ABOUT THE SPEAKER
Gary Flake - Technologist
Gary Flake is a Technical Fellow at Microsoft, and the founder and director of Live Labs.

Why you should listen

Gary Flake is a Technical Fellow at Microsoft, where he focuses on Internet products and technologies including search, advertising, content, portals, community and application development. In this capacity, he helps define and evolve Microsoft's product vision, technical architecture and business strategy for online services. He is also the founder and director of Live Labs, a skunkworks that bridges research and development, and is widely recognized for inventing new best practices for catalyzing and managing innovation.

Prior to joining Microsoft, Flake founded Yahoo! Research Labs, ran Yahoo!'s corporate R&D activities and company-wide innovation effort, and was the Chief Science Officer of Overture, the company that invented the paid search business model. Flake also wrote the award-winning book The Computational Beauty of Nature, which is used in college courses worldwide.

More profile about the speaker
Gary Flake | Speaker | TED.com
TED2010

Gary Flake: Is Pivot a turning point for web exploration?

加里·弗雷克:Pivot浏览器是网络探索的转折点吗?

Filmed:
751,479 views

加里·弗雷克演示了Pivot浏览器,一种帮助人们浏览和整理海量在线图像与数据的新方法。这种方法建立在Seadragon技术的突破上,它能够精彩纷呈地缩放网络数据库,并发现用标准网络浏览无法发现的模式和联系。(Seadragon 参见:http://www.ted.com/talks/lang/chi_hans/blaise_aguera_y_arcas_demos_photosynth.html)
- Technologist
Gary Flake is a Technical Fellow at Microsoft, and the founder and director of Live Labs. Full bio

Double-click the English transcript below to play the video.

00:16
If I can leave离开 you with one big idea理念 today今天,
0
1000
2000
如果今天我可以留给你们一个理念
00:18
it's that the whole整个 of the data数据
1
3000
2000
那就是我们消费的所有的数据所富含的信息大于各部分相加的总和,
00:20
in which哪一个 we consume消耗
2
5000
2000
那就是我们消费的所有的数据所富含的信息大于各部分相加的总和,
00:22
is greater更大 that the sum of the parts部分,
3
7000
2000
那就是我们消费的所有的数据所富含的信息大于各部分相加的总和,
00:24
and instead代替 of thinking思维 about information信息 overload超载,
4
9000
3000
并且,与其思考信息爆炸
00:27
what I'd like you to think about is how
5
12000
2000
我希望你想一想怎样使用
00:29
we can use information信息 so that patterns模式 pop流行的
6
14000
3000
这些信息,显示其中的规律
00:32
and we can see trends趋势 that would otherwise除此以外 be invisible无形.
7
17000
3000
使得我们能看见本来不可见的趋势,
00:35
So what we're looking at right here is a typical典型 mortality死亡 chart图表
8
20000
3000
那么我们在这里看到的是一个典型的死亡率图表
00:38
organized有组织的 by age年龄.
9
23000
2000
按照年龄分组
00:40
This tool工具 that I'm using运用 here is a little experiment实验.
10
25000
2000
我在这里使用的工具是一个小实验
00:42
It's called Pivot, and with Pivot what I can do
11
27000
3000
它称为Pivot,我能用Pivot
00:45
is I can choose选择 to filter过滤 in one particular特定 cause原因 of deaths死亡 -- say, accidents事故.
12
30000
4000
选择过滤特殊死亡原因,譬如事故
00:49
And, right away, I see there's a different不同 pattern模式 that emerges出现.
13
34000
3000
立刻,我看到一个不同的模式展现出来
00:52
This is because, in the mid-area中间区域 here,
14
37000
2000
这是因为,在中间这里
00:54
people are at their most active活性,
15
39000
2000
人们在他们最活跃的年龄
00:56
and over here they're at their most frail脆弱.
16
41000
2000
而在这里他们也是最体弱多病的时候
00:58
We can step back out again
17
43000
2000
我们可以退回来
01:00
and then reorganize改组 the data数据 by cause原因 of death死亡,
18
45000
2000
根据死亡原因重组数据
01:02
seeing眼看 that circulatory循环系统 diseases疾病 and cancer癌症
19
47000
3000
我们看到循环系统疾病和癌症
01:05
are the usual通常 suspects犯罪嫌疑人, but not for everyone大家.
20
50000
3000
是致死的主要病症,但这个规律并非适用于每个人
01:08
If we go ahead and we filter过滤 by age年龄 --
21
53000
3000
如果我们按照年龄过滤,
01:11
say 40 years年份 or less --
22
56000
2000
譬如40岁以下
01:13
we see that accidents事故 are actually其实
23
58000
2000
我们可以看到
01:15
the greatest最大 cause原因 that people have to be worried担心 about.
24
60000
3000
意外事故变成了人们需要格外小心的杀手
01:18
And if you drill钻头 into that, it's especially特别 the case案件 for men男人.
25
63000
3000
如果你进一步挖掘,会发现这一条尤其针对男性适用
01:21
So you get the idea理念
26
66000
2000
好了,你大概明白这个工具的作用了
01:23
that viewing观看 information信息, viewing观看 data数据 in this way,
27
68000
3000
通过这种方式查看信息,数据
01:26
is a lot like swimming游泳的
28
71000
2000
很像在
01:28
in a living活的 information信息 info-graphic信息图形.
29
73000
3000
鲜活的信息资料图片中遨游。
01:31
And if we can do this for raw生的 data数据,
30
76000
2000
如果我们能够对原始数据这样做
01:33
why not do it for content内容 as well?
31
78000
3000
为什么不也在内容上做呢?
01:36
So what we have right here
32
81000
2000
因此我们在这里展示
01:38
is the cover of every一切 single Sports体育 Illustrated插图
33
83000
3000
有史以来的
01:41
ever produced生成.
34
86000
2000
每一期体育画报的封面
01:43
It's all here; it's all on the web卷筒纸.
35
88000
2000
全部在这里,全部在网络上。
01:45
You can go back to your rooms客房 and try this after my talk.
36
90000
3000
你可以在我演讲结束后回到你的房间试试看。
01:48
With Pivot, you can drill钻头 into a decade.
37
93000
3000
使用Pivot,你能够以十年为单位查看。
01:51
You can drill钻头 into a particular特定 year.
38
96000
2000
你能够深入指定的某一年。
01:53
You can jump right into a specific具体 issue问题.
39
98000
3000
你能直接进入一个某一期
01:56
So I'm looking at this; I see the athletes运动员
40
101000
2000
比如我看到这个;我看见曾经出现在这期中的
01:58
that have appeared出现 in this issue问题, the sports体育.
41
103000
2000
运动员,体育。
02:00
I'm a Lance Armstrong阿姆斯特朗 fan风扇, so I'll go ahead and I'll click点击 on that,
42
105000
3000
我是兰斯·阿姆斯特朗的粉丝,所以我继续点击
02:03
which哪一个 reveals揭示, for me, all the issues问题
43
108000
2000
它就给我展示了所有
02:05
in which哪一个 Lance Armstrong's阿姆斯特朗的 been a part部分 of.
44
110000
2000
这只是兰斯·阿姆斯特朗所有问题中的一部分
02:07
(Applause掌声)
45
112000
3000
(掌声欢呼)
02:10
Now, if I want to just kind of take a peek窥视 at these,
46
115000
3000
现在,如果我仅仅是想取样这些数据的高峰
02:13
I might威力 think,
47
118000
2000
我会想,
02:15
"Well, what about taking服用 a look at all of cycling循环?"
48
120000
2000
好吧,看看所有自行车运动员如何?
02:17
So I can step back, and expand扩大 on that.
49
122000
2000
因此,我可以退一步,并扩大这一点
02:19
And I see Greg格雷格 LeMond雷蒙德 now.
50
124000
2000
我现在看见了格雷格·莱蒙德
02:21
And so you get the idea理念 that when you
51
126000
2000
因此你要明白
02:23
navigate导航 over information信息 this way --
52
128000
2000
当你用这种方式浏览信息时
02:25
going narrower, broader更广泛,
53
130000
2000
狭窄的,宽阔的,
02:27
backing后盾 in, backing后盾 out --
54
132000
2000
后退,反向,
02:29
you're not searching搜索, you're not browsing浏览.
55
134000
2000
你不是在搜寻,不是在浏览。
02:31
You're doing something that's actually其实 a little bit different不同.
56
136000
2000
你做的事实际上有点不同。
02:33
It's in between之间, and we think it changes变化
57
138000
3000
介于两者之间,并且我们认为
02:36
the way information信息 can be used.
58
141000
2000
这改变了信息的使用方式
02:38
So I want to extrapolate推断 on this idea理念 a bit
59
143000
2000
因此,我推断在这个想法上
02:40
with something that's a little bit crazy.
60
145000
2000
有些东西是有点疯狂。
02:42
What we're doneDONE here is we've我们已经 taken采取 every一切 single Wikipedia维基百科 page
61
147000
3000
我们在这儿做的是摘取每个维基百科的页面
02:45
and we reduced减少 it down to a little summary概要.
62
150000
3000
然后压缩为一个小小的摘要
02:48
So the summary概要 consists of just a little synopsis概要
63
153000
3000
摘要包含了简介
02:51
and an icon图标 to indicate表明 the topical局部的 area that it comes from.
64
156000
3000
一个图标显示它来自专业领域。
02:54
I'm only showing展示 the top最佳 500
65
159000
3000
我仅仅在这里展示前500个
02:57
most popular流行 Wikipedia维基百科 pages网页 right here.
66
162000
2000
最受欢迎的维基百科页面
02:59
But even in this limited有限 view视图,
67
164000
2000
但即使在这些有限的浏览中,
03:01
we can do a lot of things.
68
166000
2000
我们依然可以做很多事情。
03:03
Right away, we get a sense of what are the topical局部的 domains
69
168000
2000
立刻,我们得知
03:05
that are most popular流行 on Wikipedia维基百科.
70
170000
2000
维基百科上最流行的是什么。
03:07
I'm going to go ahead and select选择 government政府.
71
172000
2000
我继续前进并选择政府。
03:09
Now, having selected government政府,
72
174000
3000
现在,通过选定后的政府,
03:12
I can now see that the Wikipedia维基百科 categories类别
73
177000
2000
我可以看到在维基百科类别中
03:14
that most frequently经常 correspond对应 to that
74
179000
2000
最常对应的
03:16
are Time magazine杂志 People of the Year.
75
181000
3000
是时代周刊年度风云人物
03:19
So this is really important重要 because this is an insight眼光
76
184000
3000
这是很重要的 因为这是一项
03:22
that was not contained within any one Wikipedia维基百科 page.
77
187000
3000
不属于任何一个维基网页所载述的内容。
03:25
It's only possible可能 to see that insight眼光
78
190000
2000
只有你退后几步俯瞰全局
03:27
when you step back and look at all of them.
79
192000
3000
才有可能看的透彻
03:30
Looking at one of these particular特定 summaries摘要,
80
195000
2000
看看这些特殊摘要中的一种,
03:32
I can then drill钻头 into the concept概念 of
81
197000
3000
随后我能深入
03:35
Time magazine杂志 Person of the Year,
82
200000
2000
时代杂志年度风云人物
03:37
bringing使 up all of them.
83
202000
2000
深入他们。
03:39
So looking at these people,
84
204000
2000
所以,看看这些人
03:41
I can see that the majority多数 come from government政府;
85
206000
3000
我可以看到大多数来自政府。
03:45
some have come from natural自然 sciences科学;
86
210000
3000
有一部分来自自然科学界。
03:49
some, fewer still, have come from business商业 --
87
214000
3000
更少的部分来自商界。
03:53
there's my boss老板 --
88
218000
2000
其中有我的老板。
03:55
and one has come from music音乐.
89
220000
5000
一个来自音乐界。
04:00
And interestingly有趣 enough足够,
90
225000
2000
而有趣的是,
04:02
Bono波诺 is also a TEDTED Prize winner优胜者.
91
227000
3000
波诺也是TED大奖得主。
04:05
So we can go, jump, and take a look at all the TEDTED Prize winners获奖者.
92
230000
3000
因此我们能够继续,跳转,看看所有的TED大奖得主。
04:08
So you see, we're navigating导航 the web卷筒纸 for the first time
93
233000
3000
所以你看,这是我们第一次在网络上遨游
04:11
as if it's actually其实 a web卷筒纸, not from page-to-page页到页,
94
236000
3000
仿佛的确是一张网,不仅一页一页的。
04:14
but at a higher更高 level水平 of abstraction抽象化.
95
239000
2000
而且是在更高的抽象层次上的网。
04:16
And so I want to show显示 you one other thing
96
241000
2000
所以我想告诉你另一件事
04:18
that may可能 catch抓住 you a little bit by surprise.
97
243000
3000
可能会让你吃惊。
04:21
I'm just showing展示 the New York纽约 Times website网站 here.
98
246000
3000
我只是在这展示纽约时报网站。
04:24
So Pivot, this application应用 --
99
249000
2000
Pivot,这个应用程序——
04:26
I don't want to call it a browser浏览器; it's really not a browser浏览器,
100
251000
2000
我不想称之为浏览器,它确实不仅是一个浏览器,
04:28
but you can view视图 web卷筒纸 pages网页 with it --
101
253000
3000
你能用它浏览网页——
04:31
and we bring带来 that zoomable可缩放 technology技术
102
256000
2000
并且我们给每个像这样的网页引入了可缩放技术。
04:33
to every一切 single web卷筒纸 page like this.
103
258000
3000
并且我们给每个像这样的网页引入了可缩放技术。
04:36
So I can step back,
104
261000
3000
因此我可以退后,
04:39
pop流行的 right back into a specific具体 section部分.
105
264000
2000
退后到特定的地方
04:41
Now the reason原因 why this is important重要 is because,
106
266000
2000
为什么这个是重要的是因为,
04:43
by virtue美德 of just viewing观看 web卷筒纸 pages网页 in this way,
107
268000
3000
由于通过这种方式浏览网页的好处,
04:46
I can look at my entire整个 browsing浏览 history历史
108
271000
2000
我能用完全相同的方式
04:48
in the exact精确 same相同 way.
109
273000
2000
看到我的全部浏览历史。
04:50
So I can drill钻头 into what I've doneDONE
110
275000
2000
因此我能深入
04:52
over specific具体 time frames.
111
277000
2000
具体时间段的具体事件。
04:54
Here, in fact事实, is the state
112
279000
2000
这里,事实上,
04:56
of all the demo演示 that I just gave.
113
281000
2000
是我刚才所有演示的情况。
04:58
And I can sort分类 of replay重播 some stuff东东 that I was looking at earlier today今天.
114
283000
3000
我可以在某种程度上重放我今天早些时候看到的东西。
05:01
And, if I want to step back and look at everything,
115
286000
3000
如果我想退后一步看所一切东西,
05:04
I can slice and dice骰子 my history历史,
116
289000
2000
我可以切割我的历史
05:06
perhaps也许 by my search搜索 history历史 --
117
291000
2000
也许是我的搜索历史。
05:08
here, I was doing some nepotistic裙带关系 searching搜索,
118
293000
2000
这里,我做了一些相关搜索,
05:10
looking for Bing, over here for Live生活 Labs实验室 Pivot.
119
295000
3000
搜寻Bing,在这里有关微软Live Labs的Pivot。
05:13
And from these, I can drill钻头 into the web卷筒纸 page
120
298000
2000
从这些,我可以深入网页
05:15
and just launch发射 them again.
121
300000
2000
仅仅重启他们。
05:17
It's one metaphor隐喻 repurposed改变用途 multiple times,
122
302000
3000
这是同样的信息,因不同目的被多次组合使用,
05:20
and in each case案件 it makes品牌 the whole整个 greater更大
123
305000
2000
每次重新组合,使得它比组合起来的整体所含信息更多。
05:22
than the sum of the parts部分 with the data数据.
124
307000
2000
每次重新组合,使得它比组合起来的整体所含信息更多。
05:24
So right now, in this world世界,
125
309000
3000
现在,在这个世界上,
05:27
we think about data数据 as being存在 this curse诅咒.
126
312000
3000
我们谈到数据常常提到这个诅咒。
05:30
We talk about the curse诅咒 of information信息 overload超载.
127
315000
3000
我们谈论信息爆炸魔咒。
05:33
We talk about drowning溺死 in data数据.
128
318000
3000
我们谈论淹没在信息海洋中。
05:36
What if we can actually其实 turn that upside上边 down
129
321000
2000
假设我们能把这种观念颠覆
05:38
and turn the web卷筒纸 upside上边 down,
130
323000
2000
把网络上下颠覆,
05:40
so that instead代替 of navigating导航 from one thing to the next下一个,
131
325000
3000
相对于单线信息相互链接的情况,
05:43
we get used to the habit习惯 of being存在 able能够 to go from many许多 things to many许多 things,
132
328000
3000
让我们开始习惯多样信息链接多样信息,
05:46
and then being存在 able能够 to see the patterns模式
133
331000
2000
然后看到除此方式外无法看到的,隐藏规律?
05:48
that were otherwise除此以外 hidden?
134
333000
2000
然后看到除此方式外无法看到的,隐藏规律?
05:50
If we can do that, then instead代替 of being存在 trapped被困 in data数据,
135
335000
5000
如果我们能做到这一点,而不是被困在数据中,
05:55
we might威力 actually其实 extract提取 information信息.
136
340000
3000
我们才能真正的获取信息。
05:58
And, instead代替 of dealing交易 just with information信息,
137
343000
2000
并且,不仅仅是处理信息,
06:00
we can tease out knowledge知识.
138
345000
2000
我们还可以梳理知识。
06:02
And if we get the knowledge知识, then maybe even there's wisdom智慧 to be found发现.
139
347000
3000
如果我们获得知识,之后甚至可以发现智慧。
06:05
So with that, I thank you.
140
350000
2000
谢谢。
06:07
(Applause掌声)
141
352000
8000
(掌声欢呼)
Translated by 周 宇轩
Reviewed by dahong zhang

▲Back to top

ABOUT THE SPEAKER
Gary Flake - Technologist
Gary Flake is a Technical Fellow at Microsoft, and the founder and director of Live Labs.

Why you should listen

Gary Flake is a Technical Fellow at Microsoft, where he focuses on Internet products and technologies including search, advertising, content, portals, community and application development. In this capacity, he helps define and evolve Microsoft's product vision, technical architecture and business strategy for online services. He is also the founder and director of Live Labs, a skunkworks that bridges research and development, and is widely recognized for inventing new best practices for catalyzing and managing innovation.

Prior to joining Microsoft, Flake founded Yahoo! Research Labs, ran Yahoo!'s corporate R&D activities and company-wide innovation effort, and was the Chief Science Officer of Overture, the company that invented the paid search business model. Flake also wrote the award-winning book The Computational Beauty of Nature, which is used in college courses worldwide.

More profile about the speaker
Gary Flake | Speaker | TED.com

Data provided by TED.

This site was created in May 2015 and the last update was on January 12, 2020. It will no longer be updated.

We are currently creating a new site called "eng.lish.video" and would be grateful if you could access it.

If you have any questions or suggestions, please feel free to write comments in your language on the contact form.

Privacy Policy

Developer's Blog

Buy Me A Coffee