2877
1386
(掌聲)
00:16
Let's start開始 the story故事 120 years年份 ago,
2
4263
3963
故事從 120 年前說起
00:20
when American美國 factories工廠 began開始 to electrify通電 their operations操作,
3
8226
3632
美國工廠開始電器化運作
00:23
igniting點火 the Second第二 Industrial產業 Revolution革命.
4
11858
3344
帶動了第二次工業革命
00:27
The amazing驚人 thing is
5
15202
1111
但驚人的是
00:28
that productivity生產率 did not increase增加 in those factories工廠
6
16313
2777
三十年中,那些工廠的生產力並沒有提升
00:31
for 30 years年份. Thirty三十 years年份.
7
19090
3256
整整三十年
00:34
That's long enough足夠 for a generation of managers經理 to retire退休.
8
22346
3474
這段時間足以讓一代的經理退休了
00:37
You see, the first wave of managers經理
9
25820
2222
我們可以看到,第一批經理
00:40
simply只是 replaced更換 their steam蒸汽 engines引擎 with electric電動 motors馬達,
10
28042
3417
只不過是把蒸汽機換成電動機而已
00:43
but they didn't redesign重新設計 the factories工廠 to take advantage優點
11
31459
3010
他們並沒有重新設計工廠
00:46
of electricity's電力公司 flexibility靈活性.
12
34469
2341
讓它利用電的多變性
00:48
It fell下跌 to the next下一個 generation to invent發明 new work processes流程,
13
36810
3984
下個世代開始發明新的工作程序
00:52
and then productivity生產率 soared飆升,
14
40794
2727
生產力因此大增
00:55
often經常 doubling加倍 or even tripling三倍 in those factories工廠.
15
43521
3665
常常是原來工廠的兩倍,甚至是三倍
00:59
Electricity電力 is an example of a general一般 purpose目的 technology技術,
16
47186
4723
電力是一種通用目的技術的例子
01:03
like the steam蒸汽 engine發動機 before it.
17
51909
2230
出現較早的蒸汽機也是一樣
01:06
General一般 purpose目的 technologies技術 drive駕駛 most economic經濟 growth發展,
18
54139
3416
通用目的技術是帶動經濟發展的主力
01:09
because they unleash發揮 cascades級聯 of complementary補充 innovations創新,
19
57555
3454
因為它能帶動一連串有互補性的創新
01:13
like lightbulbs電燈泡 and, yes, factory redesign重新設計.
20
61009
3632
像是燈泡,沒錯,工廠因而改頭換面
01:16
Is there a general一般 purpose目的 technology技術 of our era時代?
21
64641
3610
那現代有通用目的技術存在嗎?
01:20
Sure. It's the computer電腦.
22
68251
2508
當然有,就是電腦
01:22
But technology技術 alone單獨 is not enough足夠.
23
70759
2659
但只靠科技還不夠
01:25
Technology技術 is not destiny命運.
24
73418
2766
科技不能主導命運
01:28
We shape形狀 our destiny命運,
25
76184
1580
是我們掌握自己的命運
01:29
and just as the earlier generations of managers經理
26
77764
2516
就像早期的經理
01:32
needed需要 to redesign重新設計 their factories工廠,
27
80280
2298
需要重新打造他們的工廠一樣
01:34
we're going to need to reinvent重塑 our organizations組織
28
82578
2229
我們也需要重建一個組織
01:36
and even our whole整個 economic經濟 system系統.
29
84807
2555
甚至是重塑整個經濟體制
01:39
We're not doing as well at that job工作 as we should be.
30
87362
3602
我們並沒有達到應有的水準
01:42
As we'll see in a moment時刻,
31
90964
1230
我們馬上就會了解
01:44
productivity生產率 is actually其實 doing all right,
32
92194
2722
生產力是完全沒有問題的
01:46
but it has become成為 decoupled解耦 from jobs工作,
33
94916
3862
但生產力與工作背道而馳
01:50
and the income收入 of the typical典型 worker工人 is stagnating停滯.
34
98778
4419
而且,一般工人的收入也減少了
01:55
These troubles麻煩 are sometimes有時 misdiagnosed誤診
35
103197
2519
有時候我們在創新的盡頭
01:57
as the end結束 of innovation革新,
36
105716
3712
會對這些問題有錯誤的判斷
02:01
but they are actually其實 the growing生長 pains辛勞
37
109428
2129
但事實上這是一種成長必要的代價
02:03
of what Andrew安德魯 McAfee邁克菲 and I call the new machine age年齡.
38
111557
5590
我和安德魯.邁克菲 (Andrew McAfee)
將其稱為「新機器時代」
02:09
Let's look at some data數據.
39
117147
1882
我們來看看一些資料
02:11
So here's這裡的 GDPGDP per person in America美國.
40
119029
2902
這是美國每人的國內生產毛額
02:13
There's some bumps顛簸 along沿 the way, but the big story故事
41
121931
2766
線上有些高低起伏,但重點是
02:16
is you could practically幾乎 fit適合 a ruler統治者 to it.
42
124697
2715
你會發現它的路徑與直線符合
02:19
This is a log日誌 scale規模, so what looks容貌 like steady穩定 growth發展
43
127412
3276
這是對數比例尺,所以看起來是穩定成長
02:22
is actually其實 an acceleration促進 in real真實 terms條款.
44
130688
3043
但事實上,它是加速進行著
02:25
And here's這裡的 productivity生產率.
45
133731
2160
而這是生產力
02:27
You can see a little bit of a slowdown慢一點 there in the mid-'中-'70s,
46
135891
2671
大家可以看到在 70 年代中期,成長漸緩
02:30
but it matches火柴 up pretty漂亮 well with the Second第二 Industrial產業 Revolution革命,
47
138562
3738
但這和第二次工業革命的時間吻合
02:34
when factories工廠 were learning學習 how to electrify通電 their operations操作.
48
142300
2691
當時工廠正在學著如何電器化運作
02:36
After a lag落後, productivity生產率 accelerated加速 again.
49
144991
4129
漸緩一段時間後,生產力再度急遽上升
02:41
So maybe "history歷史 doesn't repeat重複 itself本身,
50
149120
2571
所以或許「歷史不會自己重演
02:43
but sometimes有時 it rhymes童謠."
51
151691
2568
但有時不可否認會有幾分相似。」
02:46
Today今天, productivity生產率 is at an all-time整天 high,
52
154259
3136
現在,生產力是前所未有的高
02:49
and despite儘管 the Great Recession不景氣,
53
157395
1977
儘管是在經濟大蕭條的期間
02:51
it grew成長 faster更快 in the 2000s than it did in the 1990s,
54
159372
4252
2000 年以來還是比 90 年代成長得更快
02:55
the roaring咆哮 1990s, and that was faster更快 than the '70s or '80s.
55
163624
4136
喧囂動盪的 90 年代還是比
70 或 80 年代增加更快
02:59
It's growing生長 faster更快 than it did during the Second第二 Industrial產業 Revolution革命.
56
167760
3674
比第二次工業革命時成長更快
03:03
And that's just the United聯合的 States狀態.
57
171434
1743
而這只是美國而已
03:05
The global全球 news新聞 is even better.
58
173177
3248
全球的表現更是優秀
03:08
Worldwide全世界 incomes收入 have grown長大的 at a faster更快 rate
59
176425
2360
全球所得在過去十年
03:10
in the past過去 decade than ever in history歷史.
60
178785
2496
以前所未有的驚人速度成長
03:13
If anything, all these numbers數字 actually其實 understate保守地說 our progress進展,
61
181281
5051
不過,這些數據事實上低估了我們進步的程度
03:18
because the new machine age年齡
62
186332
1912
因為新機器時代
03:20
is more about knowledge知識 creation創建
63
188244
1664
強調的是知識的創造
03:21
than just physical物理 production生產.
64
189908
2331
而非只是實際的產量
03:24
It's mind心神 not matter, brain not brawn膂力,
65
192239
2938
怎麼想比怎麼做來得重要
要動腦而不是靠蠻力
03:27
ideas思路 not things.
66
195177
2062
想法大於產物本身
03:29
That creates創建 a problem問題 for standard標準 metrics指標,
67
197239
2570
而這產生了測量標準的問題
03:31
because we're getting得到 more and more stuff東東 for free自由,
68
199809
3502
因為免費的東西越來越多
03:35
like Wikipedia維基百科, Google谷歌, SkypeSkype的,
69
203311
2641
像是維基百科、谷歌、網路電話(Skype)
03:37
and if they post崗位 it on the web捲筒紙, even this TEDTED Talk.
70
205952
3063
他們把東西放到網路上
甚至是現在這篇 TED 演講
03:41
Now getting得到 stuff東東 for free自由 is a good thing, right?
71
209015
3303
有免費的東西是好事,對吧?
03:44
Sure, of course課程 it is.
72
212318
1765
當然是好事
03:46
But that's not how economists經濟學家 measure測量 GDPGDP.
73
214083
3868
但經濟學家可不是這樣衡量國內生產毛額的
03:49
Zero price價錢 means手段 zero weight重量 in the GDPGDP statistics統計.
74
217951
5592
免費,在國內生產毛額統計上代表權重為零
03:55
According根據 to the numbers數字, the music音樂 industry行業
75
223543
2112
根據調查顯示,音樂產業的規模
03:57
is half the size尺寸 that it was 10 years年份 ago,
76
225655
3000
只有十年前的二分之一
04:00
but I'm listening to more and better music音樂 than ever.
77
228655
3656
但我現在聽到的音樂,比起以前進步很多
04:04
You know, I bet賭注 you are too.
78
232311
2192
我想你們也有這種感覺
04:06
In total, my research研究 estimates估計
79
234503
2723
整體來說,我的研究估計
04:09
that the GDPGDP numbers數字 miss小姐 over 300 billion十億 dollars美元 per year
80
237226
4754
國內生產毛額每年少算超過三千億美元
04:13
in free自由 goods產品 and services服務 on the Internet互聯網.
81
241980
3346
忽略了網路上提供的免費產品及服務
04:17
Now let's look to the future未來.
82
245326
1789
現在我們放眼未來
04:19
There are some super smart聰明 people
83
247115
2263
有些非常聰明的人
04:21
who are arguing爭論 that we've我們已經 reached到達 the end結束 of growth發展,
84
249378
5019
認為我們已經發展到了窮途末路
04:26
but to understand理解 the future未來 of growth發展,
85
254397
3558
但要了解未來的發展
04:29
we need to make predictions預測
86
257955
2683
我們必須對成長潛在的驅動力
04:32
about the underlying底層 drivers司機 of growth發展.
87
260638
3290
做些預測
04:35
I'm optimistic樂觀, because the new machine age年齡
88
263928
3806
我抱持樂觀的態度,因為新機器時代
04:39
is digital數字, exponential指數 and combinatorial組合.
89
267734
5030
是數位化、指數化及組合化的時代
04:44
When goods產品 are digital數字, they can be replicated複製
90
272764
2264
當產品數位化,就能夠複製
04:47
with perfect完善 quality質量 at nearly幾乎 zero cost成本,
91
275028
4509
幾乎不用花半毛錢,就能有很好的品質
04:51
and they can be delivered交付 almost幾乎 instantaneously瞬間.
92
279537
4018
而且可以立即傳送
04:55
Welcome歡迎 to the economics經濟學 of abundance豐富.
93
283555
2800
歡迎來到經濟蓬勃的時代
04:58
But there's a subtler微妙 benefit效益 to the digitization數字化 of the world世界.
94
286355
3690
世界數位化有個比較其次的好處
05:02
Measurement測量 is the lifeblood命脈 of science科學 and progress進展.
95
290045
4600
測量是科學及進步的重要指標
05:06
In the age年齡 of big data數據,
96
294645
2148
在充斥大量資料的時代
05:08
we can measure測量 the world世界 in ways方法 we never could before.
97
296793
4286
我們可以用過去辦不到的方法
來衡量現在的世界
05:13
Secondly其次, the new machine age年齡 is exponential指數.
98
301079
4095
第二,新機器時代是指數化的時代
05:17
Computers電腦 get better faster更快 than anything else其他 ever.
99
305174
5935
電腦比任何東西跑得更快
05:23
A child's孩子的 Playstation遊戲機 today今天 is more powerful強大
100
311109
3568
現在小朋友的遊戲機(Playstation)
05:26
than a military軍事 supercomputer超級計算機 from 1996.
101
314677
4056
比 1996 年軍隊的超級電腦更進步
05:30
But our brains大腦 are wired有線 for a linear線性 world世界.
102
318733
3207
但我們的大腦是習慣線性世界的
05:33
As a result結果, exponential指數 trends趨勢 take us by surprise.
103
321940
3888
因此,指數化的趨勢讓我們大吃 一驚
05:37
I used to teach my students學生們 that there are some things,
104
325828
2602
過去我都教學生說,有些事
05:40
you know, computers電腦 just aren't good at,
105
328430
1934
你知道嗎?電腦根本做不來
05:42
like driving主動 a car汽車 through通過 traffic交通.
106
330364
2385
像開車通過擁擠的車潮
05:44
(Laughter笑聲)
107
332749
2013
(笑聲)
05:46
That's right, here's這裡的 Andy安迪 and me grinning獰笑 like madmen瘋子
108
334762
3491
沒錯,這張照片是我和安迪,像瘋子一樣在大笑
05:50
because we just rode騎著車 down Route路線 101
109
338253
2384
因為我們剛下國道 101
05:52
in, yes, a driverless無人駕駛 car汽車.
110
340637
3669
沒錯,就在一台無人駕駛的車子裡
05:56
Thirdly第三, the new machine age年齡 is combinatorial組合.
111
344306
2583
第三,新機器時代是組合化的時代
05:58
The stagnationist停滯 view視圖 is that ideas思路 get used up,
112
346889
4048
想法停滯就是想法用完了
06:02
like low-hanging低懸 fruit水果,
113
350937
1856
輕而易舉
06:04
but the reality現實 is that each innovation革新
114
352793
3163
但事實上,每一種創新
06:07
creates創建 building建造 blocks for even more innovations創新.
115
355956
3256
都是激盪出更多創新的墊腳石
06:11
Here's這裡的 an example. In just a matter of a few少數 weeks,
116
359212
3345
舉例來說,大約幾個禮拜前
06:14
an undergraduate大學本科 student學生 of mine
117
362557
2072
我的一位大學生
06:16
built內置 an app應用 that ultimately最終 reached到達 1.3 million百萬 users用戶.
118
364629
4111
開發了一個應用程式,最後使用者高達 130 萬
06:20
He was able能夠 to do that so easily容易
119
368740
1699
他輕而易舉就能辦到
06:22
because he built內置 it on top最佳 of FacebookFacebook的,
120
370439
1827
因為他是在臉書上建立的
06:24
and FacebookFacebook的 was built內置 on top最佳 of the web捲筒紙,
121
372266
1933
而臉書是個網站
06:26
and that was built內置 on top最佳 of the Internet互聯網,
122
374199
1698
網站又建立在網路之上
06:27
and so on and so forth向前.
123
375897
2418
等等的關聯
06:30
Now individually個別地, digital數字, exponential指數 and combinatorial組合
124
378315
4765
現在個人數位化、指數化及組合化
06:35
would each be game-changers破局者.
125
383080
2350
分別都能改變這場遊戲
06:37
Put them together一起, and we're seeing眼看 a wave
126
385430
2190
把這些通通集結起來,我們會看到
06:39
of astonishing驚人 breakthroughs突破,
127
387620
1393
一連串驚人的突破
06:41
like robots機器人 that do factory work or run as fast快速 as a cheetah獵豹
128
389013
3060
像是機器人,能在工廠工作
跑得跟印度豹一樣快
06:44
or leap飛躍 tall buildings房屋 in a single bound.
129
392073
2796
或是一躍就能上高樓
06:46
You know, robots機器人 are even revolutionizing革新
130
394869
2232
其實,機器人甚至改變了
06:49
cat transportation運輸.
131
397101
1829
貓的運輸方式
06:50
(Laughter笑聲)
132
398930
2270
(笑聲)
06:53
But perhaps也許 the most important重要 invention發明,
133
401200
2732
但或許最重要的發明
06:55
the most important重要 invention發明 is machine learning學習.
134
403932
5065
最重要的發明是讓機器學習
07:00
Consider考慮 one project項目: IBM'sIBM的 Watson沃森.
135
408997
3376
想想這個計畫:IBM 的沃森(Watson)
07:04
These little dots here,
136
412373
1589
這些點顯示的是
07:05
those are all the champions冠軍 on the quiz測驗 show顯示 "Jeopardy危險."
137
413962
4860
智力節目《危險邊緣》裡所有的冠軍選手
07:10
At first, Watson沃森 wasn't very good,
138
418822
2544
一開始,沃森表現不佳
07:13
but it improved改善 at a rate faster更快 than any human人的 could,
139
421366
5622
但它進步的速度超乎常人
07:18
and shortly不久 after Dave戴夫 Ferrucci費魯奇 showed顯示 this chart圖表
140
426988
2687
就在戴維.費魯奇 (Dave Ferrucci)
給我在麻省理工學院的學生
07:21
to my class at MITMIT,
141
429675
1652
看這張圖的不久後
07:23
Watson沃森 beat擊敗 the world世界 "Jeopardy危險" champion冠軍.
142
431327
3542
沃森打敗了《危險邊緣》的世界冠軍
07:26
At age年齡 seven, Watson沃森 is still kind of in its childhood童年.
143
434869
3989
七歲,沃森差不多還在童年時期
07:30
Recently最近, its teachers教師 let it surf衝浪 the Internet互聯網 unsupervised無監督.
144
438858
5318
最近,沃森的老師讓它在
無人指導的情況下上網
07:36
The next下一個 day, it started開始 answering回答 questions問題 with profanities髒話.
145
444176
5946
隔天,它開始以髒話回答問題
07:42
Damn該死的. (Laughter笑聲)
146
450122
2274
該死!(笑聲)
07:44
But you know, Watson沃森 is growing生長 up fast快速.
147
452396
2280
但你們知道嗎?沃森長得很快
07:46
It's being存在 tested測試 for jobs工作 in call centers中心, and it's getting得到 them.
148
454676
4212
它參加客服中心工作的考試,全數通過
07:50
It's applying應用 for legal法律, banking銀行業 and medical jobs工作,
149
458888
3724
它申請法律、銀行及醫療方面的工作
07:54
and getting得到 some of them.
150
462612
1950
有一些通過了
07:56
Isn't it ironic具有諷刺意味 that at the very moment時刻
151
464562
1889
這種情況下
07:58
we are building建造 intelligent智能 machines,
152
466451
2234
我們發明了智慧型機器
08:00
perhaps也許 the most important重要 invention發明 in human人的 history歷史,
153
468685
3449
或許還是人類史上最重要的發明
08:04
some people are arguing爭論 that innovation革新 is stagnating停滯?
154
472134
3975
卻有人說創新停滯了,這不是很諷刺嗎?
08:08
Like the first two industrial產業 revolutions革命,
155
476109
2419
像第一及第二次工業革命
08:10
the full充分 implications啟示 of the new machine age年齡
156
478528
3134
新機器時代涵蓋的所有層面
08:13
are going to take at least最小 a century世紀 to fully充分 play out,
157
481662
2682
至少要一個世紀才會完全落幕
08:16
but they are staggering踉蹌.
158
484344
3032
但這樣的革命是很驚人的
08:19
So does that mean we have nothing to worry擔心 about?
159
487376
3336
所以這代表我們沒有後顧之憂了嗎?
08:22
No. Technology技術 is not destiny命運.
160
490712
3680
不,科技不能主導命運
08:26
Productivity生產率 is at an all time high,
161
494392
2569
生產力是前所未有的高
08:28
but fewer people now have jobs工作.
162
496961
2983
但有工作的人變少了
08:31
We have created創建 more wealth財富 in the past過去 decade than ever,
163
499944
3120
過去十年來,我們創造了史無前例的財富
08:35
but for a majority多數 of Americans美國人, their income收入 has fallen墮落.
164
503064
3904
但多數的美國人,所得卻下降了
08:38
This is the great decoupling去耦
165
506968
2312
這是很嚴重的排擠效應
08:41
of productivity生產率 from employment僱用,
166
509280
2976
生產力排擠就業率
08:44
of wealth財富 from work.
167
512256
3104
財富排擠了工作
08:47
You know, it's not surprising奇怪 that millions百萬 of people
168
515360
2346
其實,這種情況不意外,幾百萬人
08:49
have become成為 disillusioned幻滅 by the great decoupling去耦,
169
517706
2846
對於這樣的排擠效應感到失望
08:52
but like too many許多 others其他,
170
520552
1747
但就像大多數人一樣
08:54
they misunderstand誤解 its basic基本 causes原因.
171
522299
3097
他們誤解了基本的原因
08:57
Technology技術 is racing賽跑 ahead,
172
525396
2610
科技發展神速
09:00
but it's leaving離開 more and more people behind背後.
173
528006
3550
把越來越多人拋諸腦後
09:03
Today今天, we can take a routine常規 job工作,
174
531556
3519
現在的例行公事,我們都可以
09:07
codify編成法典 it in a set of machine-readable機器可讀 instructions說明,
175
535075
3091
將其改編成一組機器可讀的指令
09:10
and then replicate複製 it a million百萬 times.
176
538166
2827
然後複製一百萬遍
09:12
You know, I recently最近 overheard偷聽 a conversation會話
177
540993
2279
最近我偶然聽到一則對話
09:15
that epitomizes集中體現 these new economics經濟學.
178
543272
1952
可以象徵這些經濟狀況
09:17
This guy says, "Nah, I don't use H&R Block anymore.
179
545224
4197
有個男的說:「不,我不要再請稅務公司了
09:21
TurboTaxTurboTax的 does everything that my tax preparer報稅 did,
180
549421
2448
報稅軟體能完成所有報稅員該做的事
09:23
but it's faster更快, cheaper便宜 and more accurate準確."
181
551869
4558
而且更快、更便宜還更精確。」
09:28
How can a skilled技能的 worker工人
182
556427
1799
一個專業的工作人員
09:30
compete競爭 with a $39 piece of software軟件?
183
558226
3009
要怎麼跟一個 39 塊美金的軟體競爭呢?
09:33
She can't.
184
561235
1967
她沒辦法比
09:35
Today今天, millions百萬 of Americans美國人 do have faster更快,
185
563202
2780
現在,的確有幾百萬美國人
09:37
cheaper便宜, more accurate準確 tax preparation製備,
186
565982
2387
能更快、更便宜又更精確的報稅
09:40
and the founders創始人 of Intuit意會
187
568369
1486
這報稅軟體的創辦人
09:41
have doneDONE very well for themselves他們自己.
188
569855
2493
他們自己也做得很好
09:44
But 17 percent百分 of tax preparers編制 no longer have jobs工作.
189
572348
4214
但是 17% 的報稅員丟了工作
09:48
That is a microcosm縮影 of what's happening事件,
190
576562
2078
這只是一部分的縮影
09:50
not just in software軟件 and services服務, but in media媒體 and music音樂,
191
578640
4677
不只是軟體和服務方面
還包括媒體及音樂
09:55
in finance金融 and manufacturing製造業, in retailing零售業 and trade貿易 --
192
583317
3686
財務及製造業,零售及貿易
09:59
in short, in every一切 industry行業.
193
587003
3895
簡單來說,是所有產業
10:02
People are racing賽跑 against反對 the machine,
194
590898
3095
人類在跟機器比速度
10:05
and many許多 of them are losing失去 that race種族.
195
593993
3090
大部分都輸了
10:09
What can we do to create創建 shared共享 prosperity繁榮?
196
597083
3886
該怎麼做才能共同創造繁榮的社會?
10:12
The answer回答 is not to try to slow down technology技術.
197
600969
3017
答案不會是放慢科技發展的速度
10:15
Instead代替 of racing賽跑 against反對 the machine,
198
603986
2557
我們不要去對抗機器
10:18
we need to learn學習 to race種族 with the machine.
199
606543
3677
而是應該學會去跟機器一起競爭
10:22
That is our grand盛大 challenge挑戰.
200
610220
3129
這是很大的挑戰
10:25
The new machine age年齡
201
613349
2324
新機器時代
10:27
can be dated過時的 to a day 15 years年份 ago
202
615673
3113
可以回朔到 15 年前的某一天
10:30
when Garry加里 Kasparov卡斯帕羅夫, the world世界 chess champion冠軍,
203
618786
2878
國際西洋棋世界冠軍
加里.卡斯帕羅夫(Gary Kasparov)
10:33
played發揮 Deep Blue藍色, a supercomputer超級計算機.
204
621664
3706
跟一台超級電腦:深藍(Deep Blue),一起比賽
10:37
The machine won韓元 that day,
205
625370
2012
那天電腦贏了
10:39
and today今天, a chess program程序 running賽跑 on a cell細胞 phone電話
206
627382
2968
而現在,一支手機裡的西洋棋遊戲
10:42
can beat擊敗 a human人的 grandmaster棋聖.
207
630350
2296
都可以打敗一位西洋棋大師
10:44
It got so bad that, when he was asked
208
632646
3365
這種情況真慘,當被問到
10:48
what strategy戰略 he would use against反對 a computer電腦,
209
636011
2563
他會用什麼方法來對抗電腦
10:50
Jan一月 Donner唐納, the Dutch荷蘭人 grandmaster棋聖, replied回答,
210
638574
4016
荷蘭西洋棋大師
約翰.唐納(Jan Donner)回答:
10:54
"I'd bring帶來 a hammer錘子."
211
642590
1771
「我會帶鐵鎚去。」
10:56
(Laughter笑聲)
212
644361
3680
(笑聲)
11:00
But today今天 a computer電腦 is no longer the world世界 chess champion冠軍.
213
648041
4544
但現在電腦已經不是西洋棋世界冠軍了
11:04
Neither也不 is a human人的,
214
652585
2654
冠軍也不是人
11:07
because Kasparov卡斯帕羅夫 organized有組織的 a freestyle自由泳 tournament比賽
215
655239
3579
因為卡斯帕羅夫舉辦了一種自由式比賽
11:10
where teams球隊 of humans人類 and computers電腦
216
658818
1916
這種比賽讓人類和電腦
11:12
could work together一起,
217
660734
2099
可以一起合作
11:14
and the winning勝利 team球隊 had no grandmaster棋聖,
218
662833
3157
贏家不是大師
11:17
and it had no supercomputer超級計算機.
219
665990
2465
也不是超級電腦
11:20
What they had was better teamwork團隊合作,
220
668455
4175
冠軍有的是團隊合作
11:24
and they showed顯示 that a team球隊 of humans人類 and computers電腦,
221
672630
5016
他們展現了人類和電腦
11:29
working加工 together一起, could beat擊敗 any computer電腦
222
677646
3048
是如何並肩作戰,打敗任何一台電腦
11:32
or any human人的 working加工 alone單獨.
223
680694
3520
或是任何一個人孤軍奮戰
11:36
Racing賽跑 with the machine
224
684214
1664
和電腦一起競爭
11:37
beats節拍 racing賽跑 against反對 the machine.
225
685878
2343
比對抗電腦來得有效
11:40
Technology技術 is not destiny命運.
226
688221
2564
科技不能主導我們的命運
11:42
We shape形狀 our destiny命運.
227
690785
1742
是我們主導自己的命運
11:44
Thank you.
228
692527
1447
謝謝大家
11:45
(Applause掌聲)
229
693974
5016
(掌聲)
Translated by Iris Chung
Reviewed by Marssi Draw

▲Back to top

ABOUT THE SPEAKER
Erik Brynjolfsson - Innovation researcher
Erik Brynjolfsson examines the effects of information technologies on business strategy, productivity and employment.

Why you should listen

The director of the MIT Center for Digital Business and a research associate at the National Bureau of Economic Research, Erik Brynjolfsson asks how IT affects organizations, markets and the economy. His recent work studies data-driven decision-making, management practices that drive productivity, the pricing implications of Internet commerce and the role of intangible assets.
 
Brynjolfsson was among the first researchers to measure the productivity contributions of information and community technology (ICT) and the complementary role of organizational capital and other intangibles. His research also provided the first quantification of the value of online product variety, often known as the “Long Tail,” and developed pricing and bundling models for information goods.

His books include Wired for Innovation: How IT Is Reshaping the Economy and Race Against the Machine: How the Digital Revolution Is Accelerating Innovation, Driving Productivity and Irreversibly Transforming Employment and the Economy (with Andrew McAfee); and the recent article "Big Data: The Management Revolution" (with Andrew McAfee).

More profile about the speaker
Erik Brynjolfsson | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee